

AGIL REPORT 2024

Milking Speed, Herd-Level Sustainability Metrics & Other AGIL News

Asha M. Miles, PhD | Research Geneticist

Animal Genomics & Improvement Laboratory USDA Agricultural Research Service Beltsville, MD 20705 asha.miles@usda.gov

MILKING SPEED:

Data Trends, Udder Health, & Preliminary PTAs

Asha Miles, Robert Fourdraine, Kristen Parker Gaddis, Steven Sievert, Jeffrey Bewley, Sophie Eaglen, Jay Weiker, Jana Hutchison, and Joao Dürr

PROPOSED RESEARCH

- **OBJ. 1:** Assemble a <u>high-resolution dataset pertinent to MS</u> representing different dairy breeds, equipment manufacturers, parlor types, and milking management strategies
- **OBJ. 2:** Characterize MS for herds grouped by equipment manufacturer and parlor type and assess the impact of additional **system effects** on the phenotype
- **OBJ. 3:** Characterize any <u>biological effects</u> that impact MS, especially concerning udder health
- **OBJ. 4: <u>Standardize</u>** MS trait definition and estimate heritability to determine its suitability for selection

AVAILABLE DATA

Demographics

~300 herds

>230,000 cows

>300,000 lactations

>40 million observations

31 States

6+ Breeds

11 OEMs

DeLaval	80
GEA	75
Lely	47
Boumatic	46
AfiMilk	45
SCR	13
DairyMaster	10
AIC Waikato	5
AMS Galaxy	3
Jantec	2
Universal	2

Different Trait Definitions

- Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)

PRELIMINARY RESULTS

 $h^2 = 0.37$

Genetic Correlations

SCS 0.39

Milk Yield 0.14

NM\$ 0.08

Mean REL 0.67

Different Trait Definitions

- 1. Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

A hypothetical 3X cow would have 3 * 305 = 915 phenotype records

Different Trait Definitions

- Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- 2. Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

A hypothetical 3X cow would have 3 * 10 = 30 phenotype records

(97% reduction in data!)

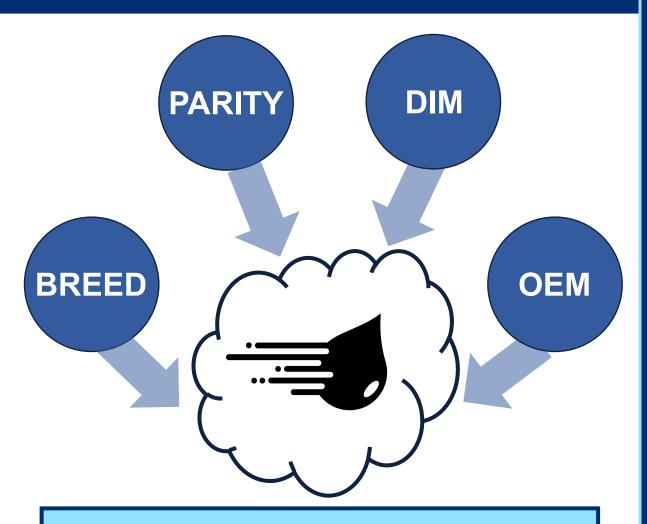
Different Trait Definitions

- Average MS (lbs/min) over all available data
 - a) Fixed effects: breed, parity, lactation length, OEM
 - b) n = 20,000 cows with complete lactations (1 year)
- 2. Average MS (lbs/min) from test-days only
- 3. Primiparous cows only

 $h^2 = 0.28$

Genetic Correlations

SCS 0.43


Milk Yield 0.16

NM\$ 0.06

Mean REL 0.64

Genetic Correlations (upper diagonal)
Phenotypic Correlations (lower diagonal)

	Avg_all	Avg_TD	Avg_all_P1	Avg_TD_P1
Avg_all		0.968	0.916	0.976
Avg_TD	0.821		0.944	0.991
Avg_all_P1	1.000	0.819		0.924
Avg_TD_P1	0.820	1.000	0.819	

Many factors influence quantitative MSPD measurements

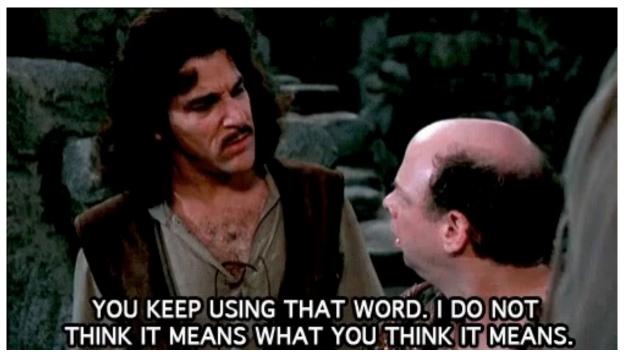
THE BOTTOM LINE

- Genetic and genomic prediction methodology for milking speed has been developed
- We are targeting delivery of a new trait in December 2024
- Routine data flow is a key hurdle; a new Format has been proposed and will be discussed at the DRPC meeting in May

HERD SUSTAINABILITY METRICS

Proof of Concept & Discussion

Kristen Parker Gaddis, Asha Miles, Robert Fourdraine



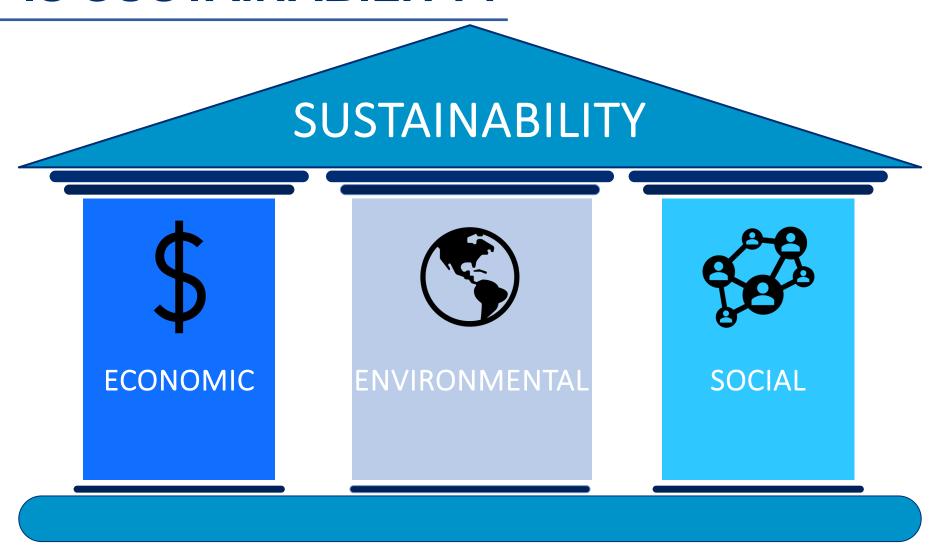
WHAT IS SUSTAINABILITY?

The ability to be **maintained** at a certain rate or level

-Oxford Languages

The Princess Bride (1987)

WHAT IS SUSTAINABILITY?


Farm Bill

[Food, Agriculture, Conservation, and Trade Act of 1990 (FACTA), Public Law 101-624, Title XVI, Subtitle A, Section 1603 (Government Printing Office, Washington, DC, 1990) NAL Call # KF1692.A31 1990]

sustainable agriculture [is] an integrated system of plant and animal production practices... that will, over the long term:

- Satisfy human food and fiber needs;
- Enhance environmental quality and the natural resource base upon which the agricultural economy depends;
- Make the most efficient use of nonrenewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls;
- Sustain the economic viability of farm operations; and
- Enhance the quality of life for farmers and society as a whole

WHAT IS SUSTAINABILITY?

PROOF OF CONCEPT

Preliminary Data from All 4 DRPCs

ICAR SUSTAINABILITY TASK FORCE TRAIT CATEGORIES

FEEDING & PRODUCTION

AVG DIM

N = 10,003

FERTILITY

AVG CALVING INTERVAL

N = 9,905

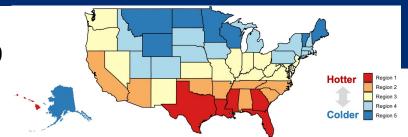
HEALTH

AVG SCC

N = 9,830

LONGEVITY

AVG CULLING AGE


N = 10,041

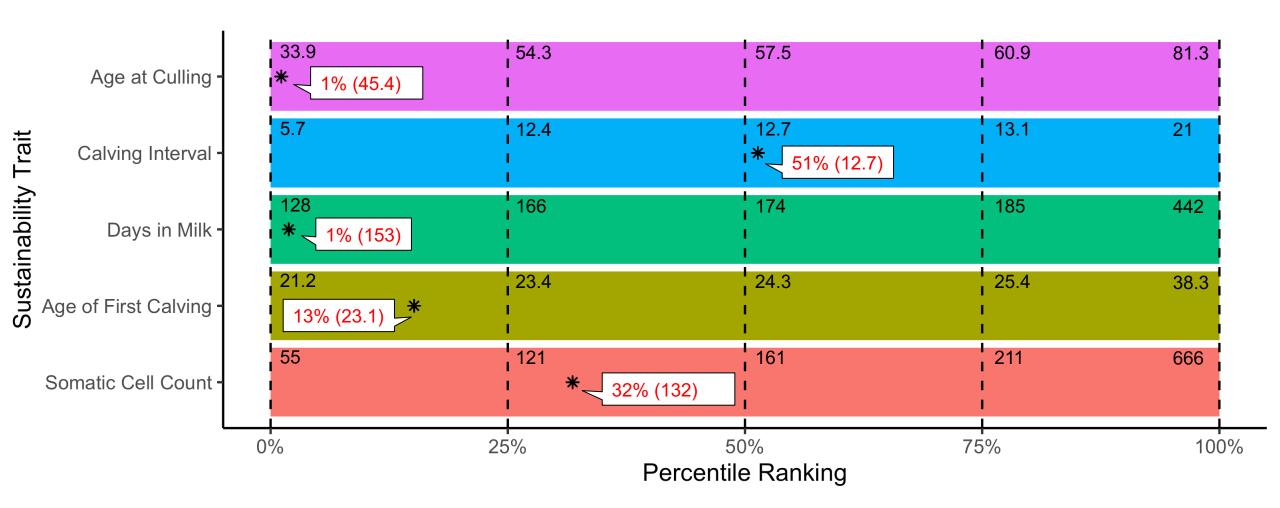
YOUNG STOCK

AVG AGE FIRST CALVING

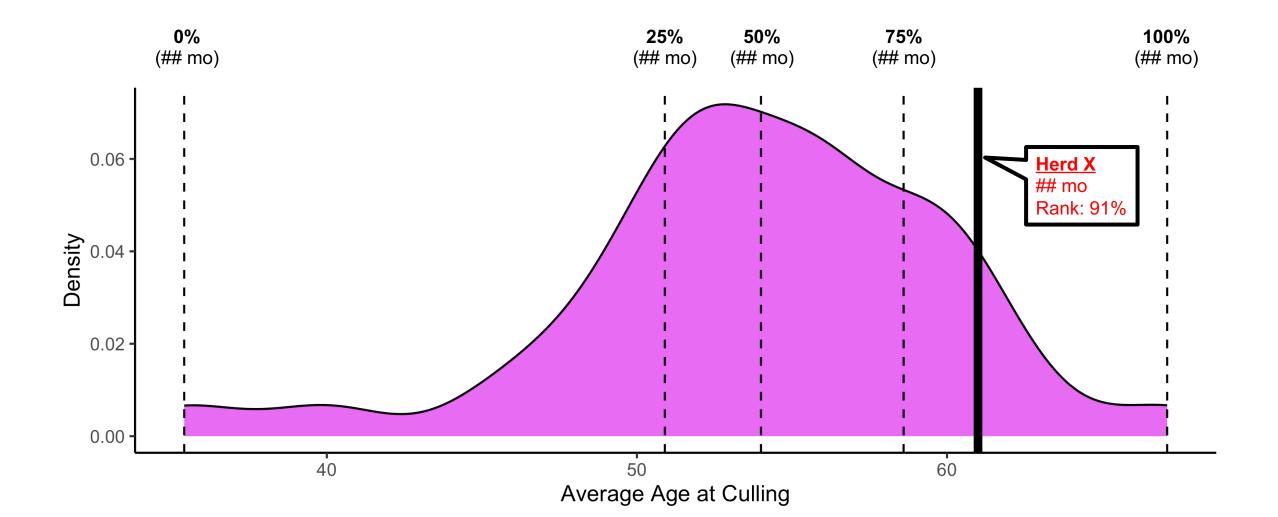
N = 10,095

S < 250 **M** 250 – 999 **L** 1000+

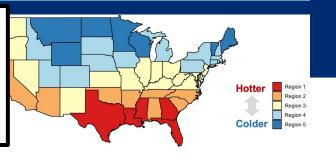



HERD DEMOGRAPHICS

	R1		R2		R3		R4		R5						
	S	M	L	S	M	L	S	M	L	S	M	L	S	M	L
AY							7			22			14		
BS				4			30			23	3		33	4	
DL										2					
FL													1	2	
GU	1						7			17	1		26	2	
НО	46	34	19	61	68	206	900	193	55	3248	443	213	1938	629	165
JE	6	2	3	28	18	34	108	18	3	131	18	7	105	15	4
MS				1			1			2			4		
WW													3		
XB							1								
XD						4				1			1		
XX	20	17	14	34	8	24	208	26	11	407	51	18	302	41	11


EXAMPLE: PERCENTILES

Example Herd:
Holstein
Medium (250 – 999)
Region 4
Peer Group = 443 herds

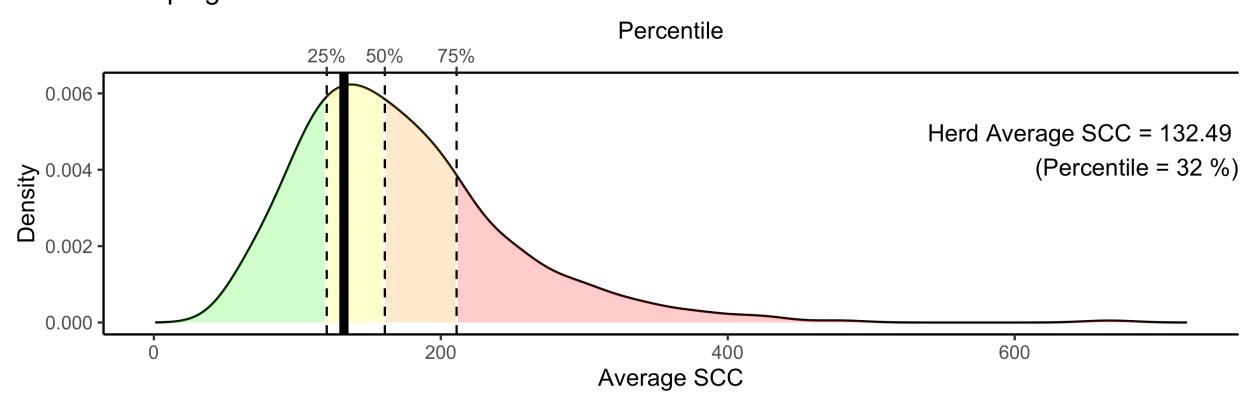


EXAMPLE: DENSITY PLOTS

EXAMPLE: AFC

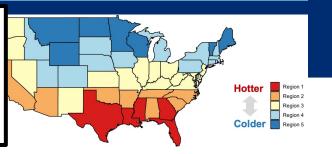
Example Herd:
Holstein
Medium (250 – 999)
Region 4
Peer Group = 443 herds

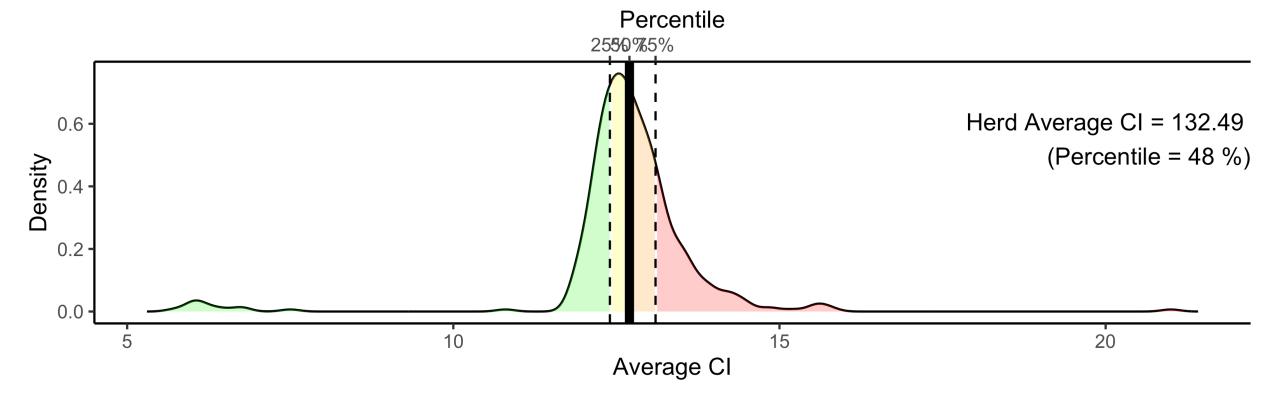

Histogram of average age at first calving Grouping: HO R4 M



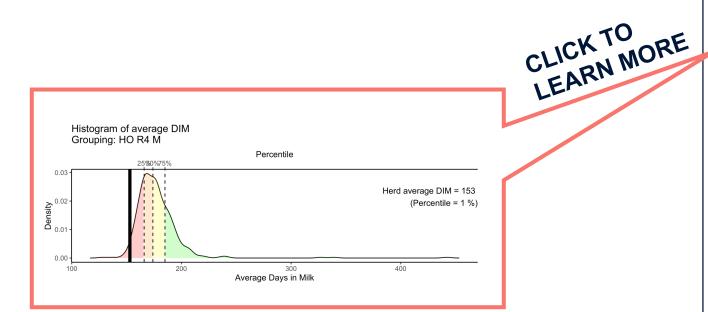
EXAMPLE: SCC

Histogram of average SCC Grouping: HO R4 M





EXAMPLE: CI

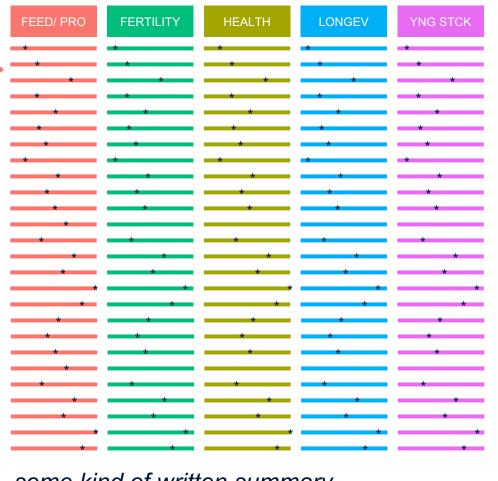

Example Herd:
Holstein
Medium (250 – 999)
Region 4
Peer Group = 443 herds

Histogram of average calving interval Grouping: HO R4 M

DESIGN POSSIBILITIES

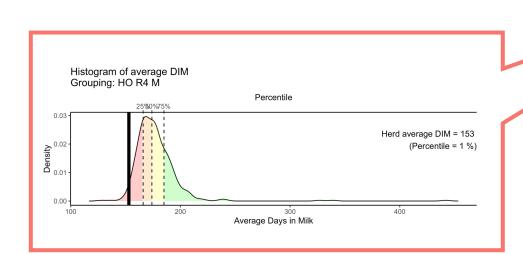
HERD XXX SUSTAINABILITY REPORT 2024

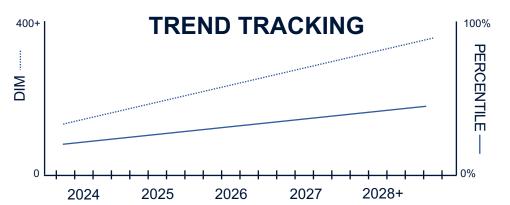
DEMOGRAPHICS:


Holstein

Medium Size (250 – 999)

Region 4


Peer Group = 443 herds



some kind of written summary...

DESIGN POSSIBILITIES

HERD XXX SUSTAINABILITY REPORT 2024

DEMOGRAPHICS:

Holstein

Medium Size (250 – 999)

Region 4

Peer Group = 443 herds

One of the last coal-powered sheep. Most sheep are all electric now.

Dairy producers need a seat at the table

THE BOTTOM LINE

- ICAR has defined 43 traits related to dairy sustainability
- We can leverage DHI data to quantify these traits at the herd level and track progress over time
- These metrics (provided confidentially to each herd) would be a tool that empowers producers to advocate for their operation in sustainability conversations

WELCOMING NEW TALENT

Dr. Mahesh NeupaneQuantitative genetics, genomic selection, functional genomics, cattle & goats

Dr. Jason GrahamQuantitative genetics & genomics, crossbred cattle, heat stress, robotic data

Dr. Bailey BasielQuantitative genetics & genomics, horn fly resistance, beef on dairy

OTHER ONGOING RESEARCH

Beef x Dairy

GPTA Validation for Cows

Heat-Stress GxE

Hoof Health & Lameness

• Methane Emissions

Inbreeding & Diversity

Heat Stress & Microbiome

Energy Efficiency & Metabolism

Colostrum Microbiome

Single-Step GBLUP

F_{ST} SNP Selection for Faster Computation

THANK YOU

Data were available to the authors from CDCB under USDA Agricultural Research Service Material Transfer Research Agreement #58-8042-8-007. While CDCB offers data stewardship, sole ownership and rights pertaining thereto remain with the producer and we thank U.S. dairy producers for sharing their data for research use.

This work was supported by USDA-ARS project 8042-31000-113-000D, "Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals".

The USDA does not guarantee, approve, or endorse any product or company; the mention of specific names may be required for accurate research reporting. USDA is an Equal Opportunity Employer.