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Introduction 

The USDA’s Animal Genomics and Improvement Laboratory (AGIL) has worn many names 

over the last century; for most of that time the lab calculated genetic evaluations and provided 

them freely so owners could select genetically superior animals in their breeding programs and 

improve their herds faster. In 2013, the newly reformulated Council on Dairy Cattle Breeding 

(CDCB) inherited responsibility for the data stewardship and administration of evaluations while 

AGIL focused on work as their research partner. National genetic evaluations were first 

calculated in the U.S. in 1994 for milk somatic cell score (SCS) as a proxy for mastitis resistance 

in response to the high prevalence of mastitis in our dairy cow population. Even with perfect 

management and housing, a cow can only perform as well as her genetics allow. This genetically 

imposed “ceiling” dictates the maximum heights that a cow can reach with regard to her milk 

quality, mastitis resistance, and a myriad of other economically important traits.  

 

The U.S. Evaluation System 

Genetic evaluations on a national scale are only possible through collaboration with key industry 

groups, and our story really begins in 1908, when the USDA’s Bureau of Animal Industry 

determined to organize cow testing associations nationally (VanRaden and Miller 2008). This 

eventually led to the formation of the National Dairy Herd Information Association (NDHIA), 

which remains a key data provider facilitating accurate, credible, and uniform milk recording. 

Milk records are just one type of phenotypic data that flow to CDCB through Dairy Records 

Processing Centers (DRPCs). Phenotypes are an individual’s observable traits and are usually 

considered to be the manifestation of that individual’s genetic effects (or genotype) along with 

the animal’s environment or management effects. There are several DRPCs across the country 

that collect and transmit lactation, reproduction, health, calving, test day, yearly average, and 

herd information data to CDCB, where it is stored in the National Cooperator Database. This 

database also houses pedigree information reported by breed associations and genomic 

nominators, which together with phenotypic data forms the basis of conventional genetic 

evaluations (expressed as Predicted Transmitting Ability (PTA)). The National Association of 

Animal Breeders (NAAB) provides artificial insemination (AI) codes to track which bulls are 

available from which companies and monitor sorted status and quality of semen. Cow genotypes 

for genomic evaluations (GPTA) may only be submitted through a genomic nominator who 

ensures that a unique animal ID has been assigned to both the actual genotypes and the 

associated phenotype records. The national U.S. evaluations are also included in international 

Multiple Across Country Evaluations (MACE) conducted by the Interbull Centre (Uppsala, 

Sweden). As part of MACE, Interbull evaluates sires of six breeds and seven trait groups 

comprising milk production, udder health (including SCS and clinical mastitis), conformation, 

longevity, calving, female fertility, and workability traits from countries throughout the world. 

Interbull provides sire (G)PTAs to each participating country on their own respective scale 
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which accounts for genotype-by-environment interactions and cows performing better in certain 

countries (Interbull Centre, 2020). Since August 2019, the CDCB mastitis resistance genetic 

evaluations for bulls have been exchanged with Interbull participating countries (Parker Gaddis 

et al. 2020; Mota et al. 2021). This international exchange not only increases the size of the 

reference population for mastitis resistance evaluations, but also provides independent, external 

validation of the CDCB evaluation calculations. This system process is described in Figure 1.  

 

Current Considerations 

 

The Problem of Trait Definition  

When research on developing genetic evaluations for mastitis resistance began, there were over 

130 different acronyms being used in herd management software to describe mastitis. 

Standardizing extremely disparate health data was a primary obstacle, and it still warrants 

discussion today. Prior research resulted in the development of an extensive cross-reference 

 
Figure 1. U.S. Genetic and Genomic Evaluation System Process. Data flows from 

various sources into the National Cooperator Database maintained by CDCB, where 

programming edits first perform quality control and data standardization checks. 

Conventional genetic evaluations using pedigrees and genomic evaluations using genotypes 

are released tri-annually computed with the most recent phenotype data available. Genomic 

evaluations are also calculated monthly, though do not always include the newest 

phenotypes as in the tri-annual release due to the time and computational cost of extracting 

and recalculating with all data. Unofficial evaluations for new animals are released weekly. 

*Monthly and tri-annual (Apr, Aug, Dec)  
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dictionary for the most commonly used abbreviations in herd management software (Cole et al., 

2006; Parker Gaddis et al., 2012). This cross-reference dictionary was provided to each DRPC to 

aid in the development of their own dictionary based on the data provided by their customers. 

Standardization is performed at the DRPC level using this cross-reference information to assign 

the single abbreviation of “MAST” before submission to the National Cooperator Database. 

Although standardization to the acceptable MAST code is now performed for all clinical mastitis 

reporting, the exact criteria on which an appraiser arrives at that conclusion will likely vary by 

herd, and even within herd. A general diagnosis of MAST also lacks specificity and does not 

indicate different mastitis etiologies, whether it was propagated by environmental or contagious 

pathogens, or whether the pathogen was gram (+) or (-) which can inform the mechanism of host 

immune response. While a generalized phenotype limits our ability to decipher the functional 

genetic mechanisms underlying mastitis, it has been sufficient to achieve genetic progress from 

an animal breeding perspective. The current average rate of mastitis resistance among U.S. 

Holsteins is an estimated 89.8% (Council on Dairy Cattle Breeding, 2018). This is likely due to 

the well-documented redundancy built into the immune system (Casadevall and Pirofski 2003; 

Fischer and Rausell 2016; Miles and Huson 2021); the presence or absence of an overall robust 

immune system appears to be captured by measuring clinical mastitis incidence.  

  

Even the SCS proxy, a much more objective, quantitative measurement, is not immune to 

confounding bias. Non-pathogenic causes of inflammation such as lactogenesis and uterine 

involution during early lactation could inflate mastitis incidence estimates, and different genetic 

patterns have been associated with SCS at different stages in lactation (Bionaz et al. 2007; 

Graugnard et al. 2012; Miles and Huson 2020). Alternative SCS traits such as area under the 

SCS curve, recoverability, standard deviation, and severity may refine SCS as a mastitis 

indicator trait. Evaluations for SCS are currently computed using the mean test day SCS across 

the first 305 d of lactation (Council on Dairy Cattle Breeding, 2020). This has been an effective 

approach as we observe favorable genetic trends for SCS (Figure 2, data from CDCB (2021)), 

 
Figure 2. Genetic trends for SCS in Holstein and Red & White. These scores were 

calculated in December 2021 (CDCB, 2021) and are normalized to the breed average with 

higher scores being unfavorable (indicating higher SCS).  
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but there may be opportunity to refine SCS as described above and improve its current 

antagonistic correlation with milk yield.  

 

Genetic v. Genomic Evaluations  

In the pre-genomics era, genetic improvement was achieved from pedigree and phenotypic 

performance data. Traits like milk and fat production were significantly improved, thanks in part 

to the widespread use of AI with superior sires who were identified through the evaluation of 

their many daughters. Genetic selection goals have diversified as additional data become 

available and/or breeding objectives change, including the development of evaluations for SCS 

in 1994 and productive life in 2014 (VanRaden et al. 2021). But there are disadvantages to 

relying on traditional genetic evaluations, primarily time and financial costs. Production records 

cannot be collected from daughters until they have matured and produced their first calf. This 

problem compounds itself concerning low heritability traits, like mastitis resistance or other 

health traits, which are largely attributable to management and other environmental factors. 

These situations of low heritability require many more records to truly partition the genetic 

component of the trait from environmental factors, which is key to producing an accurate 

evaluation.  

 

Following the genomics boom at the turn of the century, the Illumina Bovine Single Nucleotide 

Polymorphism (SNP)50 BeadChip was released for commercial use in 2007. The SNP50 

remains the most popular bovine genotyping platform due to its affordability, contributing to the 

widespread availability of genomic data and revolutionizing the genetic improvement of dairy 

animals. Genomic evaluations were first introduced for the U.S. dairy industry shortly after the 

release of the chip, in 2009 (Wiggans et al. 2011). With genomic information now available at 

birth, the time to return on investment in genetic selection is significantly decreased. The 

accuracy of genetic prediction, or “reliability”, is also improved with inclusion of genomic 

information compared to pedigree data alone. Reliabilities corresponding to each evaluation 

range from 0 to 100% and represent the degree of confidence that can be placed in the evaluation 

of an animal. They are impacted by the heritability of the trait and the amount of available 

phenotypic data. The inclusion of genomic information in dairy evaluations resulted in 2- to 3-

fold increases in reliability across all traits (García-Ruiz et al. 2016), but was especially 

important for functional traits like mastitis resistance which have limited available data and a 

small genetic component compared to the much larger influence of environment. Gains in 

reliability for mastitis from the inclusion of genomic data average approximately 20 and 40 

percentage points in proven and young bulls, respectively (Parker Gaddis et al. 2020).   

 

Developing a Mastitis Resistance Evaluation  

Significant hurdles for health traits in the U.S. included the lack of a centralized repository for 

health data and absence of standardization protocols. Research indicated that genetic selection 

was feasible through the utilization of health incidences recorded on-farm in management 

software, and so the National Cooperator Database was modified to accommodate health traits in 

2008 (Zwald et al. 2004; Parker Gaddis et al. 2012). Data now flow from participating herds to 

their respective DRPC where they are standardized into a consistent format and transmitted to 

the National Cooperator Database at CDCB. 
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These data from commercial herds usually indicate a heritability of mastitis resistance ranging 

from 3-10% (Zwald et al. 2004; Koeck et al. 2012; Jamrozik et al. 2013; Vukasinovic et al. 2017; 

Parker Gaddis et al. 2020), though controlled studies often describe higher heritabilities. Low 

heritability suggests that most of the variation observed in mastitis resistance is due to non-

additive genetic factors, namely management and the environment. But another likely 

explanation for low heritability is the inherent “noisiness” of the data. This noise may arise from 

the multiple types of undifferentiated mastitis included in a generalized MAST phenotype, as 

explained earlier, but some of the noise can be mitigated through multiple levels of strict editing 

constraints. Before upload to the National Cooperator Database, consistency among pedigree and 

lactation data is checked. For example, was the date of the MAST event after the cow’s fresh 

date (or even her own birth date)? Do the sire and dam match what is currently known for this 

cow? Data are either accepted, modified when possible, or returned to the DRPC for correction. 

Prior to genetic evaluations, several more constraints are applied to include only the most 

consistent data. These include a minimum incidence constraint (at least 10% of current 

population incidence) to select herd-years that are reporting MAST events. Likewise, a 

maximum incidence constraint (not larger than 3 standard deviations greater than the mean 

population incidence) is imposed to remove data that primarily reflect management practices as 

opposed to biologically underlined mastitis. More details on the quality control measures 

ensuring the most reliable health data are used can be found in Parker Gaddis et al. (2020). 

 

Mastitis phenotypes used in genetic evaluations consist of all available data that pass quality 

control. This currently includes data from 1992 through 2021 resulting in a total of 5.9 million 

records across all breeds as of December 2021. Healthy cows are defined as present in herd-years 

reporting MAST events but without any reported case of mastitis during that time. Current 

evaluations only consider the first report of a MAST event per cow-lactation. Factors such as 

parity, herd, and season, among others, are accounted for in the model. Mastitis is currently 

evaluated as a single trait but could be evaluated together with SCS in a bivariate analysis in the 

future. Several countries already include mastitis and SCS together as part of a multi-trait 

evaluation. Genomic evaluations incorporate the official set of 78,964 markers that are currently 

used for all U.S. national evaluations. Animal genotypes from the lower-density bovine SNP50 

chip (53,218 markers) are imputed up, where missing markers are inferred based on the 

haplotypes (sets of markers inherited together) observed in the reference population (VanRaden 

et al. 2013). Official evaluations are currently only provided for Holstein and Jersey cows and 

bulls because there is not enough data yet to produce accurate evaluations for other breeds.  

 

Selection Indexes & Mastitis Weighting  

Mastitis is just one of many economically important traits that a producer needs to manage. A 

common strategy is to use a selection index which combines information on many traits into a 

single value that accounts for their heritability, reliability, economic importance, and 

intercorrelation. This is beneficial in cases like mastitis, because selecting on index values will 

identify animals that have both superior production and superior resistance to mastitis, despite 

the overall unfavorable correlation between yields and mastitis. Since its creation in 1994, the 

Net Merit (NM$) selection index published by CDCB has become the most widely used tool 

with which U.S. producers make breeding decisions and is regularly updated to reflect the most 

current economic values and new traits. Mastitis resistance is included in the NM$ health traits 

sub-index where it receives 33% of the total emphasis, more than any of the other six health 
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traits. The health traits sub-index then receives approximately 2% total emphasis in NM$, 

accounting for the direct costs of adverse health events. Other indirect costs related to mastitis 

events (e.g., loss of premiums) are accounted for in the considerations for SCS, which is in a 

separate category from the health sub-index and has a -2.8% emphasis (VanRaden et al. 2021).  

 

Marker Validation & Functional Genetics 

The Cattle Quantitative Trait Locus (QTL) Database is a repository documenting progress on the 

genetic investigation of complex traits. The most recent release (August 2021) reports 2,531 

QTL associated with the mastitis phenotypes of raw somatic cell count (SCC), logarithmically 

transformed SCS, and clinical mastitis (Cattle QTLdb, 2021). The highly complex and polygenic 

nature of mastitis is emphasized by the significant association of these QTL across all 29 

autosomes and the X chromosome. With the abundance of high-density genotype data, prevailing 

methods of marker identification have shifted from traditional linkage analysis and QTL 

mapping towards genome-wide association (GWA). GWA methods are comparatively less labor-

intensive while offering high resolution, but they are sensitive to underlying population structure. 

This is particularly challenging in dairy cattle where the overuse of popular sires has contributed 

to high levels of genomic inbreeding and population structure that is replicated in multiple 

datasets, complicating independent validation studies. Positive associations in GWA studies may 

occur because the allele is causative, or if that allele is in linkage disequilibrium with the actual 

causative marker, or could occur as an artifact of population structure where alleles 

coincidentally appear in high frequency with traits of interest within a population. Methods to 

detect and remove spurious associations include imposing stringent multiple testing corrections, 

haplotype relative risk estimation, the inclusion of identity-by-state matrices in statistical models, 

and by ensuring repeatability in independent populations (e.g., across breeds) (Forutan et al. 

2018; Miles and Huson 2021).   

 

A crucial step in GWA studies is to investigate genes that are annotated in the regions 

surrounding the associated marker. This analysis will not identify causal variants but will support 

the theory that the associated marker is important to the trait of interest, especially if the marker 

is located within a biologically relevant gene. However, restricting gene investigation to 

biological relevance will mean ignoring most candidate genes and potentially losing a lot of 

information. Consider a controlled study of a cohort of ~500 U.S. Holsteins that were scored for 

udder and teat conformational risk factors for mastitis and with all test day SCC and clinical 

mastitis diagnosis data available (Miles et al. 2019a; Miles and Huson 2020; Miles et al. 2021). 

A combination of GWA and other population genetics approaches implicated 990 genes near 

significantly associated markers. A gene ontology analysis performed via the Protein ANalysis 

THrough Evolutionary Relationships (PANTHER) classification system revealed that only a 

fraction were protein-coding genes related to the immune response (Figure 3, adapted from Miles 

(2019b)) (Thomas et al. 2003; Mi et al. 2013). This disparity could be explained by the 

“omnigenic model” which posits that the genetic architecture of complex traits is produced by a 

massive regulatory network of genes, each with very small effect (Boyle et al. 2017). The “core” 

genes whose annotated functions are obviously related to mastitis have a minimal effect 

compared with the “peripheral” genes, which have non-disease-specific roles in regulating 

mastitis resistance. The central hypothesis is that almost all genes expressed in a cell type have 

weak effects on disease expression, and that this universal pleiotropy makes up the majority of 

the heritability of the trait. The implications are that to get a more complete picture of the genetic 
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mechanisms underlying mastitis we need a clearer understanding of cellular networks and 

regulatory function. This may feed back into genetic progress attributable to selection strategies 

by prioritizing SNP markers used in genomic selection based on biological insight and the 

downstream effects of marker variants. Generating this kind of information would require 

integrated -omics approaches which examine marker variants, gene expression, and protein 

function. The 78,964 SNP markers currently used in official U.S. evaluations were selected 

based on minor allele frequency, parent-progeny conflicts, and call rate, as described in Wiggans 

et al. (2016). This SNP list is updated as new information and markers become available. 

 

Challenges & Opportunities 

 

Computational Considerations 

When the majority of available phenotypes are from cows who were “pre-selected” according to 

their genomic merit, biases and inaccuracies are introduced into evaluation models (Aguilar et al. 

2020). Statistical methods called single-step Genomic Best Linear Unbiased Prediction 

(ssGBLUP) include all three data types (pedigree, phenotype, and genotype) simultaneously so 

genomic pre-selection is accounted for in predictions. These methods were developed a decade 

 
Figure 3. Gene Ontology Summary. Candidate genes implicated in multiple approaches to 

associating SNPs with SCS and clinical mastitis phenotypes in a controlled cohort study of 

Holstein cows. Genes were classified in PANTHER by “Biological Process” (the function of 

the protein in the context of a larger network which accomplishes a process at an organismal 

level). Figure adapted from (Miles, 2019b); red star indicates category of “core” genes.  
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ago but were too computationally demanding to apply to “big data”. Refined models with more 

efficient algorithms are emerging that may enable the practical application of ssGBLUP on a 

national scale (Masuda et al. 2016; Mäntysaari et al. 2020). Computational limitations also apply 

to trait derivations calculated prior to genetic evaluation. Rigorous testing will be required to 

determine the feasibility of alternative traits derived from SCS, or using mixed linear models that 

incorporate repeated measures, or adding multiple categories to clinical mastitis trait definitions 

to capture pathogen-specific resistance or susceptibility. The challenge that arises is that all of 

these factors must be resolved while delivering these evaluations on the time schedule described 

in Figure 1.  

 

Leveraging the Microbiome 

A microbiome is the aggregate of all microbes (and their genetic material) that inhabits a unique 

habitat and has distinct properties. There has been much excitement about the various 

microbiomes of the human and their far-reaching impacts. The milk microbiome (and perhaps 

whether it even exists) is a rapidly expanding and rather contested field (Quigley et al. 2013; 

Rainard 2017; Taponen et al. 2019). There is a general lack of reproducibility of the results of 

microbiome studies, and consequently, we observe a growing impetus for complete data and 

methodology transparency in this field (Schloss and Ravel 2018; Moossavi et al. 2021). Nearly 

every stage of microbiome studies, from sample collection through bioinformatic analysis, is 

vulnerable to failing to produce repeatable results. This is particularly challenging for low-

biomass samples like milk which have relatively small microbial populations. Environmental 

contamination from the farm or laboratory will be much more evident in milk than in fecal or 

rumen samples that are so rich in microbes that any contamination will appear in relatively low 

abundance. This problem can be tempered by including appropriate negative controls and 

statistical methods to identify and remove contaminant sequences during bioinformatic analysis 

have been developed (Davis et al. 2018).  Other inconsistencies can be partially attributed to 

limitations in both sequencing and analysis methodology. Datasets generated by high-throughput 

sequencing have an arbitrary “total” imposed by the instrument. This total does not reflect the 

total microbial load of the sample, so computing changes in abundance or diversity across 

samples without accounting for the compositional nature of the data can introduce significant 

bias (Gloor et al. 2017). Methods have been developed to reduce bias in microbiome analysis, 

such as comparing the ratio of taxa (Morton et al. 2019) or addressing the sparsity issues 

common in microbiome data by only including non-zeros (Martino et al. 2019). These barriers to 

robust microbiome investigations are greatly reduced as guiding reviews detailing best practices 

are being published at an exponential rate (Knight et al. 2018; Bharti and Grimm 2019; Bokulich 

et al. 2020; Weinroth et al. 2021). As sequencing costs drop and microbiome studies become 

more accessible to fields of study outside genomics (e.g., physiology), the ability to understand 

host-microbe interactions will transform these disciplines. This moment is reminiscent of the 

genomics boom in the early 2000s.  

 

As it stands, microbiome insights may be more practical for on-farm interventions than genetic 

selection because selecting for cows with favorable milk microbial profiles would require the 

mass phenotyping of microbiome-based traits. The goal of genomic selection research is to 

maximize the amount of information that can be predicted at birth from the same inexpensive 

DNA sample and set of genotypes; incorporating microbiome data for individual animals would 

significantly increase the costs of this application of genomic evaluations. Strategies like pooling 
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animals in contemporary groups prior to sequencing have been proposed, but this approach risks 

losing considerable resolution concerning host-microbiome interactions and our ability to 

describe the microbiome as a functional unit. Financial constraints aside, significant groundwork 

would be required to develop pipelines for high-quality, standardized microbiome data to flow 

into the evaluations system described earlier. 

 

Some animal breeders are already exploring the integration of host and microbial genomics into 

their phenotype estimations. In addition to heritability (proportion of variability in trait explained 

by the host genome), researchers are observing “microbiability” and finding that variation in the 

trait can also be described by variation in the microbiome (Wen et al. 2019; Maltecca et al. 2020; 

Khanal et al. 2021). Microbial influence on their host has become such a widely recognized 

phenomenon that the term “holobiont” was coined to describe the host and all of its microbial 

symbionts. This theory suggests that together the host and microbiome make up a single unit of 

biological organization, which has significant implications for our understanding of host ecology 

and evolution (Bordenstein and Theis 2015). It also has been well-established that taxonomic 

composition may vary over the host’s lifetime and physiological states (Ley et al. 2006; 

Greenhalgh et al. 2016; Dibner et al. 2021), but biochemical functions and their molecular 

signatures are more heavily conserved. Moreover, these collective signatures are what are 

responsible for observed functional effects, not the individual bugs. Much of the existing 

literature has focused on milk microbiome composition, not on its overall functionality. A more 

impactful approach to considering milk microbiome influence would be to select on molecular 

signatures, not individual taxa. As Doolittle and Booth (2017) wrote, “it’s the song, not the 

singer”. Coupling classical microbiome research with transcriptomics, metabolomics, etc. can 

provide new insight into the mechanistics of mastitis resistance and milk quality and funding this 

type of work would amplify opportunities for scientific innovation and real-world applicability.  

 

Phenomics & Big Data 

Genomic selection can only improve what we can measure, and as dairy production systems 

become increasingly complex, so do the requirements of accurately measuring animal 

performance. Many researchers are interested in working on traits likely to be economically 

important, but producers are not incentivized to contribute data because it will not directly 

impact farm profits (Cole et al. 2020). Enter precision agriculture. Precision livestock monitoring 

technologies primarily take the form of economically justifiable sensor systems which can be 

wearable (i.e., boluses; neck, leg, or ear tags) or mounted (i.e., a stationary camera, robotic 

milkers). Measurable traits include udder health, animal locomotion, heart rate, rumen pH, feed 

intake, and behavior, just to name a few (Halachmi et al. 2019). Autonomous, sensor-based 

phenotyping represents a huge opportunity to increase the number of traits that can be improved 

through genomic selection. These sensors generate vast amounts of information but translating 

this rapidly generated data into something that can be used in on-farm decision-making, and 

eventually genomic selection, will be a new challenge.  

  

Mastitis data generated by automatic on-farm sensors for estimating milk composition are a good 

example of this problem. No standard practices for users or validation, maintenance, and 

calibration protocols have been established which creates both substantial system bias and 

individual sensor bias (Sievert, 2019). An important caveat is that these systems have been 

designed to provide information that prompts a management outcome, not to create a data 
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repository available for research use. Sensors that generate alerts from SCC measurements taken 

during initial letdown are very helpful for improving management and the quality of milk sold, 

but they are not representative of the entire milk flow and may not provide appropriate 

phenotypes on which to select. Furthermore, these automated systems rely on automatic animal 

ID detection during which there is ample opportunity for IDs to be mismatched with phenotypes. 

And because these systems are designed to function as a management tool, data are only stored 

for a short time before they are overwritten. Data storage, flow, quality control, and quality 

assurance standards need to be established before they can be used on a national scale, and even 

their on-farm use should be interpreted with caution.  

 

No standards currently exist for sharing sensor-generated data which may limit their widespread 

use and potential benefits. Some companies appear to believe that because they own the 

technology, they will own the data. That philosophy is in direct contradiction to our current state 

of affairs where CDCB serves as a steward of herd data, but sole ownership and rights pertaining 

thereto remain with the producer. This issue of sensor data ownership is evocative of recent 

controversies surrounding John Deere and Tesla, backed by the “Right to Repair” movement. 

Extended Use License Agreements are usually complex and full of legalese that limits the use of 

equipment; these are signed at time of purchase and users often do not fully understand their 

ramifications. Similarly, frequent software and technology updates create problems for so-called 

legacy equipment as repairs and maintenance are not available for older versions. The big 

questions we face about sensor-based data are how we will standardize it and who can use it. 

Suffice to say, our biggest challenges in the coming years will likely be legal, not scientific.  

 

Conclusions 

 

TL;DR (Too Long; Didn’t Read) 

1) Genetic and genomic evaluations are delivered thanks to the cooperation of key industry 

partners through a complex system of data sharing and management 

2) Standardizing definitions of mastitis across heterogeneous data sources and accurately 

describing the underlying biology of the trait are key challenges 

3) Including genomic data has exponentially increased the rate of genetic gain compared to 

conventional genetic evaluations  

4) Evaluations for SCS have been available since 1994 and for clinical mastitis from 2018, 

the latter of which required developing many new data quality control measures 

5) Using a selection index like NM$ is an effective way to select for overall high 

performance and control for the unfavorable correlation of mastitis and milk yield 

6) Examining the downstream functional effects of marker variants may help prioritize 

SNPs for inclusion in evaluations, but complex gene networks muddy the waters 

7) ssGBLUP can mitigate biases in evaluations that arise from animals “pre-selected” on the 

basis of their genetic merit; faster computer algorithms are a must 

8) Milk microbiome work focusing on collective molecular signatures and their effects can 

generate new insight into the mechanistics of mastitis resistance and milk quality  

9) Among the challenges of using automatic sensor-based milk data are quality assurance 

within and across systems and potential legal controversy regarding data ownership and 

use 
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