GENETIC & GENOMIC EVALUATIONS OF QUANTITATIVE MILKING SPEED PHENOTYPES

A. M. Miles, J. L. Hutchison, S. Toghiani, J. R. O'Connell, R. H. Fourdraine, P. M. VanRaden, K. L. Parker Gaddis, S. Sievert, S. Eaglen, J. Bewley, and J. W. Dürr

USDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

PROPOSED RESEARCH

- **OBJ. 1:** Assemble a <u>high-resolution dataset pertinent to MS</u> representing different dairy breeds, equipment manufacturers, parlor types, and milking management strategies
- **OBJ. 2:** Characterize MS for herds grouped by equipment manufacturer and parlor type and assess the impact of additional **system effects** on the phenotype
- **OBJ. 3:** Characterize any <u>biological effects</u> that impact MS, especially concerning udder health
- **OBJ. 4: <u>Standardize</u>** MS trait definition and estimate heritability to determine its suitability for selection

AVAILABLE DATA

Demographics

~300 herds

>230,000 cows

>300,000 lactations

>40 million observations

31 States

6+ Breeds

11 OEMs

DeLaval	80
GEA	75
Lely	47
Boumatic	46
AfiMilk	45
SCR	13
DairyMaster	10
AIC Waikato	5
AMS Galaxy	3
Jantec	2
Universal	2

Different Trait Definitions

- 1. Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)

PRELIMINARY RESULTS

 $h^2 = 0.37$

Genetic Correlations

SCS 0.39

Milk Yield 0.14

NM\$ 0.08

Mean REL 0.67

Different Trait Definitions

1. Average MS (lbs/min) over all available data

	PTA			REL				
Trait	Min	Mean	SD	Max	Min	Mean	SD	Max
MSPD	-0.80	0.12	0.30	1.00	50.10	67.05	11.84	97.80
SCS	-0.72	-0.17	0.18	0.67	50.00	92.95	10.50	99.90

Different Trait Definitions

- 1. Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- 2. Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

A hypothetical 3X cow would have 3 * 305 = 915 phenotype records

Different Trait Definitions

- Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- 2. Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

A hypothetical 3X cow would have 3 * 10 = 30 phenotype records

(97% reduction in data!)

Different Trait Definitions

- Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- 2. Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

PRELIMINARY RESULTS

 $h^2 = 0.28$

Genetic Correlations

SCS 0.43

Milk Yield 0.16

NM\$ 0.06

Mean REL 0.64

Genetic Correlations (upper diagonal)
Phenotypic Correlations (lower diagonal)

	Avg_all	Avg_TD	Avg_all_P1	Avg_TD_P1
Avg_all		0.968	0.916	0.976
Avg_TD	0.821		0.944	0.991
Avg_all_P1	1.000	0.819		0.924
Avg_TD_P1	0.820	1.000	0.819	

ENSURING DATA FLOW

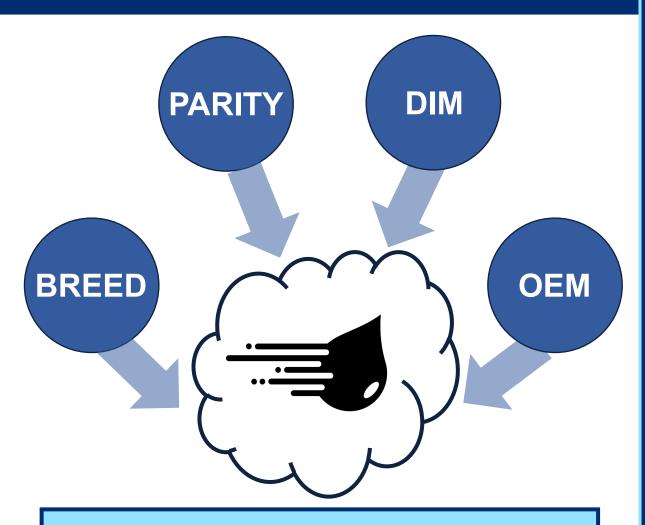
Minimum Required Data Novel to MSPD

Observation date (YYYYMMDD)

Milking Session Number (1, 2, ... 6)

Milking Frequency (01X, 02X, 03X, 04X, AMS)

Robotic or Manual Attachment (R or M)


Original Equipment Manufacturer (OEM) Code

Milk Yield from Individual Milking (lbs * 10)

Milking Duration of Individual Milking (minutes * 10)

Abnormal Flags (Y or N)

ICAR Device Reference IDs

Many factors influence quantitative MSPD measurements

THE BOTTOM LINE

- Genetic and genomic prediction methodology for milking speed has been developed
- We are targeting delivery of a new trait in December 2024
- Routine data flow is a key hurdle
- Next steps include incorporation of partial lactation records and exploring the use of AMS data

THANK YOU

Data were available to the authors from CDCB under USDA Agricultural Research Service Material Transfer Research Agreement #58-8042-8-007. While CDCB offers data stewardship, sole ownership and rights pertaining thereto remain with the producer and we thank U.S. dairy producers for sharing their data for research use.

This work was supported by USDA-ARS project 8042-31000-113-000D, "Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals".

The USDA does not guarantee, approve, or endorse any product or company; the mention of specific names may be required for accurate research reporting. USDA is an Equal Opportunity Employer.