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CLASSIFICATION OF SCAB– AND OTHER MOLD–DAMAGED

WHEAT KERNELS BY NEAR–INFRARED

REFLECTANCE SPECTROSCOPY

S. R. Delwiche

ABSTRACT. Scab (Fusarium head blight) is a disease that causes wheat kernels to be shriveled, underweight, and difficult to
mill. Scab is also a health concern because of the possible concomitant production of the mycotoxin deoxynivalenol. Current
official inspection procedures entail manual human inspection. A study was undertaken to explore the possibility of detecting
scab–damaged wheat kernels by a near–infrared (NIR) diode array spectrometer. Wheat kernels from three categories (sound,
scab–damaged, and mold–damaged) were visually inspected by and furnished by the USDA Grain Inspection, Packers, and
Stockyards Administration (GIPSA). The reflectance spectrum of each intact kernel was collected at 6–nm increments over
a 940 to 1700 nm region. Exhaustive searches of the best combination of individual wavelengths, best difference of
wavelengths, best ratio, and combinations thereof were performed on a set of 100 kernels from each of the three categories.
The best modeling classification occurred for precisely aligned kernels using a combination of kernel mass and the difference
in log(1/R) at two wavelengths, 1182 and 1242 nm. When applied to a test set, the classification model correctly identified
the intended category with 95% accuracy. The most difficult to classify conditions were scab–damaged vs. mold–damaged
and mold–damaged vs. sound. When scab–damaged and mold–damaged kernels were combined into one category, the overall
accuracy for a two–category (sound vs. damaged) classification model was between 95% and 98%, depending on the kernel
orientation scheme and inclusion of kernel mass. The achieved accuracy levels demonstrate the feasibility of using NIR
reflectance spectroscopy with as few as two wavelengths to assist in wheat grading and commercial sorting.

Keywords. Fungi, Grading, Near–infrared, Scab, Spectroscopy, Wheat.

usarium head blight, also known as scab, is a fungal
disease caused by species of Fusarium (particularly
F. graminearum) that occur in small grains. In the
U.S., it is most problematic in wheat (hard red

spring, durum, and soft red winter classes), barley, oats, and
corn. In wheat, the condition is caused by humid conditions
during stages of flowering or early kernel development,
which causes the kernels to be shrunken, chalky white, or
pink in appearance. Fusarium species may produce a
metabolite  called deoxynivalenol (DON), also known as
vomitoxin, which is toxic to non–ruminant animals. The U.S.
Food and Drug Administration (FDA) advisory–level
specification for DON in finished wheat products (e.g., flour,
semolina) destined for human consumption is 1 ppm, with
higher allowable levels (5 to 10 ppm) in livestock and poultry
feeds. Chemical tests for DON level concentration are
typically based on HPLC or immunoassay (ELISA), for
which commercial test kits are available. However, what is
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not available is a machine vision or spectroscopy–based
system that can mimic the visual analysis performed by the
grain inspector for wheat kernel damage. Although scab
damage does not necessarily indicate the presence of DON,
it is considered a physical defect that can result in the
downgrading of wheat and barley during official inspection.

Currently, USDA Grain Inspection, Stockyards, and
Packers Administration (GIPSA) inspectors examine sam-
ples for scab and other forms of damage (i.e., heat, frost,
immaturity, insect, sprout, black tip fungus, mold) on wheat
that is exported from the U.S. Inspectors must manually pick
through a 15–g sample to separate the scab–damaged from
non–scab damaged kernels. Scab, along with other forms of
damage, can lower the official grade, starting with a
threshold of 2% by weight, which reduces the grade from
No. 1 to No. 2. Grade is progressively reduced (to No. 5) with
increase in level of damaged kernels until the weight
concentration reaches 15%, whereupon a lot is assigned the
grade of sample grade (USDA–GIPSA, 1997). Additionally,
sales contracts may specify more stringent criteria for the
maximum tolerable levels of scab–damaged kernels. Inspec-
tions are labor intensive and can typically take more than
10 minutes per sample. The USDA is currently seeking new
methods for grain inspection that are rapid and objectively
based.

Much of the research on instrumentation for wheat kernel
analysis has been based on digital image analysis (Neuman
et al., 1987; Shatadal et al., 1995a, 1995b; Symons and
Fulcher, 1988; Zayas et al., 1985, 1986). Most of this research
was based on extraction of kernel morphological features for
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the purpose of identifying non–wheat species from wheat or
for classifying wheat. Sapirstein (1995) reviewed the litera-
ture on image analysis of grain through the mid 1990s.
Detection of diseased kernels by image analysis is a
relatively recent endeavor, with some published works on
corn (Ng et al., 1998) and wheat (Ruan et al., 1998; Luo et al.,
1999) available. In Ruan’s study, neural networks were used
on color and textural features of bulk samples to develop a
model for wheat scab detection. Results indicated detection
of visibly scab–damaged kernels by machine was equivalent
to or better than an expert human panel.

Preliminary work by Williams (1997) demonstrated
moderate success with NIR modeling of DON in bulk
samples. Of the numerous studies that have used near–in-
frared (NIR) spectroscopy on single wheat grains, such as for
protein content (Delwiche, 1995, 1998), wheat class (Del-
wiche and Massie, 1996; Dowell, 1997, 1998; Wang et al.,
1999), insect infestation (Chambers and Ridgeway, 1996;
Dowell et al., 1998), vitreousness (Dowell, 2000), and
hardness (Delwiche, 1993), a very limited number have
examined fungal disease. Pearson et al. (2001) were able to
classify single corn kernels for low and high concentrations
of aflatoxin, based on either NIR reflectance or transmit-
tance. Similarly, Dowell et al. (2002) demonstrated that such
classification modeling is also possible for detection of
fumonisin in corn. The only published work on single kernel
wheat scab detection by NIR appears to be that by Dowell et
al. (1999), who used partial least squares regression to relate
the spectra (400 to 1700 nm) to DON concentration, as
measured by HPLC.

The objective of the current study was to determine the
feasibility of using NIR reflectance to classify single wheat
kernels according to their presence or absence of wheat scab,
as identified by the federal inspector. An additional condition

of damaged wheat, identified by the inspector as “mold–
damaged” and often a precursor to the scab condition, was
also studied in its context to the sensitivity of NIR to
differentiate sound and scab–damaged wheat.

MATERIALS AND METHODS
WHEAT

Hard red spring wheat kernels were obtained from the
USDA–GIPSA Technical Services Division (Kansas City,
Mo), having originated as several commercial samples that
were submitted to GIPSA for official inspection. Each kernel
was visually examined by the GIPSA inspectors of the Board
of Appeals and Review and categorized into one of three
categories: sound, mold–damaged, and scab–damaged. This
procedure is routinely performed on wheat samples in order
to assign class and grade. Although mold and scab are both
considered to be cases of damage for which wheat grade is
detrimentally  affected, the mold condition, which is often
caused by Fusarium, is physically less severe than the scab
condition. Scab, on the other hand, is exclusively attributed
to Fusarium and is visually identified as such by the inspector
when a kernel has a very noticeable chalky, shriveled
appearance.  A minimum of 138 kernels per category was
used in single kernel analysis. Kernel mass (�0.01 mg) was
measured within a week after spectral measurement.

EQUIPMENT
A Zeiss MCS511 diode array spectrometer, consisting of

a thermoelectrically cooled 128–element indium gallium
arsenide array (nominal wavelength range = 940 to 1700 nm),
was controlled by the equipment manufacturer’s software
operating within the Grams/32 (Galactic Industries, Salem,

Figure 1. Schematic of single kernel optical system.
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N.H.) spectral analysis software. Kernels were illuminated
by an external illumination assembly (Control Development,
South Bend, Ind.) that consisted of two opposing 5 V, 150 mA
tungsten filament lamps with gold–coated parabolic reflec-
tors. These lamps were oriented 45� from the horizontal at a
distance of approximately 5 mm from the surface of the
kernel. A 600 �m diameter fiber, oriented directly above the
kernel (90� with respect to the horizontal) and positioned
approximately  5 mm from the kernel surface, conveyed
diffusely reflected light from the kernel to the diode array. A
schematic of the system is shown in figure 1.

PROCEDURE
The three categories were handled separately during

spectral data acquisition. Within each category, the kernels
were randomly drawn and placed on any of the 49 (7 rows �
7 columns) milled slots of a custom–machined Bakelite plate
that was pin–mounted to a two–directional motorized stage
(Velmex, Inc., Bloomfield, N.Y.). The size of each slot was
sufficiently large to accommodate a wheat kernel, such that
the kernel’s upper surface projected approximately 1 mm
above the surface of the plate. The plate, including slots, was
painted flat black to reduce specular reflection. Before
collecting spectra on each row of seven kernels, a reference
spectrum was collected from a 7–mm thick piece of sintered
polytetrafluoroethylene  (Labsphere, Sutton, N.H.) of
approximately  98% absolute reflectance throughout the
wavelength region examined. For each kernel, the stage was
positioned to align the kernel’s centroid with the center of the
illumination assembly. With an integration time of 6.8 ms,
32 spectra were co–added, and then averaged before the
log(1/R) spectrum was stored in a computer file. To
determine the sensitivity of kernel orientation on classifica-
tion ability, each kernel was scanned in two configurations.
For the first configuration (hereafter, the precise orientation),
kernels were placed crease down with the germ end of the
kernel always to one side. For the second configuration
(hereafter, the random orientation), kernels were placed
randomly in the milled slots, though by the geometric
similarity between kernel and slot, the long axis of the kernel
was always in line with that of the slot. Separate models were
developed for the two types of kernel orientation. Each kernel
was subsequently dried (130�C, 19 h), and its dry weight was
recorded for moisture content determination.

CLASSIFICATION MODELING
The raw, stored spectral data, which possessed wave-

length differences between adjacent points ranging from 5.85
to 6.23 nm were adjusted by linear interpolation to produce
a uniform 6.00–nm wavelength spacing. Because of the
relatively poor quality of the readings below 1000 nm, only
points in the 1002 to 1704 nm region (118 points total) were
used in the modeling procedures. The first 100 samples
within each category were used as the cross–validation set.
The remaining samples (n = 38, 43, and 96 for scab, mold,
and sound categories) became the test set. Modeling
procedures fell within two general types: one–basis and
three–basis. These are separately described below.

For the one–basis modeling, linear discriminant analysis
using the SAS (SAS Institute Inc., Cary, N.C.) procedure
DISCRIM was applied with one–sample–out cross–valida-
tion. It was assumed that the independent variables of each

model were multivariate normally distributed in each
category (scab, mold, and sound) and that the covariance
matrices of the categories were identical, thus allowing for
the pooling of the covariance matrices across categories
(Næs et al., 2002). With the application of Bayes’ theorem,
a sample was assigned to the category whose center in
n–dimensional space was closest to the sample, which is
analogous to selecting the category with the corresponding
highest posterior probability for that sample. To maintain
model simplicity, most models consisted of one or two
independent variables; however, as many as four wave-
lengths were used to form an independent variable. Using Ax
to represent log(1/R) at wavelength x, the following model
structures were examined during cross–validation:

A1, A2

A1, A2, A3, A4

A1/A2

A1 – A2

(A1 – A2)/A3

A1/(A2 – A3)

(A1 – A2)/(A3 – A4).

Before each cross–validation trial, the SAS procedure
STEPDISC was used to perform an exhaustive search of all
combinations of the (118) wavelengths to determine the
optimal simple difference (A1 – A2) and simple quotient
(A1/A2) structures (6,903 possible combinations). The
A1/(A2 – A3) structure was formed by fixing A1 at the single
best wavelength determined from the A1, A2 model and then
allowing the denominator difference to vary in search of an
optimum structure (6,903 searches). Likewise, the (A1 –
A2)/A3 structure was formed by fixing the numerator at the
best difference [from the (A1 – A2) structure] and then
allowing for variation of the A3 denominator value
(128 searches). For the ratio of differences structure, [(A1 –
A2)/(A3 – A4)], wavelengths at 11 locations (1002, 1104,
1200, 1302, 1374, 1386, 1398, 1416, 1470, 1566, and
1668 nm) plus a dummy wavelength for which A2 = 0 or A4
= 0 (to permit single–value numerators or denominators)
were used in an exhaustive search (4,290 possible combina-
tions). The 11 locations were selected by visually examining
the log(1/R) spectra and selecting the points that were at or
near a local maximum or minimum, a baseline region (1080
to 1120 nm), or an extended sloped region (1350 to 1450 nm).
Each best combination was subsequently subjected to
cross–validation.  Additionally, kernel mass by itself and in
combination with the best (A1 – A2) was examined. Lastly,
a linear discriminant analysis model utilizing the scores from
the best four principal components (as determined by
STEPDISC) was examined. Because the principal compo-
nents were selected based on their collective ability to
differentiate the samples into the three classes, these
components were not necessarily in sequential order of their
contribution to their explanation of overall spectral variance
(e.g., the four PC model was not limited to PCs 1 through 4).

Three–basis modeling was performed using a SIMCA
(soft independent modeling of class analogy) approach. A
principal component analysis of each category’s spectra was
used to reduce the spectral dimension to 2, 4, or 6 compo-
nents, whereupon the category’s model was used to calculate
the distance, in units of Mahalanobis distance, between an
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“unknown” sample and the model center. For the circum-
stance in which the sample was known to belong to the same
category as the category whose model was under develop-
ment, the distance was evaluated as that between the sample
and the center of the model developed from the n – 1 other
samples in the category. For the other circumstance (that is,
when a sample did not belong to the category whose model
was being used), the distance between model center and
sample was evaluated in the same manner as when the sample
was from the test set or was a true unknown. SIMCA analysis
was performed using commercial software (PLSPlus, Galac-
tic Industries, Salem, N.H.).

RESULTS AND DISCUSSION
Kernels infected with mold or scab were generally lower

in mass than sound kernels, as shown by cross–validation set
averages of 15.0, 25.9, and 36.6 mg for the scab, mold, and
sound kernels, respectively. Aside from the potential to
produce DON, Fusarium infection causes reduction in test
weight and specifically kernel mass by its colonization of the
seed (Cunfer, 1987). A model that used mass alone produced
a cross–validation accuracy of 86.0% and a test set accuracy
of 82.6% (table 1). The log(1/R) spectra of the single kernels
from each of the three categories were similar in overall
shape, as shown by the 100–kernel averages for each
category (fig. 2). The most noticeable difference among
categories is the overall level of spectral absorption, with
sound kernels possessing higher log(1/R) values, on average,
throughout the entire wavelength region. However, the
within–category spectral variation, as depicted by the �1�
envelope surrounding each average spectrum in figure 2, was
sufficiently large to cause spectral overlap between catego-
ries, thus precluding the use of a single–wavelength classifi-
cation model. The exhaustive search of the best two
wavelengths for the condition of precise kernel orientation
resulted in the selection (in order of importance) of 1470 and

1332 nm, which yielded a cross–validation accuracy of
83.7% and a test set accuracy of 88.9%. The first wavelength
corresponds to the region of greatest absorption, while the
second wavelength is at the beginning of a monotonically
increasing broad region that culminates near the first
wavelength. Greater spectral absorption of sound kernels
throughout the entire wavelength region is attributed to a
combination of greater kernel mass (hence, greater optical
density) and a higher moisture content (11.4%, 9.9%, and
10.2%, dry basis averages, for the sound, mold, and scab
cross–validation set categories, respectively). Inclusion of
two additional wavelengths (1320 and 1404 nm) resulted in
the improvement of the cross–validation accuracy (89.0%);
however, this was to the detriment of the general model, as
seen by a decline in test set accuracy to 86.3%.

Of the other fixed wavelength models examined (table 1),
the best classification accuracies were obtained with a model
that was the difference in two log(1/R) values at 1182 and
1242 nm [log(1/R)� = 1182 nm – log(1/R)� = 1242 nm, hereafter
designated as (A1182 – A1242)], which is mathematically
equivalent to minus the logarithm of the ratio of the detected
energies from these respective wavelengths. In this case, the
cross–validation and test set accuracies were 91.3% and
92.7%, respectively. Spectral explanation for the selection of
these two wavelengths is difficult because they lie on
opposite sides of a broad absorption band that has maximum
absorption near 1200 nm. Generally, this difference is
smallest for scab–damaged kernels, intermediate for mold–
damaged kernels, and greatest for sound kernels (fig. 3).
When this wavelength difference was combined with kernel
mass, model accuracy improved even further (95.7% and
95.0% for cross–validation and test set accuracies, respec-
tively). This combination produced the highest accuracy of
all models examined. A breakdown of the predictions by
category for this model [(A1182 – A1242), kernel mass] is
shown in table 2. From this table, it is seen that misclassifica-
tions were usually between the scab and mold categories.

Table 1. Classification accuracies of linear discriminant analyses.[a]

Precise Orientation Random Orientation

Model[b]
λ1, λ2, λ3, λ4

(nm)

Cross
Validation[c]

(%)
Test[d]

(%)
λ1, λ2, λ3, λ4

(nm)

Cross
Validation

(%)
Test
(%)

Mass –– 86.0 82.6 –– 86.0 82.6

A1, A2 1470, 1332 83.7 88.9 1470, 1290 84.3 81.3
A1, A2, A3, A4 1470, 1332, 1320, 1404 89.0 86.3 1470, 1290, 1338, 1194 91.3 65.4

A1/A2 1314, 1296 83.7 80.7 1314, 1290 83.3 64.8
A1 – A2 1182, 1242 91.3 92.7 1224, 1218 84.3 88.7

(A1 – A2), mass 1182, 1242 95.7 95.0 1224, 1218 92.3 88.9
(A1 – A2)/A3 1182, 1242, 1002 68.3 75.7 1224, 1218, 1212 67.0 72.3
A1/(A2 – A3) 1470, 1386, 1374 81.0 83.8 1470, 1680, 1566 75.0 74.7

(A1 – A2)/(A3 – A4) 1398, 1374, 1416, 1302 76.7 72.5 1398, 1386, 1470, 1302 76.3 71.2
PCA PCs 1, 2, 7, 3 89.3 86.4 PCs 1, 2, 3, 6 84.7 86.4

SIMCA PCA 2–factor 85.3 85.8 2–factor 83.3 83.7
SIMCA PCA 4–factor 86.3 85.6 4–factor 77.3 74.8
SIMCA PCA 6–factor 86.7 83.6 6–factor 82.0 73.4

[a] Each value is the average of the percentages of correctly classified kernels belonging to three categories: scab–damaged, mold–damaged, and sound.
[b] Models consisting of more than one term have terms separated by a comma. Some single–term models actually consist of more than one wave-

length, as noted by the mathematical expression (difference, ratio, or combination of both) displayed. Ax refers to log(1/R) at a wavelength specified
in the adjoining column; PCA = principal component analysis; and SIMCA PCA = soft independent modeling of class analogy applied to the princi-
pal components scores of each category.

[c] Cross–validation set consisted of 100 kernels from each of the categories: sound, mold–damaged, and scab–damaged.
[d] Test set consisted of 96 sound, 43 mold–damaged, and 38 scab–damaged kernels.
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Figure 2. Mean spectrum � one standard deviation envelope for each
category of cross–validation samples (n = 100 spectra per category): A =
scab, B = mold, C = sound.

Misclassified sound kernels were assigned to the mold
category, but never to the scab category. Thus, the behavior
of the classification model was in keeping with the human
inspector’s judgment � that mold–damaged kernels often
arise from Fusarium infection that is not so severe as to be
labeled as scab–damaged. A plot of (A1182 – A1242) vs. kernel
mass of the cross–validation samples is shown in figure 4,
with kernels that were erroneously classified during the
cross–validation procedure indicated by filled–in symbols.
Misclassified kernels were congregated at two places in the
graph, with each place lying in an interface between two
established categories: scab–mold or mold–sound.

Figure 3. Two–wavelength spectral difference [log(1/R)� = 1182 nm –
log(1/R)� = 1242 nm] of the precisely oriented cross–validation samples (n =
100 kernels per category, contiguously arranged).

Table 2. Classification results for samples in cross–validation and test
sets precise kernel orientation. Model: A1182 – A1242, kernel mass.

Actual
Number of Kernels Assigned to Category[a]

Actual
Category Scab Mold Sound Total

Cross–validation

     Scab 97 3 0 100
     Mold 5 94 1 100
     Sound 0 4 96 100
     Total 102 101 97 300

Test

     Scab 37 1 0 38
     Mold 4 39 0 43
     Sound 0 3 93 96
     Total 41 43 93 177
[a] Diagonal values (in bold) represent correct assignments.

Figure 4. Plot of two–wavelength spectral difference [log(1/R)� = 1182 nm –
log(1/R)� = 1242 nm] versus kernel mass of the precisely oriented cross–val-
idation samples (n = 100 kernels per category: scab, mold, sound). Kernels
that were misclassified (by the model that used these terms) during cross–
validation are indicated as filled–in symbols. True category is indicated by
symbol shape. Misclassification never occurred between scab and sound
kernels.
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WAVELENGTHS: THEIR RATIOS OR DIFFERENCES VS.
PRINCIPAL COMPONENTS

A four–factor principal component model, in which the
scores from PCs 1, 2, 7, and 3 (as determined by the stepwise
procedure in SAS to be most useful in distinguishing the
categories) were used in determining the linear discriminant
function, achieved a cross–validation accuracy of 89.3% and
a test set accuracy of 86.4% (table 1). These values are
actually lower than the accuracies of the best wavelength
difference model, (A1182 – A1242). Thus, reasonably high
classification accuracy does not require the collection of
reflectance readings from a broad wavelength region (1000
to 1700 nm) followed by spectral dimension reduction
through PCA. Instead, a less expensive instrument consisting
of two interference filters could ostensibly be used to classify
scab–damaged,  mold–damaged, and sound wheat kernels.

SIMCA VS. ONE–BASIS PCA
Accuracies of the 2–, 4–, and 6–factor SIMCA PCA

models ranged from 85.3% to 86.7% for the cross–validation
set, and from 83.6% to 85.8% for the test set (table 1).
Interestingly, the 6–factor model, while demonstrating the
greatest of the SIMCA PCA cross–validation set classifica-
tion accuracies, had the lowest test set accuracy. Thus, this
tendency for overfitting as the number of factors increases
suggests that the 2–factor model was optimal for a SIMCA
modeling approach; however, it was still not as accurate as
the simpler 2–factor, one–basis PCA linear discriminant
function model.

EFFECT OF KERNEL ORIENTATION
Classification accuracies for all model structures that

utilized spectra of precisely oriented kernels are also shown
for randomly oriented kernels in table 1. Generally, classifi-
cation accuracy declined for randomly oriented kernels, as
seen by the fact that test set accuracies of random orientation
models were always less than or equal to their corresponding
values of the precise orientation models. Some of the
wavelengths identified during the stepwise selection proce-
dures for the randomly oriented kernel spectra were the same
as those for the precisely oriented kernel spectra. For
example, the region of highest absorption (1470 nm) was
chosen for inclusion in the best two–wavelength and
four–wavelength models, regardless of kernel orientation.
Similarly, three principal components (PCs 1, 2, and 3) of the
four–component PCA models were common between orien-
tation types, with the models yielding the same test set overall
accuracy (86.4%). As with the precise orientation models,
the best random orientation model, with a test set accuracy

of 88.9%, was that formed from the difference of two
wavelength absorptions (A1218 – A1224) combined with
kernel mass, although the model that used the same
absorption difference, but without kernel mass, had nearly
the same accuracy (88.7%). Unlike the precise orientation
model, the wavelengths chosen to form this difference
accentuate  the slope of a broad band, whose peak is near
1200 nm. A breakdown of the best random orientation model
by category is shown in table 3. Similar to the results for
precise orientation, classification error rarely arose from
confusion between scab and sound kernels. Rather, misclas-
sifications were typically between scab and mold categories
or between mold and sound categories.

TWO–CATEGORY CLASSIFICATION

Although official inspections result in the separation of
mold–damage and scab–damage, these categories are even-
tually combined when wheat grade is determined. Further,
commercial  processors are likely to be concerned with
retaining the sound kernels, irrespective of the nature of
damage of the non–healthy kernels. Therefore, in a short
series of modeling trials (patterned after the procedures
described earlier) whose results are described in table 4, the
mold– and scab–damaged categories were combined into one
category designated as “damaged.” Using two of the most
effective model structures from the three–category model-
ing, that is (A1 – A2), with and without kernel mass,
cross–validation accuracy averages ranged between 96.0%
and 98.0%, depending on orientation scheme and whether
kernel mass was included in the model. Test set accuracies,
ranging from 94.6% to 98.4%, were also very high.
Interestingly, for the random orientation spectra, the same

Table 3. Classification results for samples in cross–validation and test
sets random kernel orientation. Model: A1224 – A1218, kernel mass.

Actual
Number of Kernels Assigned to Category[a]

Actual
Category Scab Mold Sound Total

Cross–validation

     Scab 92 8 0 100
     Mold 7 92 1 100
     Sound 0 7 93 100
     Total 99 107 94 300

Test

     Scab 36 2 0 38
     Mold 8 35 0 43
     Sound 0 9 87 96
     Total 44 46 87 177
[a] Diagonal values (in bold) represent correct assignments.

Table 4. Classification accuracies of linear discriminant analyses two–category (sound vs. damaged) models. [a]

Precise Orientation Random Orientation

Model[b]
λ1, λ2
(nm)

Cross
Validation[c]

(%)
Test[d]

(%)
λ1, λ2
(nm)

Cross
Validation

(%)
Test
(%)

Mass –– 89.0 90.5 –– 89.0 90.5

A1 – A2 1698, 1362 97.5 98.4 1224, 1218 96.0 94.6
(A1 – A2), mass 1698, 1362 98.0 98.4 1224, 1218 96.2 96.8

[a] Each value is the average of the percentages of correctly classified kernels belonging to two categories: damaged and sound.
[b] Model wavelength structure is explained in footnote [b] of table 1.
[c] Cross–validation set consisted of the same kernels from the three–class cross–validation set. The original scab–damaged and mold–damaged categories

were combined to form the damaged category of the present table (100 sound kernels, 200 damaged kernels).
[d] Test set was formed in the same manner as the cross–validation set (96 sound kernels, 81 damaged kernels).
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Figure 5. Plot of two–wavelength spectral difference [log(1/R)� = 1218 nm –
log(1/R)� = 1224 nm] versus kernel mass of the randomly oriented test set
samples (n = 96 sound kernels, 81 damaged kernels). Kernels that were
misclassified (by the two–category model that used these terms) are indi-
cated as filled–in symbols. True category is indicated by symbol shape.

wavelength difference (A1224 – A1218) that was determined
as optimal in three–category modeling was also selected in
two–category modeling. The application of a model using
this difference and mass is shown in figure 5, in which one
damaged and five sound kernels were incorrectly classified,
yielding an average accuracy of 96.8%. Although the
accuracy improved slightly (to 98.4%) with precise orienta-
tion, the high level of accuracy with random orientation,
which incidentally was 94.6% when kernel mass was
excluded, suggests the feasibility of a high output commer-
cial sorting instrument.

CONCLUSIONS
The use of NIR reflectance for the sorting of individual

wheat kernels according to their state of health (scab–dis-
eased, mold–diseased, and sound) appears feasible, with
classification accuracies as high as 95%. Simple wavelength
difference models, (A�1 – ���), combined with kernel mass,
were found to be very effective at classification. Thus, the
detection of mold or scab damage on wheat kernels by NIR
reflectance can be of benefit to not only the wheat inspector,
but also to the milling industry where the use of commercial
sorters (e.g., ScanMaster II, Satake USA, Houston, Texas)
can be used to cull individual wheat kernels that could
otherwise contaminate grain lots at levels of DON exceeding
FDA advisory levels, although not at such a high concentra-
tion as to be detected by bulk sample NIR analysis.
Classification accuracy is enhanced with the consistent
orientation of the kernel; however, even with random kernel
orientation,  accuracy was nearly 90%. The use of full
wavelength range, mathematically condensed (by principal
component analysis) spectral data did not improve classifica-
tion accuracy. Further, a three–basis principal component
decomposition and classification model, such as that ob-
tained by implementation of a SIMCA design, did not offer

any advantages over a one–basis model. Combining the
mold–damaged and scab–damaged kernels into one category
and developing a two–wavelength, with or without kernel
mass, two–category (sound vs. damaged) model resulted in
accuracies of 95% and higher for conditions similar to
commercial  sorting.
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