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Abstract

Climate-change induced alterations in the global distribution of cool seagpar{@warm season (fgrasses would impact the
global carbon cycle and have differing, local effects on range and agricultural production. We hypothesize that a major influence
on G;/C, distribution may be the seasonal timing of water availability with respect to the diffegeamCC, growing seasons.
An algorithm expressing this hypothesis (the SAW hypothesis for Seasonal Availability of Water), estigre¢esuS G grass
biomass from climate data. Sensitivity analysis indicated that temperatures used to delineate the start and epdiod tGe C
grass growing seasons were more important than photosynthetic responses to temperature. To evaluate the SAW hypothesis, thi
algorithm was applied globally on & & 1° latitude—longitude grid. When compared with vegetation survey data at 141 locations
in North America, Argentina, Australia, and South Africa, SAW algorithm predictions yieldePaf 0.71. Error resulted
primarily from comparing large grid cells to plot data, interannual variability of climate, and from gridding measured climate to
data-sparse locations with a single lapse rate of air temperature with elevation. Application of the SAW algorithm to a climate
change scenario suggested that changes in temperature and precipitation patterns could pffstisgnthetic advantages
offered by elevated atmospheric g@oncentrations. These results underscored the importance of accurately representing the
timing and spatial distribution as well as the magnitude of temperature and precipitation in scenarios of future climate.
© 2003 Elsevier Science B.V. All rights reserved.
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single range, grow during different parts of the year. examined the temperature controls on photosynthetic
Reductions or increases in either grass could require carbon gain or quantum yield. They noted that C
adjustments to grazing plans or stocking rates and, in plants were favored at low temperatures ang@nts
extreme cases, alter total production. In some areas,were favored at high temperatures. The crossover
C3 grasses and crops have @eeds or vice versa temperature was estimated to be 252@0After fur-
and changes in their relative distribution could favor ther examination, it was lowered to 18-Z3 (Pearcy
or hamper production depending upon the species and Ehleringer, 1984and then to 22C (Ehleringer
involved. Therefore, a climate-sensitive model esti- et al., 1997. Applying this hypothesis to climatology
mating how the relative §C4 grass biomass might for the North American Great Plainghleringer et al.
change would be useful to policy makers for as- (1997)estimated a crossover latitude wherg gtass
sessing the potential impacts of climate change on yields to G, dominance to be about 48. Field sur-
agricultural systems. veys have essentially confirmed this hypothesis and
Climate induced changes in grasslands are also of placed the crossover latitude at 43<M5(Epstein
more general interest. Grasslands are a major com-et al., 1997; Tieszen et al., 199Ahen viewed at
ponent of terrestrial vegetation, and, recently, the global or regional scales, thes@rasses prefer cooler
Intergovernmental Panel on Climate Change (IPCC) environments compared to the Grasses. This pref-
has examined the potential impacts of climatic change erence is expressed spatially, with the €pecies
and vegetation’s role in the earth’s carbon cycle dominating in the higher latitudes and altitudes, and
(Schimel et al., 2000; IPCC, 20p1In this regard, temporally with the earlier start of thez@rowing
grasses with the £ photosynthetic pathway differ season at temperate latituddg¢ri and Stowe, 1976;
significantly from G grasses. Therefore, to estimate Dickinson and Dodd, 1976; Chazdon, 1978; Tieszen
the carbon cycling through grass at each location, the et al., 1979; Boutton et al., 1980; Rundel, 1980; Ode
relative amounts of €versus G grass biomass must et al., 1980; Collins and Jones, 1985; Cavagnaro,
be known Ehleringer, 1978; Farquhar et al., 1989; 1988; Cabido et al., 1997
Ehleringer and Monson, 1993; Lloyd and Farquhar, In 1994, Lloyd and Farquhar produced a worldwide
1994; Tieszen et al., 1997; Knapp and Medina, 1999; estimate of the g versus G grass distribution from
Long, 1999. A static map of this distribution will climate. They globally applied a regression equation
not suffice because the relative amounts g@fv€rsus derived for Argentina Cavagnaro, 1988to estimate
Cy4 grass is, itself, hypothesized to change with cli- Cz and G grass species abundance as a function
mate and the resulting feedbacks must be representedof temperature (really altitude). Then, climatic con-
Therefore, a climate-sensitive model estimating rela- straints suggested by Collatz and Berry @erry,
tive C3/C4 biomass is a necessary addition to global 1994 were used to constrainy@ominated grasslands
carbon models used to advise government policy to produce a map of the proportion of photosynthesis
makers on the possible impacts of climate change. undertaken by gplants. No validation statistics were
The processes that control the global distribution presented, but the predicted global Grass distri-
of C3 and G grasses have not been clearly described. bution appeared qualitatively correct and represented
Most studies of the geographical distribution of C the observed distribution with “reasonable accuracy”
and G grasses focused upon species because specieglLloyd and Farquhar, 1994. 208).
lists (floras) offered global coveragéderi and Stowe, Recently, studies have addressed the distribution
1976; Teeri, 1979; Prentice et al., 1992; Sage et al., of C3 versus G biomass as opposed tepeciesThe
1999. On a site-by-site basis, the distribution of C  distinction can be important. For example, at the Cen-
versus G grasses was found to be a complicated tral Plains Experimental Range (CPER) in Colorado,
function of microclimate, site history, herbivory, soil USA, 59% of the species ares@ut these species
conditions, burning, topography, seed dispersal and account for only 10% of the biomas®druelo and
competition (eeri, 1979; Pearcy and Ehleringer, Lauenroth, 1996 Paruelo and Lauenroth (1996j-
1984; Ripley, 1992; Ehleringer et al., 1997; Hill et al., alyzed the fractional biomass ofs@rasses to total
1997; Sage et al.,, 1999; Matsinos and Troumbis, grass (@GG) for the North American Great Plains.
2002; Peters, 2002Ehleringer and Bjérkman (1977)  They found a correlationR? ~ 0.5) between @G
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and mean annual temperature in combination with
winter-to-summer precipitation. Surprisingly, pre-
cipitation was the dominant factor, not temperature.
Paruelo et al. (1998showed that this correlation
also worked well in Argentina. From photosynthetic
quantum yieldsCollatz et al. (1998yeduced that €
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process of plant growth, development and survival
(Larcher, 1995; Long and Woodward, 198% not
quantum yields, how does temperature interact with
precipitation to produce the observed®&?

Our experience suggests that it is the seasonal
availability of moisture that controls the global dis-

photosynthesis is competitively advantageous below a tribution. This hypothesis is reflected in Paruelo

mean monthly air temperature of 22 and G photo-
synthesis is advantageous above @2Applying this

and Laurenroth’s correlations, and makes theoretical
sense. In general, grasslands are water limited, ex-

deduction to 1930-1960 climate data, they produced isting where there is enough rainfall to sustain plant

a map of the world’s grasslands divided into the three
broad categories: all £ all C4, and mixed G/Cs.
Counting only months with at least 25 mm precipi-
tation, areas with monthly means continually below
22°C are predicted to be all{3yrass. Areas continu-
ally above 22C are all G grass. Grasslands with at
least 1 month (but not all) with a mean temperature
>22°C are mixed @/C4. Although illuminating, none

of these approaches are fully satisfactory for incor-
poration into global climate change studi€aruelo

et al. (1998)correctly cautioned about applying their
results globally; extrapolation of statistical relation-

production, but not enough for trees which would
out-compete the grasses for ligWwg@odward, 1987;
Ripley, 1992. In temperate latitudes, zCgrasses
start growth early and have sole access to the water
stored in the soil from melting snow and spring rains
(Fig. 1). C4 grasses start later as temperatures warm,
and both grasses will have access to available water,
primarily from rainfall. Finally, as temperatures warm
further, G grasses undergo senescence (the so-called
summer-slumpRiesterer et al., 20000 G, grasses
will have sole access to available water from rainfall
(Fig. 1). Temperature limits the potential growing

ships beyond the range of the data can cause largeseason of each grass but, if there is no water available,

errors Gold, 1977. Algorithms that predict a simple
“mixed Cgz/Cy4” category from long-term climate data
are not totally sufficient either. Small differences in
C3G in the mixed category, when applied over large

the grass will not grow.

Therefore, we hypothesized that the process that
controls relative @ and G biomass is seasonal ac-
cess to available water which is partitioned by dif-

areas, can become significant sources or sinks offerences in the growing seasons and utilized with a

carbon.
Therefore, a climate-sensitive model for estimating

water use efficiency (WUE= photosynthetic carbon
produced/water used) that changes seasonally. In this

C3G inthe mixed areas is still needed and the question study, we examine this hypothesis (hereafter referred

remains; what is the process controlling the global
distribution of G and G grass biomass@avagnaro
(1988) Lloyd and Farquhar (1994pandParuelo and
Lauenroth (1996jound precipitation and temperature

to as the SAW hypothesis for Seasonal Availability of
Water) by applying it globally and comparing it3G

predictions to existing vegetation studies. After eval-
uating the SAW hypothesis in relation to these stud-

important, but they did not describe a specific process ies, we examine its implications for climatic change

incorporating these variable€ollatz et al. (1998)
indirectly referred to a process by basing their map

upon a temperature determined from quantum yields

and incorporating a minimum precipitation limit.
However, Long (1983, 1991, 1999rgues that the
temperature responses ot @nd G quantum yields
do not scale up to productivity differences, and tem-

perature limitations on other physiological processes

control the distribution of @ and G vegetation. His

argument is compelling since temperature not only
affects the maximum rate and quantum yield of pho-
tosynthesis, but also affects practically every other

by applying it to a probable climate change scenario.

2. Methods and materials
2.1. The SAW algorithm

To examine the SAW hypothesis and its implica-
tions for climate change studies, we developed a sim-
ple biogeographical model (called the SAW algorithm)
that estimated the relative distribution of ®@ersus
C4 grassland biomass by relating the temperature
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Fig. 1. The essential process underlying the SAW hypothesis. The SAW (Seasonal Availability of Water) hypothesis determines the relative
C3 vs. & biomass for grasslands from the partitioning of available water by the preferred growing seaspteit€ start growth first and

use the water stored over the cold dormant season. Relative abundance is calculated from available water using a simplified algorithm that
calculates water use efficiency (WUE) from daily air temperature. Thar@ G growing seasons are estimated from a 30-day running
average of maximum daily air temperatures.

controlled growing seasons and their interaction with 2.2. The G and G growing seasons
temperature controlled grass water use efficiency.

Since our objective was to examine the SAW hy-  The limits of the preferred growing seasons (here-
pothesis on a global scale and to evaluate its impli- after called growth windows) are estimated from air
cations for climate change studies, we configured the temperatures\lonson and Williams, 1982; Dickinson
SAW algorithm as a dynamic process modekfg, and Dodd, 1976 Areas of mixed G/C4 grasses are
2000 that simulates one aspect of grass physiol- assumed to be in the mid-latitudes where there is a
ogy (WUE) to estimate the grasses daily response to fair degree of seasonality in temperature. The grasses
available water. The SAW algorithm is therefore sim- would then follow an annual cycle of growth and dor-
ilar to other recent, dynamic physiologically-based, mancy. The winter season is assumed to be a dormant
process models like ALBIOCRoelandt, 200 and period for both grasses.

ECOTONE Peters, 2002 However, it is much less Threshold values for a 30-day running average
ambitious in scope than these models and includes of maximum air temperature’ {x for year-dayJ)

only the three sub-processes necessary to express thare used to signal the day of opening and closing
SAW hypothesis, requires only two input data fields of C3 and G growth windows. These temperatures
available at global scales and considers only generic were labeledT1, T2, T3, and T4 (Fig. 2). As the

Cz and G, grasses to keep initial parameterization to a air temperature drops in the fall, there is potential
minimum. In contrast, although only the minimum of for a short G growing period. However, the LC
processes are included, the SAW algorithm captures grasses have already established themselves for the
the daily interaction between these sub-processes withnext year; hence, this second growth window was not
a true, daily time step. included.
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Fig. 2. Temperature limits of thegCand G growth windows estimated from a 30-day running average of maximum air temperature. The
thin line is the 30-day running mean of the daily maximum temperatlif&) (for day of the year)], at the CPER, near Nunn, CO. The

Cs growth window starts on the day whefTx reaches temperatufEl and ends whedTx reaches temperatuf8. The G grass growth
window opens on the day whelTx reaches temperatuf2 and closes on the day whéiix reaches temperatufgt. Initial temperature
limits are fromMonson and Williams (1982)

The temperature limits for theCand G growth water from spring rains and snow melt. Therefore,
windows Fig. 2) were selected using data from T1 is calculated for each locatiogble 1), so that
Monson and Williams (1982pbtained at the CPER. C3 growth would begin with frost-free conditions
Initial sensitivity tests on data from the International (/Tn> —1°C, where/ Tnis the 30-day running mean
Biological Programme (IBP) site§éble 2 indicated of minimum temperature on day) and with suffi-
that T1 (for C3 grasses) and@4 (for C4 grasses) ex-  ciently warm day-time temperature§Tx > —10°C).
plained most of the variation in4G. The initial value Similarly, the initial value forT4 from CPER was
of T1 from the CPER was too low for northern sites too low for the more southern location3aple 2.
(Bison and Bridger sites imable 2. It is reasonableto  Therefore,T4 is calculated for each location using a
assume that £grasses adapted to cooler areas would linear regression with mean annual temperature from
begin growth earlier to take advantage of available the IBP sites Table J). With these adjustments L

Table 1
SAW algorithm parameters for current climate and elevated €¢&narios
Parameter Current climate Elevated £0

Cs Cs Cs Cy
Temperature coefficient functiorf Kc,)? T&J T&J R et al. T&J
Temperature optimumTg, °C) 20 35 24 35
Temperature maximumrg, °C) 38 46 46 46
Maximum photosynthetic rateA, pmolm—2s™1) 25 33 30 33
Maximum conductancegp, mmol ni2s1) 270 75 243 68
Cz growth start T1, °C)° JTxwhen’/Tx > 10°C and’Tn> —1°C
C,4 growth start T2, °C) 21 21 21 21
Cs3 growth end T3, °C) 24 24 26 26
C4 growth end T4, °C)° max{1.745 annual + 11.143, 27C}

2 T&J: Thornley and Johnson (199(R et al.: Rastetter et al. (1991)femperatures were rounded to nearest
b JTx and/Tn are the 30-day running means of daily maximum and minimum temperatures.
¢ Tannualis the mean annual temperature, and fpay} is the maximum of two termg andy.
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Table 2

SAW algorithm performance after parameterization at the IBP3ites

Site Location T1 T4 Observed @G Predicted @G
Latitude Longitude

Bridger, MT 46 —-111 14 25 1.00 1.00

Dickinson, ND 47 —103 17 27 0.80 0.81

Bison, MT a7 —114 10 27 1.00 1.00

Cottonwood, SD 44 —102 19 27 0.80 0.86

CPER, CO 41 —105 12 28 0.10 0.04

Hays, KS 39 -99 15 33 0.00 0.00

ALE, WA 46 —120 10 33 1.00 0.83

Konza, KS 39 —-97 10 35 0.10 0.23

Pantex, TX 35 —102 17 36 0.10 0.00

Jornada, NM 33 -107 19 37 0.00 0.00

Osage, OK 37 —97 14 38 0.00 0.00

@ |BP: International Biological Programme.

andT4 only, the predicted €5 was reasonably close
to observed gG at the 11 IBP sitesTable 2, using
daily climate data from the single year, 1970.

2.3. Estimating the relative biomass

For a unit area of grassland, the fraction of C
biomass (GG) is defined as the biomass of Ghoto-
synthetic grassed/c,) divided by the total biomass of
both G and G grassesiNc,) or C3G = Mc,/(Mc,+
Mc,). Mc, andMc, are indirectly related to the sum
of net primary production (kg C i per year), so they
were estimated a&/c, = WUEc, x Ec,, where the
subscripnis 3 for G photosynthesis and 4 foy@ho-
tosynthesisEc, is the water transpired (mold® m—2
per year), and WUE, is the annual average WUE.
Substituting these expressions into the definition for
C3G yields

WUEc, x Ec,
(WUEc; x Ec;) + (WUEc, x Ec,)

C3G 1)

which ignores any seasonal changes. Rearrang-

ing the right-hand side oEq. (1) yields GG =
1/[1 + (WUEc,/WUEc,) x (Ec,/Ec,)] which sug-
gests that @G should be relatively insensitive to
absolute estimation errors in W@E Ec,, WUE(,

or Ec, as long as the WUE, /WUEc, andEc,/Ec,
ratios are correct. This limits the impact of any
oversimplification in the algorithms that are used to

below andAppendix A). The daily amount of water
transpired is assumed to be proportional to the daily
water available/ Wat (mm H0), because evaporation
losses are small with canopy closure. Because WUE
varies day to day depending on temperature and hu-
midity, Eq. (1)is converted to the sum of daily values:

ZCS(JWUECS x 7 \Wat)

>, ("WUEc, x /Wat)
+Y c,(/WUEc, x /Wat)

CsG = @)

whereJ is the day of the yeagc3 is the summation
over the G growth window T'1-T3, Fig. 2), and} c,
is the summation over thes@rowth window {T2-T4,
Fig. 2.

There are many detailed and rigorous models of
ecosystem processes to estimagea@d G productiv-
ity and WUE (e.gHunt et al., 1996; Svirezhev, 1999;
Roelandt, 200l However, detailed models describe
processes not included in our hypothesis and require
parameters and initial conditions that are difficult or
impossible to obtain at regional and global scales. Es-
timation of these input data inevitably leads to ambi-
guity in evaluating the results. In addition, since the
SAW algorithm is designed to be more sensitive to
changes in the ratio of £xo C4 WUE rather than the
absolute values, a simple algorithm that adequately es-
timates this ratio from temperature alone should suf-
fice (Fig. 3). Consequently, to examine our hypothe-

estimate photosynthesis or stomatal conductance (seesis, we used simplified algorithms that adequately de-
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Fig. 3. (a) G and G, photosynthesis temperature coefficient and (b) fractional biomass gfas (GG[T]) as estimated by the temperature

only component of the SAW algorithm (thick lines) compared with Breguelo and Lauenroth (1996@gression model (thin line). The
temperature coefficient represents the portion of the maximum average rate of photosynthesis that each grass reaches at a given temperature
(Thornley and Johnson, 1990rhe temperature components of the SAW algorithreQ{T'] = WUE3[T]/(WUE3[T] + WUE4[T]), where

WUEs3 is the G WUE and WUKE is the G WUE) and the Paruelo and Lauenroth mode}®Cr] = 1.1905— 0.02909" — 0.2383Biome,

where Biome= 1.0 for grasslands) reflect typical grassland conditions where the total water transpired is independent of temperature (all
water will be used in a water limited environment). Both algorithms produced similar responses to temperature under these conditions.
The SAW algorithm stops photosynthesis at high vapor pressure deficits (determined from daily dew point temperature) yielding the four
thick lines descending to zero from the main curve at abowC30d-rom left to right, the lines indicate dew point temperatures of 5, 10,

15, and 20C respectively.

fine the growing season&i. 3, T1-T3 for C3 and 2.4. Sensitivity analysis

T2-T4 for C4) plus estimate water availability and

capture the seasonal variability of the ratios aftG As a preliminary test of the SAW algorithm, a sen-
C4 WUEs (Appendix A) without requiring unavail- sitivity analysis was performed on data from the IBP
able data. Although we fully recognize their impor- sites using different values of the algorithm parame-
tance and probable influence o8&, other processes, ters. The most important parameters for prediction of
such as herbivory, burning and nitrogen utilization, C3G wereT1, T2, T3, andT4, emphasizing that, in the
are not included since they were not integral to the algorithm, the growing-season temperature limits for
hypothesis. Cs and G grasses were generally more important than
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photosynthetic responses to temperature. However, atsisted of daily minimum and maximum temperature
the limits, settingl'1 earlier orT4 later in the year had  (°C), and daily precipitation (mm #0) for the years
little effect on GG becausé WUE, was limited by 1983-1996 on1x 1° of latitude—longitude grid. Grid
cold air temperatures. As expecteg@was insensi- cell elevations were obtained from the ETOPO5 data
tive to absolute changes o@nd G, photosynthetic set (spatial resolution of 5arcmin) and weighted by
rates and stomatal conductances, as long as3@yC  area onto the 21x 1° grid (Hunt et al., 1998 Tem-

ratios of either remained the same. peratures for data-sparse, mountainous areas were
interpolated from temperatures at low-elevation sta-

2.5. Global assessment of the SAW hypothesis tions and adjusted for elevatioriper and Stewart,
1996.

To evaluate our primary hypothesis, the SAW al-
gorithm was applied globally using a gridded climate 2.7. Vegetation surveys
data set for 1983-1996.3G was calculated for each
year, then the average predictegGCwas calculated Vegetation surveys available for North America
from an average of the 14 annual values. Estimations (Paruelo and Lauenroth, 1996Argentina Paruelo
of C3G were then compared to existing vegetation et al., 1998, Australia (Hattersley, 1988 South
surveys. Africa (Vogel et al., 1978 Kenya {Tieszen et al.,

A proper quantitative evaluation of the SAW algo- 1979, and Egypt Batanouny et al., 19§8wnere as-
rithm requires daily climate at the vegetation study sembled to obtain observedsG at 152 locations.
site covering the time period immediately preceding Only the surveys related biaruelo and Lauenroth
the survey. Although necessary for a global study, (1996) and Paruelo et al. (1998ere of relative
gridded climate contains average values for the entire abundance of biomass. The other surveys were of
cell that may, or may not, reflect the microclimate relative abundance of species, and were included
at the survey location. In addition, the actual dates because the importance of having global coverage
of collection are not mentioned in most of the veg- outweighed errors caused by equating abundance
etation surveys. Consequently, the reportef>5Gat of species with biomass. Some data points were
the study sites should not be assumed to be in equi- eliminated, because the grass cover was less than
librium with the climate data used for evaluation 5%, yielding a total of 141 points used in model
(Kirilenko et al., 2000. Despite these difficulties, a assessment.
guantitative evaluation was attempted and extra effort
was devoted to clarifying the resulting uncertain- 2.8. Comparison statistics
ties. The timing difference between the surveys and
climate data was addressed by assuming thg® C To compare surveyed data with the SAW algo-
changes slowly. Then, if the SAW hypothesis is gen- rithm predictions, goodness-of-fiRf) was calculated
erally reasonable and correct, its average prediction from R? = 1 — 3" (y — ypre)2/ 3.(Y — Ymean?, Where
should be close to the surveyed values. Therefore,y is the observed valugjye is the predicted value
the 14-year averagesG prediction was used rather of C3G at a particular locationMayer and Butler,
than the more volatile annual numbers. Annual pre- 1993, andymeanis the mean @G for all data used.
dictions were examined, however, and their variation The mean absolute error (MAE) was calculated from
explored. Problems associated with comparison be- MAE = ) absy — ypre)/n, Wheren is the num-
tween large-grid-cell-based predictions and point ber of points and abs is the absolute valiéayer
survey data were addressed directly in the analysis and Butler, 1998 Other analyses were categorical,

(seeSection 3.1 C3G from 0.00 to 0.10 were assumed to be equiva-
lent to all G vegetation and G from 0.91 to 1.00
2.6. Global, gridded, climate data set were assumed to be equivalent to al @getation.

The mixed G/C4 categories are 0.11-0.30 (20%),
The climate data set was compiled using the same 0.31-0.50 (40%), 0.51-0.70 (60%), and 0.71-0.90
methodology asPiper and Stewart (1996)t con- (80%).
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2.9. Assessment of the SAW hypothesis by
comparison with the Collatz model

When examined as biogeographical limits, the
growth windows set byl'l, T2, T3, andT4 produced
a three region pattern of allzCall C4, and mixed
C3/Cy4, that is, at first glance, similar tGollatz et al.
(1998) The similarity warranted a closer look at the
SAW algorithm relative to the Collatz model and
their predictions were compared, grid cell by grid
cell. Since the Collatz et al. logic was designed for
monthly climate, monthly averages were generated
from the daily values in the 1983-1996 gridded cli-
mate data setTéble 5. Only the 6034 grid cells
classified specifically as grassland (including tundra
and agricultureHunt et al., 199%were used.

2.10. Assessing implications of the SAW
hypothesis to climate change research

General Climate Models (GCMs) predict that ex-
pected doubling of atmospheric GQvill cause in-
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et al.,, 1995 Then, to examine responses to tem-
perature and precipitation changes alone, the SAW
algorithm was applied, again without change, to the
Canadian Climate Centre—Global Climate Model
(CCC-GCM;Kittel et al., 1999. This scenario, con-
sisting of predicted monthly deviations from the his-
torical data, was recommended to us (T.G.F. Kittel,
personal communication) as the most current on the
VEMAP Phase | CD-ROMKittel et al., 1996.

The WUE portions of the SAW algorithm were then
parameterized to include the effects of doubled at-
mospheric CQ@ (Appendix A) as suggested blyong
(1991) Thus modified, the SAW algorithm was ap-
plied to the CCC-GCM scenario to examine the inter-
actions between climate and the £étered water use
efficiency. Applying these parameters placed the C
photosynthetic optimum temperature slightly outside
of the G growth window. Although not mentioned
by Long (1991) it is likely that G grasses would
adapt their growing season to account for their altered
photosynthetic character under increased atmospheric
CO; concentrations. Therefore, for these simulations,

creases in the global average temperature along withthe G growth window temperature limiff3, was in-

changes in both the temporal and spatial variation of
temperature and precipitatiotKéeling et al., 1989;
Gates, 1998 By design, the SAW algorithm is sensi-
tive to changes in the temporal and spatial variation of
temperature and precipitation allowing examination
of their interaction with the changes in plant phys-
iology. C4 grasses may benefit from increased tem-
peratures compared toz@rassesl(ong, 1991; Chen

et al., 1996; Drake et al., 199@However, G grasses
should benefit more from elevated atmospheric,CO
concentrations than fgrasses Llong, 1991, 1999;
Eamus, 1991; Drake et al., 1996; Ehleringer et al.,
1997; Wand et al., 1999 These physiological re-
sponses are incorporated into the SAW algorithm with
simple parameter change&ppendix A).

2.11. Climate change simulations

To assess the implications of the SAW hypothe-

creased beyond the news @hotosynthetic optimum
temperatureTable 1.

3. Results
3.1. Results of global assessment

The 14-year average global distribution of&es-
timated by the SAW algorithm was qualitatively sim-
ilar to the pattern produced by surveys from around
the world Fig. 4). All C3 grass was predicted to oc-
cur at high latitudes and altitudes, and all Grass
was predicted to occur in the tropics, even though the
SAW algorithm was developed for temperate regions.
Going from warm to cooler regions, there is gradual
transition from G to C3 grassesKig. 4). The G/C3
grass crossover latitude in the North American Great
Plains was approximately 42-49 (yellow to green in

sis to climate change studies, three simulations were Fig. 4) which is in good agreement with the observed

performed on data from the conterminous USA. To
establish a basis for comparison, the SAW algorithm
was applied, without parameter modifications, to the
Vegetation/Ecosystem Modeling and Analysis Project
(VEMAP) mean historical daily climate dat&iftel

43-45N observedpstein et al., 1997; Tieszen et al.,
1997 and the 45N predicted byEhleringer et al.
(21997)from quantum yields.

Classification of predicted and observed&into
three categories, all £ all C; and mixed G/Cy
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Fig. 4. The fractional biomass ofsQyrasses (6G) for the world predicted by the SAW algorithm. The values are the avera@ fom 14 years of daily climate data
(1983-1996).
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Table 3 observed and predicted values in the ajlabd all G

Error matrix from classification of SAW algorithm predicted @& regions. Comparison in the mixe@/C; regions alone

Observed Prediction (from the 1983-1996 resulted in ark? = 0.5 which is similar to results from
average gG) the Paruelo and Lauenroth (19963gression model.
All C3 Mixed Cs/Cy4 All Cy At low observed @G, only five points of the 74 in-

All Cs 26 7 0 troduced most of the error. When they were removed

Mixed Cs/C, 6 61 7 from the analysis, the SAW algorithm producedrén

All C4 0 11 12 of 0.54, with an MAE of 0.19 for the mixed regions.

2 Includes the 1 latitudex 1° longitude grid cells with at least There was_no bifas revealed_ for the different areas
one point of observed data. Grid cells with multiple observed Of the world, including Australia, Egypt, Kenya, and

points were used once. South Africa Fig. 5. Consequently, there was little
difference in errors between predicted@and data
resulted in overall accuracy of 76%gble 3. Ob- based on measured biomass or data based on species

served all G and mixed regions were predicted with abundances. However, lack of bias does not indicate
greater than the overall accuracy (79 and 82%, respec-that species abundances are good estimators of relative
tively; Table 3. Observed all ¢ areas were predicted Cz and G biomass.
to be mixed about half the time. However, the ma-  The spatial resolution of the climate data (about
jority of the incorrectly classified points were in New 110km at the Equator) is coarse when compared to
Mexico and Arizona, USA. Both of these areas have each survey point. Consequently, there were three
temperature and precipitation patterns that should al- 1° x 1° grid cells that contained several survey points
low for some growth of @ grasses in the spring and (Table 4. The mean absolute difference between the
suggested another parameter may be necessary to limipoints and their mean is about 0.0Bable 4, which
C3 grasses in hot, arid regions. is a large fraction of the MAE (0.19). Therefore,
The SAW algorithm predicted the surveyed values some of the disagreement between the predictions
within 0.2 at most locationsHg. 5). Quantitative and the survey data are not the result of errors in the
comparison of the SAW algorithm predicted @ ver- SAW algorithm, but rather result from the multitude
sus surveyed data resulted in an overdll = 0.71. of habitats averaged together in a single grid cell.
Although an indicator of general performance, this  Climate varied considerably over the 1983-1996
number is misleading because of the large number of period with some years reflecting influences from El

Table 4
Variation in surveyed point data within three mixed/C4 grid cells
Cell Location Elevation (m) G
Site Grid Site Grid Observed Mean Predicted
Latitude Longitude Latitude Longitude
1 45.82 —106.48 45.5 —106.5 896 1098 0.81 0.87 0.64
45.87 —106.48 939 0.97
45.88 —106.47 945 0.80
45.85 —106.37 945 0.92
2 —36.00 —63.80 —36.5 —63.5 120 120 0.93 0.79 0.42
—36.00 —63.80 0.84
—36.00 —63.80 0.91
—36.50 —63.00 0.49
3 —38.00 —65.50 —38.5 —65.5 220 183 0.90 0.95 0.50
—38.50 —65.00 0.94
—38.50 —65.00 1.00

2 Grid cells are 1 latitudex 1° longitude.
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Fig. 5. SAW algorithm predictions vs. surveyed values of the fractional biomasg gfaSses (€G) in (a) North America, (b) Argentina,
(c) Australia, (d) Egypt, (e) Kenya, and (f) South Africa. Symbols indicate the absolute value of the difference between observed and
predicted GG at the point: @) 0.0-0.20; O) 0.21-0.40; [J) 0.41-0.60; A) 0.61-0.80; {) 0.81-1.00.

Nifio, La Nifia, volcanic eruptions (Mount Pinatubo), est MAE (1985, 1992, 1995, and 1996)id. 6), had

or record-breaking temperatures. On average, climatethe lowest overall accuracy of classification and the
variation affected predictedsG as shown by the year-  years with the lowest MAE (1988 and 1989ig. 6),
to-year differences in MAEKig. 6). Climatic variabil- had the highest overall accuracy (data not shown).
ity also affected the classification into algCall Cj, Interannual variation in €5 was greater for individ-
and mixed G/C4 categories. The years with the high- ual grid cells Fig. 7). For example, in Montana, USA,
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Fig. 6. Annual variation of the mean absolute error (MAE) between
predicted and observedsG for the grid cells containing the 141
survey points. The solid horizontal line indicates the average MAE
for the period from 1983 to 1996.
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the predicted @G varied from<5% for an extremely
dry year to 100% for two cool yearkig. 7). However,
in Texas and Kansas, USA, the weather for many years
would suggest these areas could be alMEgetation,
yetin 1995 for Texas, §5 was 99%Fig. 7). Thus, the
global reasonableness of SAW hypothesis predictions
was the direct result of having multiple years worth of
gridded climate data from which to obtain an average.
A plot of the errors in predicted 4G error ver-
sus elevation revealed a systematic biasGGvas
overestimated at high elevations and underestimated
at low elevations Kig. 8). This was, in part, an arti-
fact of gridding low-elevation weather station data to
high-elevation grid cells by applying a single lapse rate

Hays, Kansas
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Blackland Prairie, Texas
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Fig. 7. SAW algorithm predicted fractional biomass of grasses (€G)

90 91 92 93 94 95 96

Year

vs. year showing the variation over 14 years at: (a) Kluver North,

Montana; (b) Hays, Kansas; and (c) Blackland Prairie, Texas. Solid lines show the average pregi&taddGhe dashed lines show the

observed @G for each site.



166 J.C. Winslow et al./Ecological Modelling 163 (2003) 153-173

1.00
0.80 |
0.60 |
0.40
0.20

S T T T T

0.00
-0.20
-0.40 |- o
060 [ 8
-0.80 |-

-1.00 L 1 L T P I S R S P L
0 500 1000 1500 2000 2500

Error in Prediction of C3G

Elevation (m)

Fig. 8. Error of SAW algorithm predicted fractional biomass of @rasses (6G) vs. elevation. The under-estimation og@& at low

elevations may be caused by errors in the station meteorological data. Over-estimation at higher elevations may come from applying a
single lapse rate of temperature with elevation to extrapolate low-elevation weather observations to data-sparse, high altitude regions or
from overestimation of soil water capacity in mountainous areas.

of temperature with elevation. Since the majority of the high-elevation temperatures favog Grass, use of the
low-elevation points with the greatest errorfig. 8 150 mm value would result in an over-prediction of
are from an area in Argentina identified with station C3G.

data that was about°® too high Piper and Stewart,

1996, error could also result from these warmer tem- 3.2. Results from comparison between the
peratures forcing an under-prediction of@& by the SAW hypothesis and the Collatz model

SAW algorithm. Soil moisture is strongly related to

the variation of observed4G with elevation Tieszen When GG values between 0.11 and 0.9 were com-
et al., 1979 suggesting another possible cause of the bined into one mixed class, the overall similarity be-
bias. The SAW algorithm assumes soil water storage tween the SAW hypothesis and tBellatz et al. (1998)

is 150 mm at all locations (se&ppendix A). How- model was 82%Table 5. Most of the similarity came
ever, it is likely that less water would be stored at from the SAW algorithmZ'2 = 21°C being close to
higher elevations, since there is usually less soil. Since the 22°C Collatz et al. (1998rossover temperature

Table 5
Comparison ofCollatz et al. (1998)rnd the SAW algorithm predictiofs
Collatz et al. category SAW algorithmsGP
All C4 (0.00-0.10) Mixed G/Cy All C3 (0.91-1.00)
0.10-0.30 0.31-0.50 0.51-0.70 0.71-0.90
All C4 1168 10 19 17 6 2
Mixed C3/Cy 561 249 332 291 189 38
All C3 34 8 23 98 254 2735

a Fourteen years of°1x 1° climate data Piper and Stewart, 1996vere used for both models.

b Numbers in boldface indicate agreement between the SAW algorithm and the Collatz model. A total of 6034 grid cells were examined;
with 4964 showing agreement and 1070 showing disagreement. Since, at the equator, each grid cell is approximately?] 2h@0kath
area of disagreement is 12—13 millionkm
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for quantum yields of photosynthesis. In the SAW al- forced into continuous competition withsQrasses,
gorithm, when’ Tx is always less than 2, the G favored by the warmer temperatures, resulting in low
growth window would never open resulting in an all values of predicted €. It is not known why the start
Cs3 grass predictionKig. 2). In addition, G grasses  of the G growing season should coincide with the
should not be present whéifxis always greater than  quantum yield crossover temperature.

the 21°C required for the opening of thes@rowth The apparent similarity could obscure important dif-
window (T2, Fig. 2). Without a cooler period before ferences between the SAW hypothesis and the Collatz
the opening of the gwindow, G grasses would be  model. First, the SAW algorithm resolved the mixed

Relative Biomass of C, Grass
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Fig. 9. Effects of climate change on the;/C4 grass biomass distribution in the United States predicted by the SAW hypothesis. The

top panel (a) shows predictions of the fractional biomass pfgtasses (6G) from the VEMAP historical climate datKittel et al.,

1995. The middle panel (b) shows SAW algorithm@ estimates produced for the climatic change scenario from the Canadian Climate
Centre—General Climate Model. This simulation reflects changed climate as differences in precipitation and temperature patterns alone
and no adjustment was made to the water use efficiencies in the SAW algorithm in response to eleyafBigeCGttom panel (c) shows
estimates of @G for the changed climate scenario after the water use efficiencies in the SAW algorithm were increased to account for
doubled CQ (Table 1.
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areas into a continuous value of@ for use in global
carbon models; the Collatz et al. model could not.
Second, the two algorithms differed at 1070 grid cells
covering an area of approximately 12—13 millionkm
(Table 5. Since the temperature limits were similar,
most of the differences would come from variation in
water availability.

3.3. Results of climate change simulations

In the first climate change simulation with the SAW
algorithm applied to the VEMAP historical climate
data, observed valuePdruelo and Lauenroth, 1996
showed an agreement with predictesZIFig. 99 that
was similar to that achieved with the global 1983-1996
climatic data Fig. 4). MAE andR? (results not shown)
were approximately the same.

Under the CCC-GCM climatic change scenario, the
SAW algorithm parameterized for no GOncrease,
predicted GG to strongly decrease in three major ar-
eas Fig. 9b. In the eastern USA and the central Great
Plains, increases in air temperatures caused decrease
C3G. In the western USA, decreases in wintertime
moisture storage reduced the water availability o C
grassesKig. 9b.

The third simulation, with the SAW algorithm pa-
rameterized for doubled CQshowed that increases
in the G WUE partially mitigated the predicted re-
duction in G grasses in the eastern USA and cen-
tral Great PlainsKig. 99. However, there was still an
overall decrease in predictedG compared téig. 9a
There was no mitigation by elevated @ the west-
ern USA Fig. 99 where reduced water availability
stymied any possible gains from increased WUE.

Global Climate Model predictions of climatic
change under doubled atmospheric L£L@ry, and
only one possible scenario was used. In addition,
the SAW algorithm is intentionally simplified to test
specific hypotheses. Consequently, these simulations
should not be considered rigorous predictions of
future G/C4 distributions, but rather point to how
changes in temperature and precipitation patterns can
impact the global distribution of 4G.

4. Conclusions

This study examined the SAW hypothesis which
stated that the relative fC4 grassland biomass in

J.C. Winslow et al./Ecological Modelling 163 (2003) 153-173

an area results from the partitioning of available wa-
ter by the preferred growing seasons afersus G
grasses. We did not directly test this hypothesis, but
examined the reasonableness of its predictions com-
pared to the vegetation surveys. Despite uncertainties
introduced by using gridded climate data and existing
vegetation point surveys, comparison of the vegeta-
tion studies with the 14-year averagg® predicted

by the SAW algorithm shows significant agreement
and gives a reasonable, global representation of aver-
age algorithm performance.

The substantial interannual variation in predicted
C3G raises several interesting questions. How fast does
C3G change and how many years of climate should be
considered when applying the SAW algorithm to cause
a turnover in photosynthetic type? Does the distribu-
tion of annual grasses follow an annual pattern esti-
mated by the SAW algorithm, while the distribution of
perennials changes more slowly over multiple years?
To answer these questions and improve the accuracy
of future analysis, further survey data, gathered with
Hlimate change in mind, is needed. In this case, data
on the year-to-year variation of biomass contributed
by each photosynthetic pathway along with detailed
weather information collected at the same location will
be more useful than simply the addition of more sites.

The simplified SAW algorithms were useful in ex-
amining the specifics of the SAW hypothesis. Their
simplicity reduced unplanned interactions among the
algorithm logic, initial conditions, and driving climatic
data. The SAW algorithm components, designed to
react to differences in the ratio of3Gnd G WUE
rather than the absolute values, permitted focus to be
placed on the broader functioning of the SAW hypoth-
esis rather than details of the WUE calculation. The
sensitivity analysis combined with global simulations
suggested that temperatures delineating the beginning
and end of the gand G growing seasonsT(, T2,

T3 andT4) were the most important input parameters
for the prediction of @G. More work onT1 andT4
is necessary to understand their variation with climate
and/or latitude and to identify reasons for apparent
over-prediction of @ grasses in the warmer areas.

Improved predictions of €5 might be made with
a complex ecosystem process model that attempts
complete, rigorous representations of inter-plant com-
petition for light and other resources, photosynthe-
sis, stomatal conductance, and a detailed hydrologic
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budget. However, greater improvement might come by patterns. For these simulations, we attempted to give
incorporating other, known influences to the distribu- the greatest reasonable advantage $@fasses with
tion of C3G. Ultimately, this is a data availability issue elevated CQ@ to ameliorate the effects of increasing
(Medlyn, 1999; Alexandrov et al., 20D2Influences temperature. However, the effects of temperature in
like herbivory, burning timing and frequency, and some areas and the effects of precipitation in other
possibly, soil type and moisture capacitachelet areas clearly dominated under the VEMAP scenario
et al., 1998, 2000; Collins et al., 1998; Riedo et al., used.
2000 could be incorporated into the SAW hypothesis,  Two other studies have examined this issue, at least
but their impact could not be evaluated until gridded in part, on smaller grassland areas. At a northern
global data sets of these variables are available. In mixed-grass prairie site in Saskatchewan, Canada,
addition, a more complete examination of the impacts Mitchell and Csillag (2000)used the CENTURY
of the climate change scenarios should include prob- model Parton et al., 1996to investigate the impacts
able climate change-induced changesTin T2, T3, of different climate change scenarios. They found
andT4 which will only become possible when a more that simply increasing atmospheric g@oncentra-
detailed record of g and G grassland phenology is tions had little effect on € grass productivity unless
available. precipitation was increased as well. They also investi-
Comparison of the SAW algorithm with th@ollatz gated the impacts of gradual warming over 200 years
et al. (1998)model revealed similarities in classifi- and found that its effects depended “partially on the
cation into the three broad categories (adl, Gixed, seasonal timing of that warming, but mostly on the
all Cy), but there were also significant differences in concurrent changes in moisture availabilitili(chell
the relative areas covered. The similarities also mask and Csillag, 2000p. 101). Another CENTURY-based
fundamental differences in the hypothesized mecha- model, ECOTONE Reters, 200R examined the in-
nisms underlying the two algorithms, quantum yield teraction between three potentially-dominant species
versus the relative efficiency in using seasonally avail- on a shortgrass steppe in New Mexico, USA by simu-

able water. In addition, the SAW algorithm resolved
the mixed class into a continuous value ofGCfor

lating recruitment, growth, and mortality processes of
individual plants. Peters found that the temporal parti-

use in climate change/carbon cycling models and the tioning of soil water was important to the dominance

Collatz model did not. A modification to the original

of C4 grasses.

Despite significant differences in design, both of
these models produced results that agree with ours. In
contrast to the SAW algorithm, which is designed to
simulate GG specifically from the ratio of simplified

Collatz approach using a ratio of months favoring C
to months favoring @ has been tried in order to pro-
duce a continuous value of3G in the mixed areas
(P.E. Thornton, personal communication). Although
this approach provides a continuousG; and, on av- WUE-based estimates ofs@nd G grass productiv-
erage, may produce an acceptabj&@stimate, itas-  ity, CENTURY is a general grass productivity model
sumes that only one grass grows at a time, and it doesthat simulates the cycling of water and nutrients (car-
not account for the impact of precipitation amounts or bon, nitrogen, phosphurous, etc.) through various lev-
the relative water use efficiencies during periods when els, or pools, in the soil-plant—atmosphere continuum.
the grasses grow simultaneously, and they do grow si- Like the SAW algorithm, but on a monthly time step,
multaneously Dickinson and Dodd, 19796 CENTURY determines potential photosynthetic pro-
The relative advantages of theg @&1d G photosyn- duction as an empirical function of temperature. This
thetic pathways in response to elevated atmosphericproduction is then limited by moisture, nutrient avail-
CO; and climatic change are important questions ability, and shading. Somewhat more sophisticated,
for conservation of native plant communities and en- ECOTONE uses CENTURY for its grass productivity
hancement of agricultural production. Our exercise module but also includes a daily soil water availabil-
with one climate change scenario and a simple algo- ity module along with functions simulating seedling
rithm suggests the benefits of elevated,@®C3 pho- recruitment and mortality processes.
tosynthesis may not be enough to offset the impacts Since it explicitly includes nutrient availability
of rising temperatures and changes in precipitation and shading to limit production, CENTURY is more
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generalized than the SAW algorithm. However, oper-
ating on a monthly time step with monthly average
climate data, it cannot capture all of the variation
in a precipitation-driven productivity pattern. De-
spite this, it pointed to the same result regarding
C3 versus G productivity as the SAW algorithm
did; that, when evaluated with realistic rainfall pat-
terns, moisture availability controls the final grass
production, even if nutrient availability and GQ@er-
tilization of C3 photosynthesis are included. It is not
a surprising result when you consider that, under

J.C. Winslow et al./Ecological Modelling 163 (2003) 153-173

Appendix A

A.1l. Water use efficiency component of
the SAW algorithm

On dayJ, the "WUEc, is estimated by dividing
the average photosynthetic rate by the average rate of
transpiration so that

€Ac,” ke,

J
WUEc = —F"F——2—
Cn gc, Jypdp-1

(A.1)

most conditions in a grassland, water is scarce and where the temperature-dependent photosynthetic rate

the number of real, good, growing days are limited.

Therefore, although our large-area, generic grass sim-

ulations or these two small-area simulations certainly
do not settle the issue of whether g@ertilization
will compensate for global warming, they do sug-
gest some intriguing possibilities and underscore
the importance of accurately representing the timing
and spatial distribution as well as the magnitude of
temperature and precipitation in scenarios of future
climate.

Considering the uncertainty introduced by the
variability of climate and observed data, the good
performance of the SAW hypothesis indicates that
a substantial portion, but not all, of the mechanisms
responsible for the spatial distribution oG were
included. Therefore, this study is a positive step to-
ward explaining how climate and grass physiology
may interact to determine the spatial distribution of
Cs versus @ biomass in grasslands.
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C3 grasses having an unrealistically high water use
efficiency, sogc, was increased to 270 mmoltas™*
(Table 1.

simulations under current concentrations
of atmospheric CQ chn for both G and G
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photosynthesis was calculated as (aftbornley and
Johnson, 1990

given by’ Tmean= 0.5( Tmax+ ’ Tmin). One millime-
ter of daily rainfall is assumed to be intercepted and
evaporated. Snow accumulates WhilBnean < 0°C

a exp(—a/’ Tyay)

1+ expb — ¢/ Tgay) + expld — q/” Tgay)

- () eolmg) -

m Tday

Coefficients inEq. (A.2) were modified to represent
both photosynthetic pathway§i§. 3). For G pho-
tosynthesis, the coefficients a, b, c, d, g, 8, m, h,
andés are 26 x 10, 7374.223, 9.834366, 2965.76,
62.36542, 18357.36,8x 101, 20, 8041.181, and 0.2,
respectively. For gphotosynthesis they are2x 10°,
6516.996, 17.18914, 5610.352, 91.40048, 28467.45,
1.2 x 10°, 20, 6148.493, and 0.2, respectively.

For simulations under doubled atmospheric CO
stomatal conductances for bothg @nd G grasses
were reduced by 10%Téble ). The average pho-
tosynthetic rate was increased 20% fos @rasses.
The temperature response of Ghotosynthesis was

J

kc,

(A.2)

changed to match, as closely as possible, the curve pro-

duced byLong (1991) which shows an increase isC
photosynthetic rate at all temperatures, along with an

and melts when Tynean > 0°C. Before the start of
the G growth window, rain and snowmelt are added
to the water stored in the soil. Evaporation and sub-

limation remove water from the soil and snowpack,
respectively (Vinslow, 1999. The maximum soil stor-
age is assumed to be 150.0 ma Liquid water in
excess of the maximum soil storage is removed as
runoff. The soil water budget is initialized by first set-

ting soil storage and snowpack to 0 and calculating
the water budget over the wintertime to the start of the

C3 growth window. At the start of the £growth win-

dow, /Wat is set to equal the stored soil water, which
is used by the ggrasses. In most cases this amount
is small, because in temperate grasslands, most of the
precipitation falls during the growing seasdrigley,
1992. For each day thereaftef\Wat is only the net
daily rainfall, if any.
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