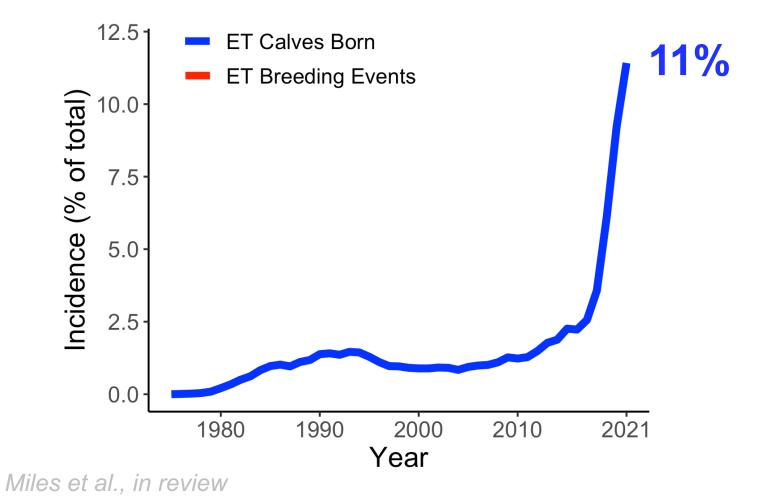


THE INCREASING POPULARITY OF EMBRYO TRANSFER HAS IMPLICATIONS FOR U.S. DAIRY CATTLE FERTILITY EVALUATIONS

A. M. Miles^{1*}, J. L. Hutchison¹, and P. M. VanRaden¹

¹ Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705-2350, USA; <u>*asha.miles@usda.gov</u>

REASONS COWS EXIT THE HERD

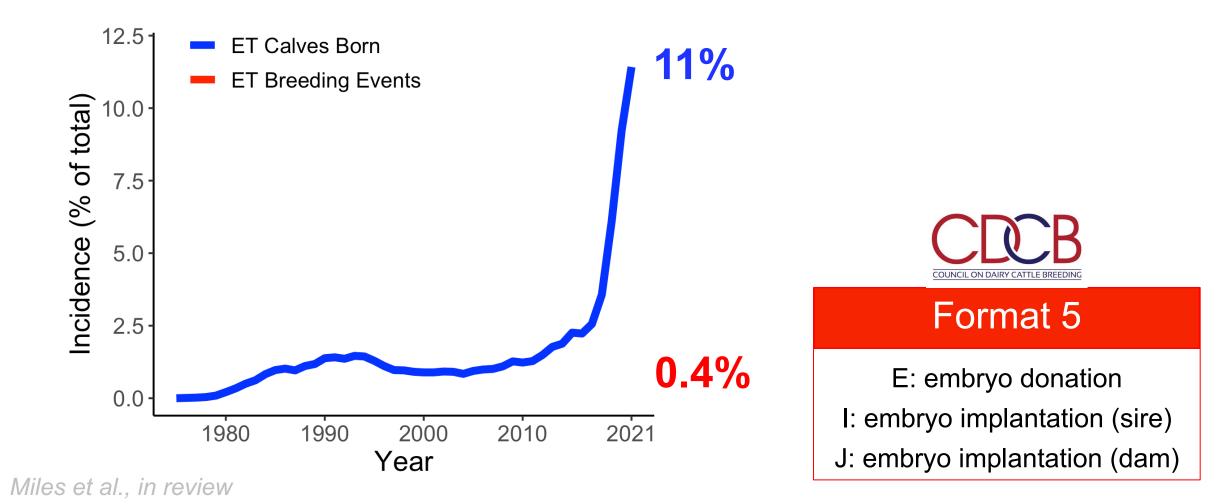

Termination Code	Holstein	Jersey	Other Breeds ¹
Unspecified	29.8 %	30.3 %	28.7 %
Low production	22.0 %	27.4 %	18.7 %
Reproduction problems	14.9 %	11.7 %	18.4 %
Mastitis or high SCC	12.6 %	11.8 %	12.4 %
	0.1 %	0.1 %	0.2 %
Bad behavior	0.0 %	0.0 %	0.1 %

¹Ayrshire, Brown Swiss, Guernsey, Milking Shorthorn, Red & White

From: Norman et al (2021)

EMBRYO TRANSFER IS ON THE RISE

EMBRYO TRANSFER IS ON THE RISE


Maternal line and genotyped embryo of dam HOCAN13913420

Maternal Generation	0	1	2	3	4	5	6	7
Birth Year	2022	2020	2019	2018	2016	2015	2013	2012
Birth Month								
Generation Interval ¹	16	17	15	16	17	18	18	

¹months

EMBRYO TRANSFER IS ON THE RISE

ET REPORTING ERROR RATES

Code	Mating Type	ET Births	All Other Calvings	
А	AI	35,100	11,060,000	
G	AI (sexed semen)			
Ν	Natural Service			
E	Embryo Donation			
I/J	Embryo Implantation			

ET REPORTING ERROR RATES

Code	Mating Type	ET Births	All Other Calvings		The rate a which ET
Α	AI	35,100	11,060,000	0.3%	incorrect
G	AI (sexed semen)	14,833	1,175,795	1.3%	reported
Ν	Natural Service	2,035	584,971	0.4%	
E	Embryo Donation	0	13	0.0%	The rate a
I/J	Embryo Implantation	372	29,416	1.3%	which ET i
					correctly reported

THE PROBLEM

With embryo transfer, conception is not actually occurring

Ourreported ET may bias fertility evaluations in the population

Previously, the US excluded all ET donors & recipients in evaluations

ET-associated records represent the most elite animals & herds so removing them is not necessarily the desired approach

1. Identified herds doing substantial amount of ET but with inconsistent reporting

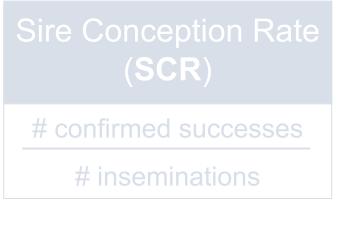
> Censor herdyears reporting >10 % calves born by ET, but < ¹/₂ the expected number of ET breeding events

2. Recalculated conception rate evaluations

BLUP Animal Model

(Wiggans and VanRaden 1989)

$$y_{ijkl} = m_{ij} + a_{kl} + p_{kl} + c_{ik} + e_{ijkl}$$


m_{ij} : management group : animal effect a_{kl} : permanent effect of environment p_{kl} : herd-sire interaction C_{ik} : residual variance e_{ijkl}

APPROACH

 $y_{ijkl} = m_{ij} + a_{kl} + p_{kl} + c_{ik} + e_{ijkl}$

2. Recalculated conception rate evaluations

- Only data from most recent 4 years
- No genetic relationships
- Additional environmental effects included

Interpretation

Conception rate is predicted to be 2 percentage points higher than the average conception rate for the AI bulls in that breed

APPROACH

 $y_{ijkl} = m_{ij} + a_{kl} + p_{kl} + c_{ik} + e_{ijkl}$

2. Recalculated conception rate evaluations

Heifer Conception Rate	Cow Conception Rate
(HCR)	(CCR)
% inseminated heifers that	% inseminated cows that
become pregnant at each	become pregnant at each
service	service

- Multi-trait model along with AFC and DPR
- All available data from 2003+ used
- Breeds evaluated together including regressions on inbreeding and heterosis

Daughters of this bull are 2% more likely to become pregnant at each service than the average

3. Assessed impact of edit

Examine differences for each breed in context of bull popularity, ET usage, and genetic merit

	Change in Evaluation (%)								
	BullsMinMedianIQRMaxCorrelationCompared								
Ayrshire	6	-0.3	-0.1	0.4	0.3	0.98*			
Brown Swiss	44	-0.9							
Guernsey	14	-0.6	0.1	0.6	0.6	0.96*			
Holstein	1379	-1.9							
Jersey	132	-1.4	-0.1	0.3	0.9	0.99*			
Milking Shorthorn	1	0.0	0.0	0.0	0.0				

		Change in Evaluation (%)							
	Bulls Compared	Min	Median	IQR	Max	Correlation			
Ayrshire		-0.3	-0.1	0.4	0.3	0.98*			
Brown Swiss			-0.1	0.3					
Guernsey		-0.6	0.1	0.6	0.6	0.96*			
Holstein			0.0	0.2					
Jersey		-1.4	-0.1	0.3	0.9	0.99*			
Milking Shorthorn	1	0.0	0.0	0.0	0.0				

	Change in Evaluation (%)						
	Bulls Compared	Min	Median	IQR	Max	Correlation	
	6	-0.3	-0.1	0.4	0.3	0.98*	
		-0.6	0.1	0.6	0.6	0.96*	
Holstein	1379	-1.9	0.0		1.3	0.99*	
Jersey	132	-1.4	-0.1	0.3	0.9	0.99*	
Milking Shorthorn	1	0.0	0.0	0.0	0.0		

Miles et al., in review

Previously overestimated

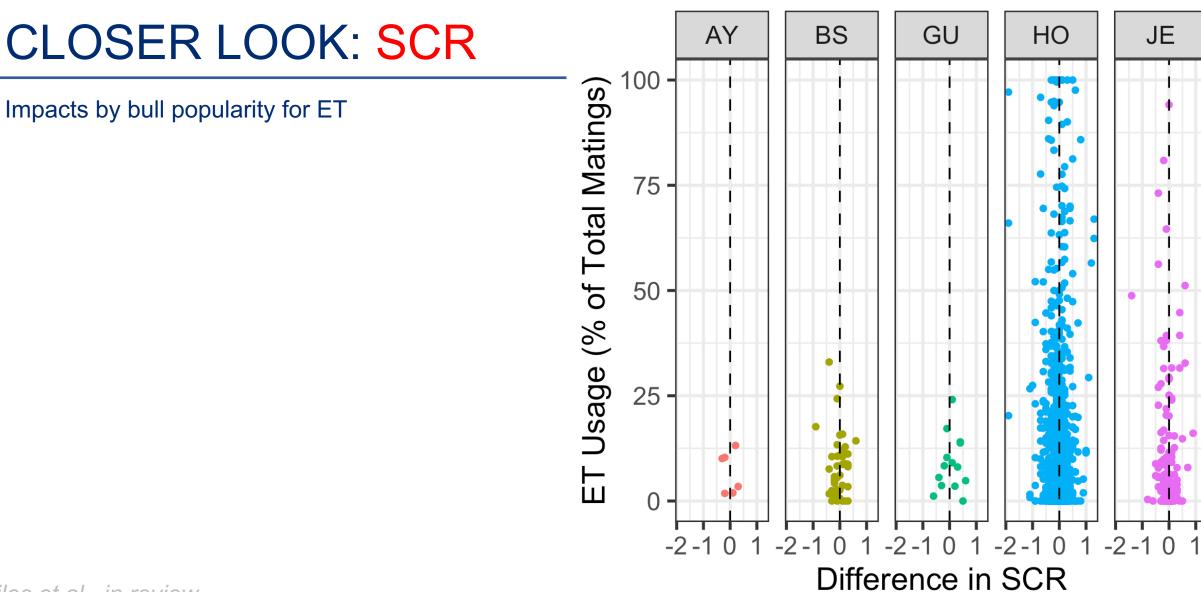
Previously underestimated

	Change in Evaluation (%)						
	Bulls Compared	Min	Median	IQR	Max	Correlation	
Ayrshire		-0.3	-0.1	0.4	0.3	0.98*	
Brown Swiss						0.99*	
Guernsey	14	-0.6	0.1	0.6	0.6	0.96*	
Holstein	1379					0.99*	
Jersey	132	-1.4	-0.1	0.3	0.9	0.99*	
Milking Shorthorn	1	0.0	0.0	0.0	0.0		

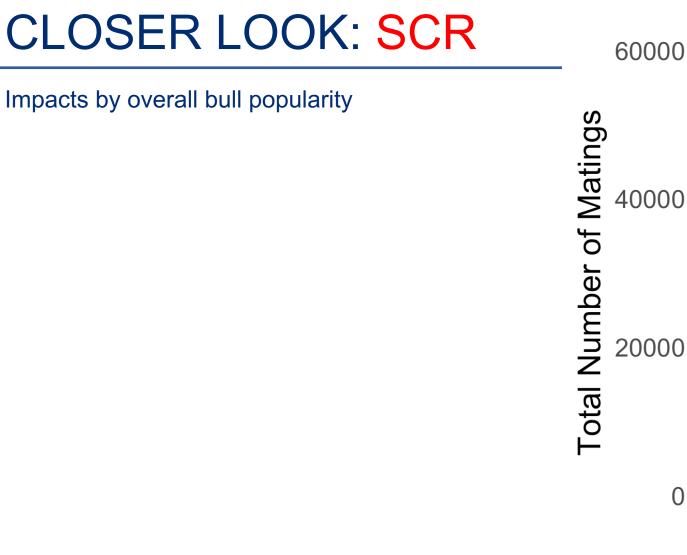
Edit removed 252 herdyears (1.2% reduction)

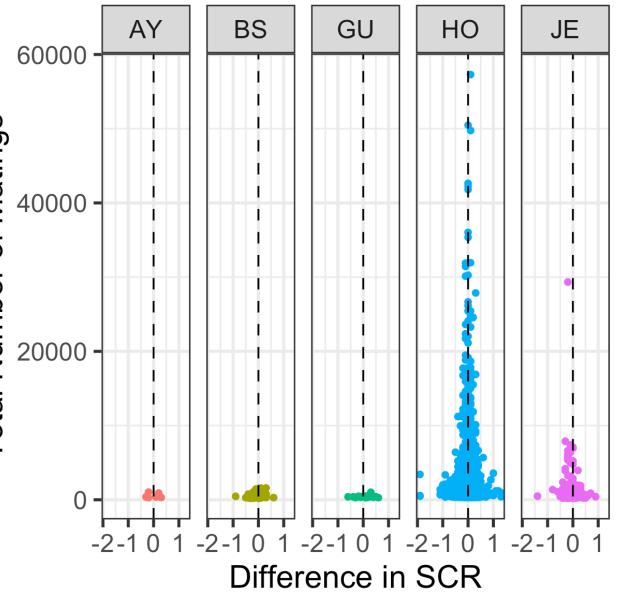
	Change in Evaluation (%)						
	Bulls Compared	Min	Median	IQR	Max	Correlation	
Ayrshire	22	-0.5	0.0	0.3	0.3	0.98*	
Brown Swiss	156	-0.6	-0.2	0.2	0.5	0.99*	
Guernsey	43	-0.8	-0.2	0.3	0.3	0.99*	
Holstein	13807	-1.6	-0.1	0.3	3.7	0.99*	
Jersey	1574	-1.6	-0.9	0.3	1.5	0.99*	
Milking Shorthorn	14	-0.4	-0.1	0.3	0.3	0.99*	

Edit removed 237,414 herdyears (2.2% reduction)

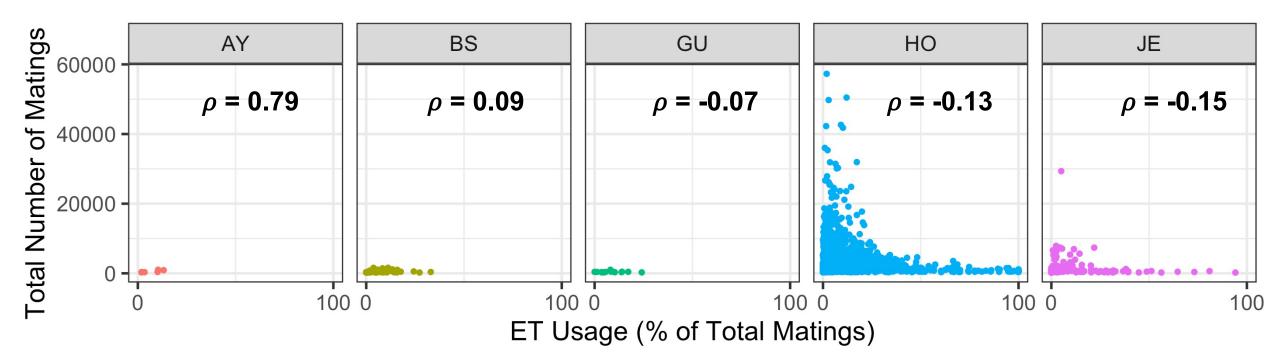

	Change in Evaluation (%)						
	Bulls Compared	Min	Median	IQR	Max	Correlation	
Ayrshire	370	-0.8	-0.3	0.1	0.4	0.99*	
Brown Swiss	1058	-1.5	-0.3	0.2	0.5	0.99*	
Guernsey	805	-0.8	-0.3	0.1	0.3	0.99*	
Holstein	47262	-1.6	-0.3	0.2	1.4	0.99*	
Jersey	5303	-1.8	-0.3	0.2	1.0	0.99*	
Milking Shorthorn	158	-0.9	-0.3	0.3	0.3	0.99*	

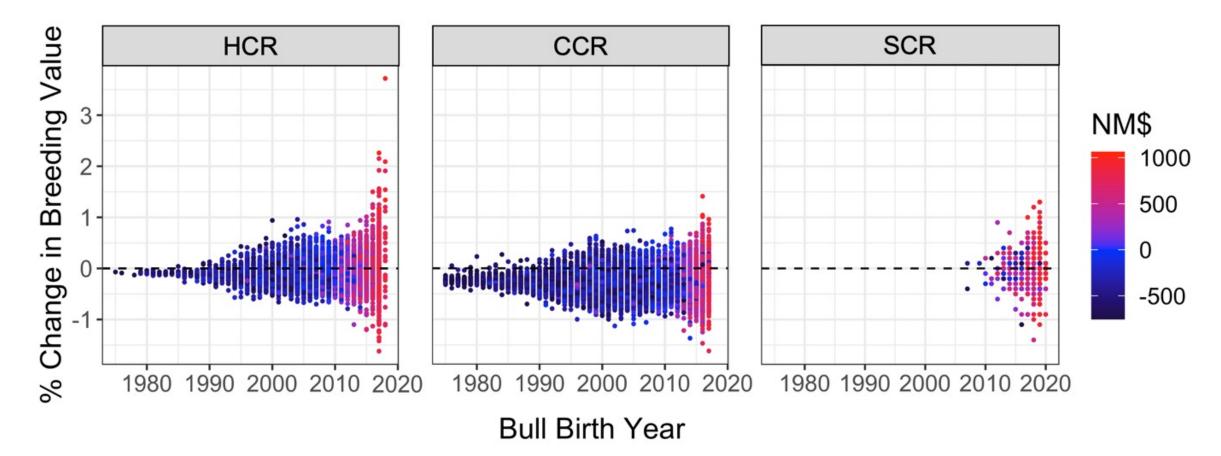
Edit removed 323,618 herdyears (1.0% reduction)




HO

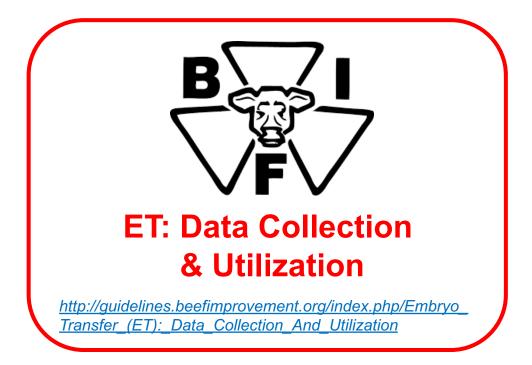
JE




CLOSER LOOK: SCR

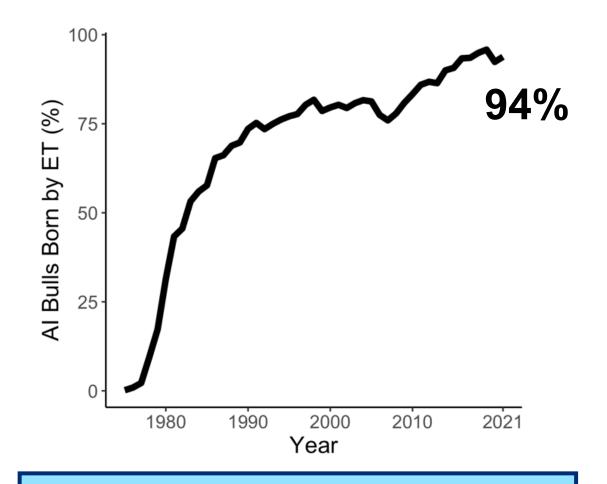
Bull popularity correlation with ET usage

ELITE YOUNG BULLS MOST AFFECTED


FUTURE RESEARCH NEEDS

• Other reproductive traits

 Daughter Pregnancy Rate, Age at First Calving, Gestation Length


Data needs

- Accurate reporting of breeding events
- Multiple ovulation v. IVF
- Fresh v. frozen embryos
- Embryo grade and stage
- Recipient synchrony
- FSH protocol

Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

ET for cows may continue to increase, as it has for AI bulls

Key Messages

- These edits were implemented in CDCB April 2022 Evaluations
- Effects for SCR, CCR, and HCR were overall small, except for elite new bulls popular for ET usage
- Acquiring high quality ET records will be essential to providing accurate fertility evaluations in the future

THANK YOU

Data were available to the authors from CDCB under USDA Agricultural Research Service Material Transfer Research Agreement #58-8042-8-007. While CDCB offers data stewardship, sole ownership and rights pertaining thereto remain with the producer and we thank U.S. dairy producers for sharing their data for research use. Special thanks to Duane Norman of CDCB for his review and feedback on this research.

This work was supported by USDA-ARS project 8042-31000-002-00-D, "Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals"

The USDA does not guarantee, approve, or endorse any product or company; the mention of specific names may be required for accurate research reporting. USDA is an Equal Opportunity Employer.

Contact: asha.miles@usda.gov