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Abstract
Genotype imputation has enabled selecting and using many more loci in research and prediction for much 
less cost than genotyping all individuals with the same array density or technology. Genotyping arrays 
are updated often to include new QTLs or higher-effect markers and applied to new animals without re-
genotyping all previous or reference animals. That may require imputing the new loci from less-dense to 
higher-density arrays and from descendant genotypes to ancestors in the opposite direction of normal 
reference and target populations. Routine expansion and recycling of haplotype libraries and updating 
only individuals expected to change can speed imputation for routine predictions. This study compared 
imputation strategies for 78,964 loci of 4.6 million Holsteins. Sequence imputation is more challenging 
due to higher error rates and more complex variants, but new techniques could make sequencing cost-
competitive with arrays for routine predictions.

Introduction
Genotypes at thousands of loci are combined into genomic relationships, and genomic predictions are 
usually obtained by multiple regression of phenotypes on genotypes. Solutions require replacing any 
unknown genotypes using allele frequencies, imputed genotypes, allele content (dosage), or genotype 
probabilities (Zheng et al., 2011). Unknown phenotypes usually are easy to exclude from models but can 
also be ‘imputed’ to reduce computation using the same canonical transformation as when all traits are 
measured (Ducrocq and Besbes, 1993). Unknown genotypes can be imputed using pedigrees and a linear 
model one locus at a time from observed genotypes (Gengler et al., 2007). Similar algebra uses pedigree 
relationships to linearly impute genomic relationships for ungenotyped animals from genotyped animals 
in single-step predictions (Aguilar et al., 2010) and can improve marker effects by including phenotypes of 
ungenotyped parents, for example. More accurate haplotype-based imputation uses allele patterns across 
linked loci such as in long-range phasing or hidden Markov models and high-quality genome reference 
assemblies. This nonlinear imputation restricts genotype dosage to the range of homozygous reference to 
homozygous alternate (usually 0 to 2), whereas dosages from linear imputation can exceed the valid range. 
Known genotypes, pedigrees, and phenotypes could be used to impute the missing genotypes; however, 
accuracy is usually high by imputing genotypes just once without using the phenotypes, which often have 
low heritability and low correlations with individual genotypes. Accuracy is sometimes higher with multi-
breed than single-breed imputation or using two steps instead of directly imputing all variants from the 
lowest density (VanRaden et al., 2013). Imputation strategies for large datasets must balance accuracy with 
computing costs and adapt to properties such as array densities, sequence depth, error rates, and population 
structure in the input data. Imputation methods developed in animal breeding are often hundreds of times 
faster than from human genetics but with similar accuracy, especially with pedigree available (Sargolzaei 
et al., 2014; Miar et al., 2017). By processing in birth date order, most progeny haplotypes can be quickly 
selected from the two haplotypes of each genotyped parent or grandparents instead of from a long list 
of population haplotypes. This study provides a speed and accuracy comparison and a brief overview of 
genotype imputation strategies.
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Materials & methods
Microarray genotypes for 78,964 SNPs of 4.6 million Holsteins were imputed using Findhap version 3 either 
with no prior haplotype library or by obtaining priors from genotypes of a subset population that included 
369,063 bulls plus their 73,813 dams, followed by one iteration including all animals. About 30,000 newly 
genotyped animals are imputed weekly using the prior haplotype library from the previous monthly update. 
The weekly imputation is nearly as accurate as the full monthly, with prediction correlations near 1.0 in 
larger breeds (Wiggans et al., 2015). Each month the whole file is reprocessed to add about 120,000 new 
genotypes, update about 5,000 previous animals whose genotype or pedigree changed and obtain priors for 
the next weekly and monthly updates. Only the new and changing animals get their haplotype numbers 
updated, but any missing alleles within each haplotype can be filled by the added data and improve the 
imputed genotypes of other animals. The maximum length of haplotypes processed was reduced recently 
from 700 to 250 SNPs to speed imputation and limit the memory needed. The list of usable SNPs is updated 
about once per year. Routine evaluations with expanding reference populations must decide how frequently 
to reimpute all genotypes, such as when new QTLs are added or which animals to update, for example, only 
the most recent or those whose pedigrees change. Such strategies were compared using Holstein genotypes 
from the Council on Dairy Cattle Breeding (CDCB) database that included 48 different arrays ranging from 
<3,000 to >600,000 usable markers.

Results
Imputation using no prior haplotype library and four iterations would take 24 days with 30 processors and 
up to 500 Gb memory. Time was reduced to nine days by first obtaining a prior haplotype library from only 
the bulls’ and dams’ genotypes. Each week, about one hour is required to impute genotypes of new animals 
using the previous month’s haplotype library. About 10 hours are required once per month to reprocess the 
whole file and include the new animals. Input genotypes averaged 72% unknown, whereas only 0.03% were 
still unknown after imputation, and 1.7% were half known with one allele still missing. Allele frequencies are 
later substituted for the missing alleles when estimating SNP effects. The list of 78,964 SNPs includes about 
80 known QTLs already genotyped plus locations of six more discovered QTLs expected to be available on 
future arrays to allow imputing those without starting the imputation from scratch. Some recently selected 
high-effect SNPs from the high-density (HD) array are genotyped for only about 5,000 animals (0.1% of the 
population) currently. Still, imputation fills nearly all (>99%) of the missing alleles. Other SNPs from the 
HD array, especially on the X chromosome, were added to fill gaps when converting to the ARS-UCD1.2 
cattle reference map (Rosen et al., 2020). Such SNPs and QTLs are provided to genotyping laboratories and 
included when designing their future arrays.

Discussion
Advances in imputation allow combining various datasets, but highly accurate prediction may require 
identifying more of the QTLs and genotyping those in both the reference and candidates for selection 
instead of relying on markers. Array genotypes are typically so accurate that animal and plant breeders 
rarely store their quality scores based on distance from cluster centroids, for example. Uncertain genotypes 
are instead set to missing, and markers or samples with high missing or error rates are not used so that 
a low, uniform error rate of 1% or less may be assumed for all array genotypes remaining. That strategy 
allows efficient computation and storage of input data, but output files are much larger after imputation 
and include many uncertain genotypes. Sequence genotypes often are less accurate due to more read errors 
and both alleles not being observed across the whole genome, such as in regions with low coverage or 
where alignment to the reference assembly is challenging. Imputation to sequence can discover better 
markers or QTL, but high accuracy is needed for imputed sequence variants to outcompete highly linked 
array genotypes directly measured in the reference population. Rare or less frequent alleles may have 
poor imputation accuracy and may thus not improve prediction even if their actual effects are larger than 
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nearby genotyped markers (Zhang et al., 2018). For example, the best linked marker from an array may 
be correlated by 0.97 with the true QTL but have nearly 100% correct genotypes compared to only 95% 
correctly imputed QTL genotypes for animals not sequenced. Reference cows may contribute much less to 
the reliability of prediction or marker selection if their sequence genotypes are imputed from only 6,000 to 
20,000 usable SNPs and their individual phenotypes have low heritability. To obtain the gains in prediction 
accuracy expected from larger reference populations, well-designed genotyping strategies and accurate 
imputation are needed (Judge et al., 2017).

Variant calling, phasing, and imputation can be combined so that each sample has only two haplotypes per 
region, and sequence read errors are suppressed instead of called as additional variants. Only two alleles 
are reported with array genotypes, whereas multiple alleles up to seven often are reported at the same locus 
in sequence data. Using such variants may require software redesign to exclude the less common alleles 
or track allele definitions within locations within chromosomes. A location can have all four bases (A, C, 
G, T) as SNPs plus multiple insertions and deletions of varying lengths. Copy number variants are harder 
to define, call, and impute than SNPs or indels and have not yet contributed much to genomic prediction 
(Chen et al., 2021) despite some large, known effects. Standard variant call format (vcf) can require much 
space and be difficult to read: ‘Do not write home-brewed VCF parsing scripts – it never ends well’ (GATK 
Team, 2021). Simpler file formats may be possible that more languages could read with code of the user’s 
choice. When merging separate vcf files, information about less common alleles can be lost for variants 
not reported if all samples in a single file are homozygous for the reference allele or if many samples have 
insufficient coverage to detect the allele. Instead of merging all raw sequence data, vcf files could each 
include and report genotypes and read depth at an agreed list of common locations. This strategy is like 
all genotyping arrays that include a standard set of 6,000 or 50,000 markers to simplify later merging with 
other arrays or files. The genomic vcf (gvcf) format instead takes more space to store approximate read 
depth for all genomic locations.

Low-coverage sequencing could soon become less expensive than arrays, allowing for genotyping many 
more variants with high accuracy in populations with good sequence reference panels available (Rubinacci 
et al., 2021) and can also be used in developing those reference panels (VanRaden et al., 2015). Methods 
to account for read errors in low-coverage data are needed (Ros-Freixedes et al., 2020), and some of the 
read error bias can be overcome by aligning to both the reference genome and the alternate genome 
simultaneously (VanRaden et al., 2019). The posterior genotype probabilities reported in vcf usually assume 
prior probabilities of 0.25, 0.5, and 0.25 and could be recalculated with actual genotype frequency priors (p2, 
2pq, and q2) to obtain better dosage estimates. Distributed processing works well for arrays with accurate 
genotypes at predefined locations, but centralized processing may be needed for low-coverage sequences 
instead of sending imputed genotypes and updating those as reference populations improve and more 
breeds are added. Storage is a much bigger issue with raw sequence data and many rare alleles detected as 
more samples are sequenced. Genotypes could be stored for only the alternate alleles instead of storing all 
the homozygous reference genotypes. Similarly, referential compression can produce cram rather than bam 
files by storing only the differences of the raw reads from the reference assembly (Shi et al., 2019). Larger 
populations have been genotyped for humans than livestock, and >300 million sequence variants have been 
imputed for >20 million humans (TOPMed Imputation Server, 2021). In animal genetics, the goal is not to 
routinely store or impute more variants but to identify the most useful variants that improve prediction at 
a reasonable cost. Advances in genotyping and imputation will continue to make genomic selection more 
affordable and accurate in future livestock populations.
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