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Abstract

Although there has been intensive use of insecticides for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)
management, their effects on population reduction and natural enemies’ performance have not been adequately studied. There-
fore, this study investigated the diversity and activity of natural enemies under insecticide and insecticide-free applications.
Natural enemies were collected annually from 2016 to 2022 from 348 maize farms throughout the West African nation of
Togo. The collections included an entomopathogenic nematode, unidentified bacteria from Enterobacteriaceae and Entero-
coccus, unidentified viruses from Ascoviruses and Baculoviruses, and several fungal species. Parasitoids collected included
hymenopteran and dipteran species that attacked eggs and larvae. The collected predators included species in the following
families: Anthocoridae, Carabidae, Chrysopidae, Coccinellidae, Forficulidae, Formicidae, Mantidae, and Reduviidae. The
parasitism rates were from 14.72% in 2018 to 45.38% in 2022 for egg masses and from 1.32% in 2016 to 41.85% in 2021 for

larvae. The parasitism rates were three to four times higher in unsprayed farms than sprayed farms.
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Key message

e High use of insecticides against fall armyworm in West
Africa, and performance of natural enemies.

e The use of insecticides has affected population densities
and performances of these species.
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e This study draws attention to moderate use of insecticides
to improve natural control of this pest.

Introduction

The equilibrium among populations of living organisms is due
to the interdependent relationships among plants, herbivores,
carnivores, parasites, and pathogens that regulate and balance
the bio-ecosystem (Szwabinski et al. 2010). Unfortunately, this
balance is constantly challenged by human activities that cause
routine disruptions (Ruppert et al. 2018). Agricultural produc-
tion is one of the human activities that throw off the biodiver-
sity balance, and increased agricultural pest populations can
lead to food and economic losses (Zamagni 2012; Sala et al.
2013). To avoid these losses, various crop protection methods
have been developed against phytopathogens and crop pests
from mammals, birds, reptiles, and arthropods (Berny et al.
2010; Roger et al. 2014). The use of pesticides has been the
most common method of pest control. Unfortunately, some
pest species have developed different resistance mechanisms
to various pesticide families (Anderson et al. 2018; Tay and
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Gordon 2019), while other species escape and migrate to new
regions. In the absence of consistent control measures or indig-
enous natural enemies, a successful pest invasion is usually fol-
lowed by rapid population increase and movement, resulting in
severe crop damage and potentially serious yield and economic
losses (De Barro et al. 2015; Haile et al. 2021).

A currently known invasive pest is the fall armyworm
(FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera:
Noctuidae), an insect that has spread from its native occur-
rence in the neotropical Americas to many parts of the East-
ern Hemisphere. This polyphagous insect has been reported
on over 350 host plants, including many crops of economic
importance (Montezano et al. 2018). Unfortunately, since
2016, it has been detected in sub-Saharan Africa (Goergen
et al. 2016; Nagoshi et al. 2017, 2018, 2022; Koffi et al. 2020a,
b), south and east Asia (Nagoshi et al. 2020; Kim et al. 2021),
and Oceania and Australia (Bourke and Sar 2020). The spread
of this pest has caused severe economic damage to cereal pro-
duction (mostly maize) and has disrupted global agricultural
systems and food security (Koffi et al 2020a, b, 2022). To
reduce food and economic losses, insecticides are mainly used
by millions of farmers with the support of several govern-
ments (Koffi et al. 2020b, 2021). However, indiscriminate use
of insecticides not only threatens the human health and envi-
ronmental protection (O’Dowd et al. 2003) but also disrupts
natural biodiversity interdependencies by killing non-target
organisms, that includes natural enemies.

Over one hundred species of natural enemies of FAW
have been reported worldwide (Molina-Ochoa et al. 2003a;
Muraa et al. 2009; Meagher et al. 2016). In Africa, many
indigenous entomopathogens, parasitoids, and predators of
FAW have been reported (Sisay et al. 2018; Agboyi et al.
2020; Koffi et al. 2020c¢). However, due to the indiscrimi-
nate application of insecticides in the invaded areas, popula-
tion trends and the potential of natural control from indig-
enous agents are poorly known. In the west African nation
of Togo, infestation of FAW was three times lower from
2018 to 2020, compared to the previous two years follow-
ing the invasion (Koffi et al. 2020a, 2022). Thus, the aim of
this study was to identify and evaluate the spatial distribu-
tion and impact of insecticide applications on indigenous
entomopathogenic viruses, bacteria, fungi and nematodes,
parasitoids, and predators established with FAW populations
during the seven years following the invasion of the pest in
Togo.

Materials and methods
Sites of collections

Fall armyworm egg masses and larvae were collected dur-
ing the cropping seasons from April to November of seven
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consecutive years (2016-2022). The collections of speci-
mens were initiated at the onset of the FAW invasion in
Togo. In 2016, selected collection sites covered the area
from Lomé (6.176 N) to Kara (9.377 N). From 2017 to
2022, collections covered the entire country from Lomé to
Dapaong (10.474 N). The collection sites were randomly
selected during survey trips for maize farm inspections by
the Entomological Research team from the Ecole Superieure
d’Agronomie, Université de Lomé (Fig. 1).

Collection and preservation of specimens

Within the selected farms, quadrants were designated at the
four cardinal points and middle of each farm. Egg masses
and larvae were collected from 100 plants within the quad-
rants as well the living organisms that were preying on egg
masses or larvae. The collected egg masses and larvae were
placed individually in rearing boxes as described by Koffi
et al. (2020c) and transferred in coolers (Mobicool ME24,
23 L, 12 V, Hannover, Germany) to the Université de Lomé
laboratory. Predators were immediately preserved in crystal
vials containing 70% ethanol (Koffi et al. 2020c). The egg
masses and larvae completed their life cycle during labo-
ratory rearing (25+35 ‘C, 78 + 15% relative humidity, and
12:12 photoperiod) to adulthood of non-infected specimens

Years Number
of sites
2016 61
2017 37
2018 27
2019 78
2020 43
2021 2]
blogbo
2022 35

Fig.1 Collection locations with some reference cities, the years of
collections and numbers of maize farms inspected from 2016 to 2022
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or to the death of individuals with symptoms of entomopath-
ogens or emergence of parasitoids.

Microbial natural enemies

Dead larvae with evidence of bacterial or viral symptoms
were isolated and preserved in the freezer at 4 “C. Descrip-
tion keys were used to identify bacteria (Eilenberg et al.
2015). Dead larvae presenting green-colored microflora ger-
minations were assigned to undetermined entomopathogenic
bacteria. Two categories of viruses were identified using
morphology of dead larvae. Stunted larvae with production
of virus-filled vesicles and milky-white discoloration were
classified as Ascoviruses (Federici et al. 2008). Larvae with
whitish-gray discoloration and a swollen body with a rup-
tured integument leading to liquefaction, were assigned to
the Baculoviruses (Haase et al. 2015; Valicente 2019).

Symptoms of infections from entomopathogenic fungi
were germination of hyphae from dead larvae, although a
few samples were morphologically identified by scientists
at the USDA-ARS in Ithaca, NY, USA. The infected sam-
ples were removed from their rearing boxes and individually
placed in an empty Petri dish under the same laboratory
rearing conditions. They were then individually transferred
to a Petri dish containing potato dextrose agar (PDA) previ-
ously prepared for fungi germinations and isolations. The
preparations were incubated at laboratory rearing conditions
for 10-21 days for identification.

Nematodes, parasitoids, and predators

Nematodes and parasitoids that emerged from FAW eggs,
and larvae were preserved in 70% ethanol in crystal vials.
Description keys were used to identify the entomopatho-
genic nematodes (Crosskey 1968; Baker and Capinera 1997;
Firake and Behere 2020).

Identification keys (Braet et al. 2012; Koffi et al. 2020c)
and characteristics of insects already identified using molec-
ular barcodes from Africa (Agboyi et al. 2020; Durocher-
Granger et al. 2021; Otim et al. 2021) were used to identify
emerged parasitoids and collected predators (Brindle 1967,
Waller et al. 1999; Kwadjo et al. 2012; Nicolas et al. 2015;
Girod and Lassalle 2017).

Calculations and statistical analysis

During the inspections, insecticide application information
was documented from the farmers to determine the percent-
age of farms with insecticide applications per year (sprayed
farms). However, calculations did not consider farms where

the owner was not present to provide information. Specimen
collections were separated into two periods, (1) intensive
insecticide applications, where more than 75% of the farms
made insecticide applications for FAW management (2016
and 2018) and (2) occasional insecticide applications, where
less than 25% of the farms made insecticide applications
(2018-2022).

After specimen identifications, several variables were
calculated according to the following equations (Koffi et al.
2020c¢):

n

y:N*IOO )
or

.t

=7 @

where infection rates (Ir) (y), n=number of larvae infected
by a given entomopathogen species and N =total number of
collected larvae. For parasitism rates (Pr) (y), n=number of
egg masses or larvae parasitized by a given parasitoid spe-
cies and N=total number of egg masses or larvae collected.
For relative abundances (RA) (y), n=number of a given spe-
cies and N=total number of collected species. For percent of
sprayed farms (y), n=number of sprayed farms and N =total
inspected farms per year. For index of dispersion (iD) (@),
t=ratio of the number of farms hosting a given nematode,
bacterium, virus, fungus, parasitoid or predator species, and
T=total number of farms inspected for each year

Data were arranged per location and grouped per year.
The percentage data were arcsine square root transformed
prior to statistical analysis. All calculations and transforma-
tions were carried out using Excel before being submitted to
a Shapiro test for normality (GenStat Twelfth Edition Gen-
Stat Procedure Library Release PL20.1). Normal data were
submitted to one-way analysis of variance at 95% confident
interval, and the non-normal data to a non-parametric test
(Kruskal-Wallis) at 5% significance level. Multiple means
obtained from the ANOVA were subjected to a Tukey test
for separation, while means comparing the parasitism rates
between the sprayed and unsprayed farms were subjected to
a t-test. The assessment of correlation between the numbers
of collected egg masses and larvae was also calculated using
GenStat.

Results

Impact of insecticides on the performance
of natural control

The two years following the invasion of FAW in Togo
showed higher numbers of egg masses collected per farm
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Table 1 Numbers and

. Egg mass Larvae

parasitism rates of egg masses

and larvae across years of Year Farm n P Per farm Pr (%) n P Per farm Pr (%)

collections
2016 61 103 0 1.67+0.23b Oa 1025 15 17.02+1.36b 1.32+0.36a
2017 37 42 0 1.14+0.41b Oa 692 17 18.53+3.05b 2.53+0.34a
2018 27 13 2 046+0.32a 14.72+2.03b 139 23 4.82+1.23a 15.96+1.35b
2019 79 35 9 0.44+0.11a 23.63+1.35b 425 123 5.07+0.31a  28.72+1.82bc
2020 71 29 11 042+0.21a 36.28+2.41bc 296 93 4.11x1.51a 31.37+2.35bc
2021 28 9 4 0.31+0.18a 42.76+3.85c 108 46 3.776+1.65a 41.85+3.6lc
2022 45 11 5 0.22+0.14a 45.38+1.69c 153 65 3.36+0.86a 42.23+2.54c
df 6, 347 6,91 6, 347 6,269
F 4.65 12.26 8.69 6.82
P 0.032 <0.001 0.009 0.018

Means (+ SE) within the same column followed by the same letter are not statistically different

n total number, P number of parasitized individuals, Pr parasitism rate

than the next several years. Although there were high num-
bers of egg masses those first two years, none were found to
be parasitized. However, the low numbers of egg masses col-
lected since 2018 showed parasitism rates increasing from
14.72% in 2018 to 45.38% in 2022 (Table 1). The same trend
was shown with larvae as higher numbers were collected per
farm in 2016 and 2017 than the following years. Correlation
analysis between collected egg masses and larvae showed
no relationship (»=0.0002, P=0.869). Larval parasitism

rates were very low in 2016 (1.32%) and 2017 (2.53%) but
increased to 15.96% in 2018 and 42.23% in 2022 (Table 1).

During the survey, farmers were interviewed regarding
insecticide applications and depending on the year, between
52.1 and 74.1% responded. The percentage of sprayed farms
was very high in 2017 (91.38% of farms inspected) and
2016 (73.25%), compared with the range of 23.52-11.08%
obtained between 2018 and 2022, respectively. Higher egg
and larval parasitism rates were recorded in unsprayed

m Unsprayed O Sprayed
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Fig.2 Percent of egg masses and larvae parasitized or infected from 2016 to 2022 in Togo
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Fig.3 Sites of collections of entomopathogenic agents—O. sinensis (yellow), Enterobacteriaceae (dark yellow), Enterococcus spp. (orange),
Ascoviruses (red), Baculoviruses (purple), Isaria spp. (violet), and M. rileyi (pink) associated to FAW larvae from 2016 to 2022 in Togo

farms than sprayed farms every year of the seven-year study
(Fig. 2).

Entomopathogenic organisms associated
with FAW

Entomopathogenic agents associated with FAW larvae
included a nematode, Ovomermis sinensis Chen, Jian, &
Ren (Nematoda: Mermithidae), unidentified species in the
bacteria family of Enterobacteriaceae and Enterococcus sp.,
unidentified viruses belonging to Ascoviruses and Baculo-
viruses, and fungal species Isaria sp. (Hypocreales: Clavi-
cipitaceae) and Metarhizium rileyi (Farl.) Kepler, Rehner,
& Humber (Hypocreales: Cordycipitaceae). The nematode,
O. sinensis had low infection rates, relative abundance and
index of dispersion until 2018, compared to the follow-
ing years (Table 2). The infection rate of bacteria species
belonging to Enterobacteriaceae was not constant during the
period of collections, but its relative abundances were high
in 2016 and 2017. The indexes of dispersion were constant
over the study period. Infection rates of Enterococcus sp.
increased from 2018 onward, while its relative abundance
decreased, and its indexes of dispersion remained constant
during the study (Table 2). Larvae infected by Ascovirus
were collected from 2018 to 2022, and Baculovirus was col-
lected from 2017 to 2022. However, the two viruses and fun-
gal groups had constant infection rates, relative abundance,
and indexes of dispersion throughout the study (Table 2).
Although the spatial distribution of entomopathogens
increased during the study (Fig. 3), the population densities
of each species were similar.
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Parasitoids

During this study, 10 species of parasitoids were collected
and identified. The egg parasitoid Telenomus remus Nixon
(Hymenoptera: Platygastridae) was consistently collected
from 2018, with increasing parasitism rates from 15.38 to
45.44% in 2022. This species index of dispersion was higher
during the last two years of the collection period (Table 3).
One species of egg-larval parasitoid, Chelonus bifoveola-
tus (Szépligeti) (Hymenoptera: Braconidae), was also col-
lected with low parasitism rates that increased from 0.39%
in 2016 to 3.70% in 2021. This species had an increasing
index of dispersion and decreasing relative abundance dur-
ing the study (Table 3). The larval parasitoids included two
unidentified species of Tachinidae, five hymenopteran spe-
cies including Coccygidium luteum (Brullé), Cotesia icipe
(Fernandez-Triana and Fiaboe), an unidentified Braconidae,
and two unidentified Ichneumonidae, and the larval-pupal
parasitoid species Meteoridea testacea (Granger) (Braconi-
dae). The indexes of dispersion of the tachinid species were
the same across all years of collection, with small variations
found among the parasitism rates and relative abundances
(Table 3). Parasitism rates of all the other larval parasitoids
increased moderately from 2018 onward, with low varia-
tion in relative abundance and index of dispersion (Table 3).
Although the spatial distribution of parasitoids increased
every year (Fig. 4), the population densities of each species
were similar.

Predators

A total of 16 species of arthropod predators were col-
lected attacking FAW during this study. These were five
heteropterans, Orius sp. (Anthocoridae), Haematochares
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Fig.4 Sites of collections of parasitoids—7. remus (yellow), C. bifoveolatus, (dark yellow), C. luteum (orange), C. icipe (red), M. testacea, (pur-
ple), braconid (violet), ichneumonid (pink), and tachinids (blue) associated to FAW egg masses and larvae from 2016 to 2022 in Togo

obscuripennis Stal, Peprius nodulipes (Signoret), Rhynoco-
ris sp., and Zelus sp. (Reduviidae); four beetles, Calleida sp.
(Carabidae), Cheilomenes sulphurea (Olivier), Coccinella
sp. and an unidentified coccinellid (Coccinellidae); three
earwigs, Euborellia sp., Forficula senegalensis Audinet-
Serville, and Forficula sp. (Forficulidae); two ants, Phei-
dole megacephala F. and Polyrhachis sp. (Formicidae); one
lacewing, Chrysoperla sp. (Chrysopidae); and one mantid,
Sphodomantis viridis Forsskal (Mantidae).

Except for Orius sp. and Zelus sp., all the heteropteran
species were collected from 2018 and had similar relative
abundances and indices of dispersion during the collection
years (Table 4). The beetle species were collected from
2017 and had similar relative abundance across the years
of collection with slightly increasing indices of dispersion
(Table 4). Except for Euborellia sp., the earwig species
were collected from the onset of the FAW invasion with
a slight increase in relative abundances and dispersion in
the following years (Table 4). Ants collected were social
Formicidae that increased in their locations found during
the study. Chrysoperla sp. and Mantis sp. were collected
in higher numbers during the first years of the FAW inva-
sion in Togo, and their dispersion increased during the study
(Table 4). Although the spatial distribution of the predators
expanded during the study (Fig. 5), the population densities
of each species were similar.

Discussion

Many of these natural enemy species have been documented
before in several areas of the world, especially the parasi-
toids and predators (Sisay et al. 2018; Koffi et al. 2020c;
Abang et al. 2021; Dassou et al. 2021; Otim et al. 2021).
The nematode species, O. sinensis, has been described to

@ Springer

infest several noctuid species (Li et al. 2003), including S.
frugiperda (Sun et al. 2020). The bacterium found, Entero-
coccus sp., is a common gut bacterium found in many Lepi-
doptera species and is most likely non-pathogenic (Voirol
et al. 2018; Kenis et al. 2022). Viruses have been studied
for many years to be used as microbial insecticides against
FAW (Molina-Ochoa et al. 2003b; Guo et al. 2020; Hussain
et al. 2021). Fungi, including Isaria spp. and M. rileyi, have
also been studied as biopesticides against noctuid larvae for
many years (Guo et al. 2020).

The invasion of FAW in Africa was successful as
increased population growth and rapid spread were followed
by severe damage to maize plants and important yield and
economic losses (Koffi 2020a, b, 2022). The response of
maize producers and governments to threatened food secu-
rity was the application of insecticides (Koffi et al. 2021).
In Togo, up to 73.25% of maize farms were sprayed with
insecticides to reduce heavy infestations of FAW. This
increased up to 91.38% in 2017 and was expected to sta-
bilize or to increase in 2018 (Ramirez-Cabral et al 2020).
Surprisingly, insecticide applications decreased to 23.52% in
2018 and reached 11.08% in 2022. The decrease in insecti-
cide applications coincided with the increasing numbers and
activity of natural control agents which were already being
collected during maize production in 2016 and 2017. Fortu-
nately, the infestations of FAW between 2018 and 2020 were
three times lower than the previous two years (Koffi et al.
2020a, 2022), which may explain why growers reduced their
sprays. This unexpected phenomenon calls into question the
efficiency of many insecticides applied against the FAW in
Togo. The activity of natural control may be underestimated
or other abiotic factors (i.e., rainfall) may be involved in
reducing FAW infestation.

Even if natural enemy populations were expected to
be low and inefficient during the two years following the
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Fig.5 Sites of collections of predators—Forficula sp. (yellow), F.
senegalensis (dark yellow), Euborellia sp. (orange), Coccinella sp.
(red), coccinellid (purple), C. sulphurea (violet), Calleida sp. (pink),
P. nodulipes (light-pink), Rhynocoris sp. (light-green), Zelus sp.

invasion of the new pest, the three to four times higher para-
sitism rates of egg masses and larvae in the unsprayed than
sprayed farms demonstrated the negative effects of insec-
ticides on these natural enemy populations. Therefore in
Togo, the reduction in the number of insecticide applica-
tions since 2018 most likely contributes to the emergence of
higher populations of pathogens, parasitoids, and predators
and improvement in their performance.
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