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Abstract
This work aimed to develop single-step multibreed genomic predictions for US dairy population. About 
45M yield phenotypes recorded between 2000 and 2020 in purebred Ayrshire, Brown Swiss, Guernsey, 
Holstein, and Jersey animals were analyzed. Genotypes at 79,294 SNPs were available for 3.9M animals. 
A 3-traits model with milk, fat, and protein yields was applied to four different scenarios: each breed 
separately; all five breeds together; Aushire, Brown Swiss, and Guernsey together; Holstein and Jersey 
together. For each scenario, BLUP and single-step genomic BLUP were carried out and were validated 
using the correlation between adjusted phenotypes (for cows) or daughter yield deviations (for bulls) and 
(genomic) breeding values. As expected, all ssGBLUP scenarios led to higher values compared to BLUP. 
The ssGBLUP multibreed evaluation for US dairy population is feasible, but model fine-tuning is needed 
to achieve good validation results.

Introduction
In 2007, a multibreed genetic evaluation was implemented for US dairy cattle, and it was extended to a 
multistep genomic evaluation in 2009 (VanRaden et al., 2007; 2009). Currently, US dairy cattle are evaluated 
with a two-step method: a multibreed BLUP model followed by SNP effects estimation and direct genomic 
values computation within each breed. Single-step genomic BLUP (ssGBLUP) has been adopted in lieu 
of the multistep method for genetic evaluations in several farm animal species over the years. ssGBLUP 
has been applied with satisfactory results in almost all livestock species (e.g. Macedo et al., 2020; Pimentel 
et al., 2021). Genomic models have been tested also in a multibreed context (e.g. Winkelman et al., 2015; 
Khansefid et al., 2020). The aim of this work was to develop ssGBLUP multibreed genomic predictions for 
US dairy cattle. In particular, we used the algorithm for proven and young (APY) to compute the inverse of 
the genomic relationship matrix.

Materials & methods
Data. Official data used in the multibreed genomic evaluations for US dairy cattle breeds were provided 
by the Council on Dairy Cattle Breeding (CDCB, Bowie, MD). Only purebred Ayrshire (AY), Brown Swiss 
(BS), Guernsey (GU), Holstein (HO), and Jersey (JE) animals were considered. Phenotypes for milk (MY), 
fat (FY), and protein (PY) yields recorded from 2000 to 2020 were considered. The 305-d yields (about 45M 
recorded on 19.4M cows) for the first 5 lactations included projected records for the final lactation and for 
lactations not yet completed by June 2020. About 3.9M animals were genotyped at various densities and 
imputed to 79,294 selected SNPs within each breed. Only purebred animals were included in the evaluation.

Analysis. Two evaluation methods were considered: (1) traditional BLUP, with unknown parent 
groups (UPG); (2) ssGBLUP, with QP transformation of unknown parent groups applied to A and A22, 
implemented as in Tsuruta et al. (2019) and Cesarani et al. (2021). UPG were defined based on breed, sex, 
and year of birth for a total of 8 UPG for each breed. The two methods were carried out for: (1) each breed 
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separately (SINGLE); (2) the 5 breeds together (5_BREEDS); (3) AY, BS, and GU (AY_BS_GU); (4) HO 
and JE together (HO_JE). The APY algorithm was applied with 15k core animals in SINGLE (for HO and 
JE), 30k for AY_BS_GU and HO_JE, and 45k core animals for 5_BREEDS. A 3-trait repeatability animal 
model was applied with herd-management, age-parity, inbreeding coefficient and heterosis covariates, 
and UPG as fixed effects and herd-sire combination, animal, and permanent environment as random 
effects. For the multibreed models, all effects were made breed-specific by adding the breed code to each 
level of the effects.

Validation. Each scenario was run two times: FULL, with all phenotypes; REDUCED, removing the 
phenotypes of cows born in the last 4 years (2015-2018). Validation of each model was assessed by the 
correlation between adjusted phenotypes in FULL and (genomic) estimated breeding values ((G)EBV) in 
REDUCED for cows (predictive ability), and by the correlation of daughter yield deviation (DYD) in FULL 
on the (G)EBV in REDUCED for bulls. Validation cows were genotyped females born in 2015-2018 with 
no records in REDUCED, whereas validation bulls had at least 10 (AY, BS, GU), or 50 (HO, JE) daughters 
in FULL and no daughters in REDUCED.

Results
Correlations between raw EBV from BLUP estimated in all the different models were 1.00 for all breeds 
and traits, whereas correlations between raw GEBV estimated in ssGBLUP SINGLE and ssGBLUP 5_
BREEDS ranged from 0.95 (MY for AY and BS) to 1.00 (HO and JE). Moreover, we also computed 
the slope of the regression of (G)EBV in 5-BREEDS on (G)EBV in SINGLE for each breed: slopes for 
BLUP were always 1, confirming that in practice each breed was independently evaluated, as breeds 
were not connected by the pedigree. Acceptable slope values were also found for ssGBLUP as values 
ranged from 0.93 (MY and PY for BS) to 1.02 (MY for AY). Table 1 shows the validation results for both 
cows and bulls. As expected, ssGBLUP SINGLE gave better results compared to BLUP for all considered 
breeds and traits. Within ssGBLUP, higher values were observed for 5_BREEDS compared to SINGLE 
for all breeds, expect for BS bulls, for which a slight decrease was observed in the multibreed scenario. 
Results in AY_BS_GU and HO_JE were similar to SINGLE. However, results for AY, and GU are strongly 
affected by the very low number of bulls.

Table 2 reports the slope of DYD or adjusted phenotypes on (G)EBV for bulls and cows, respectively. 
Results were similar to those in Table 1, where ssGBLUP SINGLE led to better results, on average (i.e. 
values closer to 1) compared to BLUP. All regression coefficients estimated for HO and JE were within 15% 
of the unit, considered acceptable values (Tsuruta et al., 2011). In this case, results for AY and GU were also 
affected by the limited number of validation animals.

Regarding computing time, about 7 hours were needed to solve the MME with ssGBLUP in HO SINGLE 
(3.4M genotypes); this time increased by a factor of 9 for the 5_BREEDS scenario.

Discussion
The use of genomic information is expected to increase the reliability of breeding value prediction in 
livestock. ssGBLUP gives higher validation accuracies in several livestock, but applications of this method 
in large-scale dairy evaluations have been limited. Recently, Cesarani et al. (2021) showed the superior 
performance of ssGBLUP compared to BLUP in US Holsteins. The present study gave insights into using 
this genomic model in a multibreed context. As expected, using genomic information within each breed 
improves validation statistics for both bulls and cows. Results for Holsteins were similar in all scenarios 
involving this breed because of the greatest number of genotypes and records. This study demonstrates that 
large-scale multibreed genomic evaluations are feasible, as we obtained results in the multibreed scenarios 
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Table 1. Correlations between adjusted phenotypes for cows or daughter yield deviations for bulls and EBV from 
BLUP or GEBV from ssGBLUP in the five considered breeds.

Breed Trait N animals ssGBLUP
BLUP SINGLE 5_ BREEEDS AY_BS_GU HO_JE

Cows Bulls Cows Bulls Cows Bulls Cows Bulls Cows Bulls Cows Bulls

AY
milk

181 17
0.45 0.45 0.47 0.52 0.55 0.85 0.47 0.58 – –

fat 0.51 0.45 0.54 0.56 0.52 0.86 0.53 0.58 – –
prot 0.52 0.55 0.54 0.66 0.55 0.93 0.54 0.69 – –

BS
milk

2,423 107
0.23 0.39 0.39 0.63 0.40 0.61 0.39 0.63 – –

fat 0.27 0.37 0.42 0.55 0.41 0.55 0.42 0.58 – –
prot 0.27 0.46 0.44 0.67 0.43 0.65 0.44 0.67 – –

GU
milk

750 28
0.24 0.42 0.35 0.54 0.44 0.64 0.35 0.51 – –

fat 0.27 0.45 0.33 0.56 0.39 0.63 0.34 0.53 – –
prot 0.24 0.42 0.34 0.50 0.39 0.53 0.34 0.48 – –

HO
milk

577,340 3,278
0.31 0.53 0.55 0.88 0.55 0.88 – – 0.55 0.88

fat 0.34 0.56 0.55 0.88 0.55 0.87 – – 0.55 0.88
prot 0.33 0.55 0.52 0.86 0.52 0.86 – – 0.52 0.86

JE
milk

90,666 471
0.32 0.66 0.5 0.84 0.51 0.87 – – 0.52 0.87

fat 0.29 0.60 0.46 0.80 0.47 0.82 – – 0.47 0.82
prot 0.35 0.67 0.51 0.83 0.52 0.86 – – 0.52 0.86

Mean 0.33 0.50 0.46 0.69 0.48 0.76 0.42 0.58 0.52 0.86
SD 0.09 0.09 0.08 0.15 0.06 0.14 0.08 0.07 0.03 0.02

Table 2. Regression coefficients (b1) of bull daughter yield deviations (DYD) on EBV from BLUP and on GEBV from 
ssGBLUP for validation bulls and regression coefficients of cow adjusted phenotypes on EBV from BLUP and on 
GEBV from ssGBLUP for validation cows.

Breed Trait N animals ssGBLUP
BLUP SINGLE 5_ BREEEDS AY_BS_GU HO_JE

Cows Bulls Cows Bulls Cows Bulls Cows Bulls Cows Bulls Cows Bulls

AY
milk

181 17
1.03 0.94 0.96 0.88 0.88 1.37 0.98 0.96 – –

fat 0.95 0.79 0.89 0.86 0.76 1.25 0.90 0.92 – –
prot 0.98 1.13 0.92 1.04 0.80 1.34 0.93 1.06 – –

BS
milk

2,423 107
0.72 0.64 0.96 0.94 0.90 0.81 0.97 0.93 – –

fat 0.72 0.55 0.91 0.80 0.84 0.72 0.92 0.80 – –
prot 0.73 0.70 0.96 0.93 0.89 0.82 0.96 0.92 – –

GU
milk

750 28
0.75 0.75 0.91 1.04 1.07 1.14 0.91 1.03 – –

fat 0.71 0.67 0.74 0.84 0.93 0.89 0.77 0.85 – –
prot 0.71 0.71 0.84 0.9 1.05 1.02 0.85 0.92 – –

HO
milk

577,340 3,278
1.01 0.86 1.10 1.03 1.11 1.03 – – 1.10 1.04

fat 1.03 0.91 1.03 0.99 1.03 0.97 – – 1.02 0.99
prot 1.02 0.87 1.08 1.03 1.08 1.03 – – 1.07 1.02

JE
milk

90,666 471
1.02 1.06 1.03 1.01 1.07 1.05 – – 1.09 1.08

fat 0.89 0.89 0.88 0.86 0.93 0.92 – – 0.97 0.97
prot 1.01 1.06 0.99 0.99 1.05 1.06 – – 1.07 1.08

Mean 0.89 0.84 0.95 0.94 0.96 1.03 0.91 0.93 1.05 1.03
SD 0.14 0.17 0.09 0.08 0.11 0.19 0.07 0.08 0.05 0.05
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that were at least similar to the ones in single-breed evaluations. Fine-tuning of models and a better 
representation of each considered breed in the core animals are needed to avoid reducing the reliability of 
smaller breeds when evaluated together with numerically dominant breeds. This is the first step towards the 
multi breed evaluation, in which crossbreed and external information will be considered.
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