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The past decade has seen significant advances in the field of innexin biology, particularly in the
model invertebrate organisms, the nematode Caenorhabditis elegans and the fly Drosophila melano-
gaster. However, advances in genomics and functional techniques during this same period are ush-
ering in a period of comparative innexin biology. Insects are the most diverse metazoan taxa in
terms of species number, as well as in developmental, physiological, and morphological processes.
Combined with genomics data, the study of innexins should rapidly advance. In this review, we con-
sider the current state of knowledge regarding innexins in insects, focusing on innexin diversity,
both evolutionary and functional. We also consider an unusual set of innexins, known as vinnexins,
that have been isolated from mutualistic viruses of some parasitoid wasps. We conclude with a call
to study insect innexins from a broader, evolutionary perspective. Knowledge derived from such
comparative studies will offer significant insight into developmental and evolutionary physiology,
as well as specific functional processes in a taxon that has huge biomedical and ecological impact
on humans.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Gap junctions and their structural genes have been identified in
nearly all metazoan taxa. In the 1980s, connexin genes were iden-
tified as the molecular basis for gap junctions in rats and other
mammals [1,2], although numerous studies failed to identify conn-
exin genes in invertebrates such as the nematode Caenorhabditis
elegans and the fly Drosophila melanogaster. Genetic screens and
heterologous functional studies with these two model inverte-
brates identified the innexin genes and confirmed that they form
gap junctions [3,4]. Sequence analyses later identified genes that
were similar to innexins in chordate genomes, termed pannexins
[5]; subsequently, phylogenetic analyses have supported that
innexins and pannexins are evolutionarily homologous, supporting
their evolutionarily common origin, while connexins are unrelated
[6–8].

Insects (and the remainder of the phylum Arthropoda) demon-
strate incredibly diverse structure and function. Insects initially
appear in the fossil record approximately 400 million years ago
[9], and arthropods more than 525 million years ago [10].
Arthropods account for almost 85% of animal species described
[11], and exhibit a wide range of morphologies, physiologies, and
niche inhabitance. Insects alone account for more than 75% of
known metazoan species [12], and exhibit tremendous morpholog-
ical diversity, ranging from major variations on the insect body
plan, to incomplete and complete metamorphosis (that is, minor
to major morphology differences through ontogeny), to subtler
changes including polyphenisms [13,14]. Insects colonize, inhabit,
and alter essentially all niches on Earth, with the exception of the
deep ocean, and as such demonstrate a wide range of physiological
adaptations. They (particularly flies, or the Diptera) also exhibit
faster genomic divergence rates than mammals and other verte-
brates [16]. Innexins and gap junctions have been hypothesized
to play major roles in contributing to the morphological and phys-
iological variation [15], although to date little systematic analysis
examining this relationship has been performed in this major tax-
on. Rather, the overwhelming majority of work in insects on innex-
ins and gap junctions has been performed in D. melanogaster, due to
the genetic, genomic, and molecular tool chest available for this
model organism. Given the long evolutionary history, the breadth
of morphological and physiological diversity, and the rate of gen-
ome evolution, our current understanding of the diversity of insect
innexins is likely a very limited representation of the diversity that
is present. Recent work in numerous non-model insects supports
this observation [17–22].
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Fig. 1. Phylogenetic tree of conceptual Innexin and Pannexin translation products
demonstrates phylum-specific diversification of the gene family. Innexin and
pannexin sequences were downloaded from Genbank. Innexins were analyzed
from phyla included Arthropoda (insects), Annelida (leech), Nematoda, Mollusca,
and Cnidaria (Hydra). Pannexins representing mouse, rat, and human were
included. Conceptual translated products were aligned using MUSCLE and a
Neighbor-Joining tree created and visualized in Unipro UGENE. Innexins form
phylum-specific clades, supporting gene diversification following, rather than
preceding, diversification of phyla.
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Beyond simple diversity, there are other reasons to take a com-
parative approach to studying insect innexins. As stated, insect spe-
cies, morphological, and even genomic diversity outstrips that of
other phylogenetic lineages. The i5K initiative, which proposes to
leverage community resources to sequence and annotate the gen-
ome of 5000 insect species representing the breadth of insect bio-
diversity [23], will generate tremendous amounts of genomic data.
These data will facilitate a range of comparative genomics projects,
and eventually comparative functional genomics. Relevant to
innexins, this project initially will facilitate identification of the
genomic complement of insect innexins; that is, the increasing
availability of genomic sequences will permit the identification of
the core innexin genes of insects. In parallel, genome sequences will
permit identification of genomic novelty in the innexin gene family
– sequences that exist in certain lineages and not in others. As the
complement of innexins is determined for insect lineages, charac-
terization studies will permit inferences to be drawn regarding
the role of Innexins in functional diversification.

Currently, the insect innexin field is dominated by knowledge
and studies in D. melanogaster. Eight Drosophila innexin loci have
been isolated and transcript patterns analyzed through develop-
ment [24], with reverse-genetic approaches allowing targeted
analysis of Innexin function. A subsequent section of this review
briefly will consider knowledge regarding function of innexin
orthologues, recognizing that although the majority of these data
stem from Drosophila, there is still much to learn from this model
insect. But, the i5K project will greatly expand the possibilities for
functional genomics, beyond Drosophila, in addition to evolution-
ary genomics. There is tremendous heterogeneity across insect
taxa in regards to manipulability for functional studies, including
logistics (e.g., rearing), tool development, and biological suscepti-
bility to manipulation. For example, RNAi functions well, if in var-
ied fashion, in Diptera (flies), Coleoptera (beetles), and Isoptera
(termites) [25,26], but generally very poorly in Lepidoptera (moths,
butterflies) [27]. As genomic resources relative to innexins increase,
organisms that are more amenable to (or interesting for) functional
studies will be identified. This will permit comparative functional
studies, allowing the development of insight into conservation
and divergence of innexin orthologues, their interactions with cel-
lular partners, and so forth.

In this review, we will discuss the current state of understand-
ing regarding the phylogenetic pattern of insect innexins relative to
other innexin lineages. From this, we infer what appears to be the
basal complement of innexin genes in insects. From there, we iden-
tify what appear to be unique clades of insect innexins. In consider-
ing these innexin clades, we briefly review the roles associated with
Innexins, particularly in considering the potential for conservation
and divergence within insect evolutionary lineages. Finally, we dis-
cuss innexin homologues within the Polydnaviridae, a family of
mutualistic insect viruses. Together, these data point to a rich fu-
ture for innexin work, promising many exciting insights into both
gap junction roles and the pathways underlying many physiologi-
cal processes in insects.

2. Phylogeny of insect innexins

Gap junction genes have now been identified in the genome of
all Eumetazoa that have been examined, with the exception of
echinoderms, and at least one innexin is encoded by the genome
of the parasitic dicyemid mesozoans, Dicyema japonicum and Dicy-
ema koshidai [28]. However, in line with previous reports, a BLAST
search of the Placazoa and the Parazoa (Porifera) revealed no inn-
exin homologues (BLAST search, December, 2013), as is expected
given the absence of intercellular junctions in the Porifera. The
pattern of innexin genes reflects deep evolutionary relationships
within metazoans, implying that the pattern may be useful in phy-
logenetic studies and that innexins possibly play a role(s) in major
evolutionary advances [28]. As previously reported [6,7,28], and
demonstrated in Fig. 1, innexins exhibit phylum-specific diversifi-
cation. It appears that innexins originated early in metazoan evolu-
tion, predating the divergence of the Lophotrochozoa (including
the phyla Annelida and Mollusca) and Ecdysozoa (the molting phy-
la, including the phyla Nematoda and Arthropoda), which would
account for the occurrence of pannexins in Deuterostomia (includ-
ing mammals and other vertebrates). Following this initial genesis,
innexins have undergone diversification within the phyla, including
Arthropoda (including insects), Nematoda, Mollusca, and others
represented in Fig. 1. The basis of this diversity is unclear. Based
on conservation of only a single site across ecdysozoan lineages,
innexin diversification was proposed to be the result of genetic drift
[6]. However, the results of systematic selection analyses have not
been reported, thus selection for functional variation cannot be ru-
led out. Indeed, alignments of insect innexins demonstrates multi-
ple conserved sites, suggesting selection may vary at different
phylogenetic levels.

The majority of physiological evidence of the role of Innexins
comes from D. melanogaster, a member of the order Diptera (flies)
(see below). Genomic analysis identified eight members of the
innexin gene family in D. melanogaster [29]. Mutants have been
identified for many members of the gene family, associating
function with specific innexin lesions or alterations. Sequences of
insect genomes are now permitting the identification of many
more innexin loci, allowing for the development of a more robust
insect innexin gene tree. Upon examination of the arthropod-spe-
cific clades of the tree (Fig. 1, ‘‘Insect’’ branches), several patterns
emerge. Chiefly, the evolutionary pattern within orthologues
(e.g., Inx2) largely is congruent with organismal patterns (Fig. 2).
The Inx2 proteins form distinct organismal order-level clades,
including the holometabolous Hymenoptera (bees, wasps, and
ons L
icense



Fig. 2. Innexin2 orthologues demonstrate diversification within arthropod lineages.
Conceptual translations of insect and crustacean inx2 orthologues were aligned
using CLUSTALW, and a Neighbor-Joining tree created and visualized in DNAStar
Lasergene.
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ants), Lepidoptera (butterflies and moths), and Diptera (flies), and
the hemimetabolous Orthoptera (locusts), Phthiraptera (lice), and
Hemiptera (bugs); somewhat surprisingly, Inx2 orthologues of
holometabolous insects (those that undergo full metamorphosis)
are not distinct from those of hemimetabolous insects (those that
undergo gradual metamorphosis). Additionally, non-insect arthro-
pod innexins [from the lobster Homarus gammarus [30], crab, and
shrimp] nest with their insect orthologue, although as outliers to
the insect orthologues. This observation, albeit based on limited
data, supports diversification of the arthropod innexins prior to
the divergence of major arthropod taxa, followed by subsequent
evolution within taxa. Not all innexins demonstrate such predict-
able patterns, though: inx2 is highly conserved relative to other in-
sect innexins (inx2 orthologues in Fig. 1 are an average of 81%
similar, while those of inx1 are 67%).

Given the above, it would not be surprising to see taxon-specific
exploration of sequence space within the insect innexins. It
appears, for example, that inx4, inx5, and inx6 are limited in taxo-
nomic distribution to the Diptera. They occur in the respective gen-
ome of all Drosophila spp.; inx4 appears to be the ancestral locus,
and an orthologue is identifiable in the genome of the mosquito
Aedes aegyptii (XM_001652124). However, these genes appear to
lack conserved orthologues in other insects or arthropods (based
on BLAST searches with the D. melanogaster inx4, inx5, and inx6
coding sequences, December, 2013). This leads to the question of
whether the physiological roles of these Innexins are carried out
by paralogous Innexins in different insect orders, or whether the
functions of Inx4, Inx5, and Inx6 are gene family novelties limited
to the Diptera. The possibility that inx4, inx5, and inx6 orthologues
exist in other orders, but have not yet been identified, is also a
possibility.

While the inx4/5/6 clade seems to be a novelty arisen in dipter-
ans, there also appear to be novel innexins in other insect orders.
The model beetle, Tribolium castaneum, encodes a molecule
(XM_967885) which groups with other predicted Innexins from
the orders Lepidoptera (the moth Bombyx mori and butterfly
Danaus plexippus), Hymenoptera (the ants Acryomyrmex echinatior
and Camponotus floridanus, and the wasp Nasonia vitripennis), and
Phthiraptera (the body louse, Pediculus humanus). To date, these
molecules (‘‘Inx9’’) remain putative Innexins, as neither expression
nor functional characterization have been reported. However, if
demonstrated to be functional molecules, it will be interesting to
observe whether they perform roles overlapping those of the fly
Inx4/5/6 proteins, novel ones, or a combination thereof. Addition-
ally, it remains to be seen how broadly orthologues of this mole-
cule are conserved, and whether they represent a loss in Diptera,
as would be predicted by the current taxonomic distribution. Alter-
natively, the fly inx4/5/6 clade may represent a highly divergent
inx9 locus in flies, in which instance many of the same functional
questions remain relevant.

Finally, our lab and others have described homologues of
innexins in the genome of polydnaviruses [31–34]. Polydnavirus
innexins, or vinnexins, have been described from the genomes of
Campoletis chloridae and Campoletis sonorensis Ichnoviruses,
Hyposoter didymator and Hyposoter fugitivis Ichnoviruses, and
Tranosema rostrale Ichnovirus, with innexin gene family numbers
ranging from four to more than 15. Innexin sequence analysis
supports the hypothesis that the vinnexins arose from capture of
an ancestral insect innexin2 locus (Fig. 1), followed by duplication
and diversification of the vinnexins within the polydnavirus
lineage. Greater consideration of the vinnexins, including their
evolution, is below.

3. Roles associated with specific Innexins

In considering the evolution of Innexins and their function, we
briefly describe reported roles associated with paralogues of the
family. Primarily, the data which associate a member of the family
with a specific role stem from the fly, D. melanogaster. However,
where possible, we consider orthologues from other insects.

3.1. Innexin1

inx1 transcripts have been detected in embryonic insects from
numerous taxa [21,24,35–37]. Primarily, Inx1 has been ascribed
developmental roles, particularly in the nervous system. Develop-
mental expression of D. melanogaster-innexin1 (dm-inx1, optic gan-
glion reduced, ogre) in embryonic and post-embryonic neuroblasts
is necessary for optic ganglion and retinal development in pupae
[37]: Ogre is specifically required during pupal stage, along with
Dm-Inx8 [specifically, the ShakB(Neural) isoform], to generate
proper retinal photoreceptor (Ogre) connections to laminal
neurons [ShakB(Neural)] [38]; this highlights the potential for
stage-specificity of role, given metamorphic changes in structure.
Ogre also was demonstrated to overlap in expression with Dm-
Inx2 in glial cells of the larval nervous system [39]. Knockdown
of glial cell Ogre resulted in reduced larval CNS size, and in adults,
defective behaviors and reduced viability. Inx1 has been implicated
in non-developmental roles, as well, including direct electrical cou-
pling of neurons in the CNS of locusts [21] and the stomatogastric
nervous system of lobsters [30]. Ogre also likely forms heteromeric
Inx1/Inx3 gap junctions between ovarian follicle cells in flies,
although the role of these junctions is unclear [37,40].

3.2. Innexin2

The most widely characterized innexin in insects is inx2, having
been analyzed in Lepidoptera [18,19,41], Orthoptera [21,35], and
Diptera [39,42–45], as well as in the non-insect lobster (H.
gammarus) [30]. Dm-Inx2 is required broadly for embryonic epi-
thelial morphogenesis [40,42,43,45–48]. Dm-Inx2 is required for
ons L
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embryonic gut formation [42], acting downstream of Wingless sig-
naling [42,48]; Dm-Inx2 activity upstream of wingless, hedgehog,
and the Notch ligand, delta, is a rare demonstration in insects of
the interdependence of paracrine and gap junction communication
[48]. Dm-Inx2 also was demonstrated to interact with adherens
and septate junction proteins [43] and Dm-Inx3 [45], reciprocally
affecting junctional distributions; specifically, it appears that DE-
Cadherin plays a role in proper trafficking of Dm-Inx2 channels
[49]. Outside of embryonic development, Dm-Inx2, as noted above,
interacts with Ogre in larval CNS glial cells, and knockdown results
in reduced size of larval CNS and failure of flies to eclose (i.e., adults
to emerge from pupa) [39]; the authors suggest this may occur due
to a requirement for gap junctional communication between glial
cells, and/or between glial cells and neurons. In the ovary, Dm-
Inx2 junctions between follicle cells and oocytes are necessary
for proper oogenesis [40].

Two novel junctional roles in insects have been reported re-
cently for Dm-Inx2.

Following epidermal damage to the Drosophila embryo, calcium
waves are triggered and transferred from neighboring cells via gap
junctions to induce an inflammatory response. Transmission,
although not initiation, was reduced in inx2 mutant fly lines, lead-
ing to a reduced inflammatory response [50]. Dm-Inx2 gap junc-
tions also were demonstrated to mediate intercellular transfer of
GDP-L-fucose, a substrate for O-fucose modification, in the wing
imaginal disc [51].

3.3. Innexin3

Dm-Inx3 is mutually dependent with Dm-Inx2 to localize prop-
erly, at least in some circumstances [40,45], and channel hetero-
merization is critical for epithelial tissue morphogenesis and
polarity [44,45]; heteromeric Ogre/Inx3 channels may form and
be required for proper oogenesis, as well [40]. Dm-Inx3 is involved
in dorsal closure of the Drosophila embryo, as well as in the stabil-
ity of other Innexins and DE-Cadherin, through the formation of a
complex [52]. Data from the Sf9 and Spl221lepidopteran cell lines
were taken to implicate Spodoptera litura-Innexin3 (as well as
Sl-Inx2) in regulation of apoptosis, as overexpression resulted in
hallmarks of apoptosis [19]. However, a mechanism has not been
demonstrated to conclusively support a role for Innexins in apop-
tosis, at this time.

3.4. Innexin4, Innexin5, and Innexin6

Limited data exist for these three genes. The zero-population
growth (zpg) mutant was identified to have gap junction deficits
in the germ line, resulting in failure to synthesize mature germ
cells in both males and females [53]; to date, this is the only re-
ported inx4 mutant or associated phenotype. No functions have
been ascribed to inx5, while Dm-Inx6 has been shown to be neces-
sary in heterotypic (with Dm-Inx7) gap junction formation in the
mushroom bodies for the formation of memories [54].

3.5. Innexin7

The use of RNAi has demonstrated that Dm-Inx7 is essential to
axon guidance and embryonic nervous system development [55].
As already noted, Dm-Inx7 additionally is required in heterotypic
Inx6/Inx7 channels in specific nerves of the mushroom bodies for
the formation of memories [54]. Dm-Inx7 exhibits different subcel-
lular localization patterns in the developing central nervous sys-
tem (nuclear) and epithelial tissue (cytoplasm and membrane),
suggesting dependence on tissue-specific regulation [55].
3.6. Innexin8

Three dm-inx8 (shakB) splice variants are expressed in confined
regions of the central nervous system, including those of the Giant
Fiber System. Loss of Dm-ShakB function disrupts electrical
transmission, resulting in defective escape behavior [56–58].
Electrophysiological studies in Xenopus oocytes demonstrate
Dm-Shak-B(Lethal), but not Dm-Shak-B(Neural), can form homo-
typic channels and furthermore, differential voltage gating of
heterotypic channels containing Dm-Shak-B(Lethal) and Dm-Shak-
B(Neural + 16) is required for rectification of electrical synapses in
the Giant Fiber System [3,59]. Similarly, Dm-Ogre and Dm-Shak-
B(Neural) are required at the pre- and post-synapse to maintain
retina-lamina neural transmission, and this specific complex is
largely irreplaceable by other gap junctions [60].

4. Numerous gap junction roles have not been ascribed
to specific Innexin(s)

In addition to the above, numerous studies have demonstrated
gap junction roles in systems across insect taxa without identifying
the relevant Innexins. For example, neuronal networks in the brain
of cockroaches and grasshoppers are maintained by gap junctions
[61,62]; although inx1 and inx2 have been identified in the brain
of two locust species [21,35], their relevance to these specific cir-
cuits is unclear. Electrical coupling of Malpighian tubule principal
cells via gap junctions facilitates transepithelial ion transport for
primary urine production in the mosquito, Aedes aegypti [17]. How-
ever, although transcripts for inx1, inx2, inx3, and inx7 were de-
tected in the Malpighian tubules, the Innexins which comprise
the junctions have not been reported. Numerous studies of the
wing imaginal disc of D. melanogaster have shown the presence
of gap junctions, which may act to form discrete compartments
during development [63,64]. In situ hybridization demonstrates
all eight innexins are transcribed in the wing disc [24]. However,
while studies suggest that intercellular communication by gap
junctions may underlie certain morphogenetic signaling cascades
in the wing disc [65–67], the respective roles of the various Innex-
ins are, as of yet, unknown.

As holometabolous insects undergo molting and eventually
metamorphosis, they can be excellent models of the role of gap
junctions in regulating tissue growth, remodeling, and morphogen-
esis. Gap junction patterns and coupling vary through inter- and
intramolt stages between caterpillar epithelial gut cells [68,69].
Similarly, junctional coupling in the cuticular epidermal cells of
the beetle Tenebrio molitor varies with molt stage [70], presumably
under regulation of the molting hormone b-ecdysone [70,71] at a
post-translational level [72]. As well, numerous observations have
been recorded, from several orders of insects, of gap junctions
forming between hemocytes, particularly during the cellular
immune response of encapsulation [73,74]; junctional coupling be-
tween these hemocytes has been reported [75–77]. However, sim-
ilar to instances of cellular networks and compartmentalization,
the associated Innexins regulating these morphogenetic processes
are unknown.

5. Vinnexins of polydnaviruses

The genome of certain members of the Polydnaviridae family of
viruses have recently been demonstrated to encode functional
Innexins, which have been termed vinnexins (virus innexins)
[32,33]. Polydnaviruses (PDVs) are an intriguing virus taxon, asso-
ciated with certain subfamilies of wasp parasitoid. The segmented
dsDNA genome of PDVs is integrated into the genome of certain
om
m
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Fig. 3. The Vinnexins are a monophyletic lineage arising from an ancestral insect
inx2 gene. The conceptual translation products of twenty-two vinnexins from four
Ichnoviruses, representing three genera of virus (Campoletis sonorensis IV, Hyposoter
didymator IV, H. fugitivis IV, and Tranosema rostrale IV), were aligned with ClustalW
and a Neighbor Joining tree was generated in DNAStar Lasergene. The tree was
visualized in NJPlot [106].
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lineages of wasps in the families Braconidae and Ichneumonidae;
viruses associated with wasps of either family are referred to as
Bracoviruses and Ichnoviruses (IVs), respectively. The viruses are
transmitted vertically as proviruses, and all members of infected
species have the virus [78–80]. The PDV genome is replicated
Fig. 4. Vinnexin cellular distribution overlaps with a host Innexin. C-terminal epitope-ta
Five cells by plasmid transfection. Epitope-tagged proteins were detected at 2d post-tran
myc (Cs-VnxD).
and encapsidated asymptomatically in the wasp ovaries, and
delivered during parasitization into the hemocoel of a host insect
(typically a juvenile lepidopteran, or caterpillar). Expression of
virus genes leads to disruption of manifold physiological processes
including abrogation of immunity [81–85] and altered endocrine
profile and development [86–90], and virus gene expression is
essential for successful parasitization [81]. Few virus structural
genes have been identified in the encapsidated virus genome
[91,92], and virus replication is not detected in the infected cater-
pillar [93,94]. The genome of every campoplegine-lineage IV ana-
lyzed to date has been found to encode at least four innexin loci
[33]; IVs from the Banchinae subfamily lack innexin loci [95,96].
The vinnexin genes likely arose from integration of host wasp
inx2 into an ancestral IV genome, followed by significant gene
duplication and diversification due to intra- and inter-segmental
recombination and duplication (Fig. 3). Many of the highly con-
served sites of insect Innexins are present in Vinnexins [31],
although some are altered and may be useful in future studies of
structure–function relationships in the Innexins.

The Vinnexins initially were hypothesized to disrupt hemocytic
encapsulation, the primary anti-parasitoid immune response of
caterpillars, presumably by inhibiting gap junctional intercellular
communication [78,79]. Like many IV genes, vinnexin transcripts
are broadly detected in host caterpillar tissues [31,97]. However,
an antibody against the C. sonorensis IV (CsIV) VinnexinQ2 (Cs-
VnxQ2) only identified the protein in CsIV-infected hemocytes of
the caterpillar Heliothis virescens, where the protein localized to
cellular membranes [31]. Results from paired Xenopus oocytes in-
jected with CsIV vinnexin cRNA surprisingly demonstrated that
Cs-VnxD and Cs-VnxG were capable of forming functional gap
junctions [31]. Further oocyte analyses of all four CsIV Vinnexins
and a host lepidopteran Innexin2 (Spodoptera frugiperda-Inx2)
demonstrated that all four Vinnexins form homomeric channels,
and, to varying degree, form heterotypic and possibly heteromeric
channels with Sf-Inx2 [41]. Interestingly, co-expression of Vinnex-
ins with Sf-Inx2 (i.e., potentially heteromeric channels) results in
altered channel characteristics. Thus, heterologous expression
studies support that Vinnexins may serve to subtly alter, rather
than ablate, gap junction communication between infected cells.
Studies of Vinnexin expression in lepidopteran cell culture (both
Sf9 and High Five cells) supports this hypothesis of alteration
rather than inhibition: Vinnexins co-localize with lepidopteran
Innexins (Fig. 4), physically interact with Inx2 and each other,
and are associated with changes in dye transfer and cell morphol-
ogy (Hasegawa et al., in preparation). Both lepidopterans and
polydnaviruses are difficult to manipulate, making functional anal-
ysis in the lepidopteran difficult. Ectopic expression in the lepidop-
teran using in vivo transfection of one or more vinnexins, as has
gged CsIV VnxD and Spodoptera frugiperda Inx2 were transiently expressed in High
sfection by confocal immunomicroscopy using antibodies against V5 (Sf-Inx2) and
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been used to analyze protein tyrosine phosphatases of the Cotesia
plutellae Bracovirus [98], and heterologous expression in Drosophila
using the GAL4-UAS system, as was used to examine a PDV IKB-like
molecule [99], may facilitate experimental testing of Vinnexin
function.
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6. Future directions for insect innexins

Insects are an incredibly diverse animal group which contribute
significantly to human biology. They are intrinsically of interest
due to their diversity, their roles in human misery and infrastruc-
ture costs (e.g., via transmission of pathogens and agricultural
damage), and even their benefits (e.g., via pollination and silk pro-
duction). They also have played, and continue to play, important
roles in our understanding of human physiology and biomedical
processes. However, it is necessary to develop reliable phyloge-
netic relationships to maximize comparative studies, whether to
use insects as models for biomedical processes, or to compare
the regulation of developmental processes across insects. The phy-
logenetic tree examining the insect Innexins, therefore, provides an
initiation point for elucidation of the roles of orthologues and par-
alogues across insect taxa. Examining the evident patterns from
this phylogeny suggests several studies for future work in insect
Innexins.

Immediately, the sequence separation of insect innexins and
mammalian pannexins, and even other invertebrate innexins, sup-
ports that innexins, and insect gap junctions, may serve as interest-
ing targets for regulation of physiological processes in pest insects.
For example, Dm-Inx2 is required for proper gut morphogenesis in
Drosophila [42,46], and gap junctional communication correlates to
midgut proliferation during molt in the caterpillar Manduca sexta
[100,101]. It may be possible to target inx2, or another innexin, uti-
lizing RNAi to disrupt gut development. Indeed, several studies
have demonstrated the utility of orally delivered dsRNA in gene
knockdown and subsequent disruption of physiological processes
in insects [102–105].

The current diversity of innexins and the promise of even more
data resulting from the i5k genomics projects is most exciting,
though, from an immediate comparative perspective. As noted
above, the majority of data regarding both innexin genes and Inn-
exin proteins has been derived from the model fly, D. melanogaster.
Flies repeatedly have been shown to be evolutionarily divergent,
raising a need for more comparative studies of innexins. The iden-
tification of novel innexin paralogues, such as those that we have
termed here inx9, begs the question of function; they also raise
the question of how many additional, novel innexin loci there
may be among insects. Given the large number of taxa and the po-
tential for Innexin roles in developmental processes, coupled with
diversity of developmental processes in insects, it may be a long
time before characterization of novel innexins and functions dries
up. Similarly, as touched on above, there are myriad physiological
processes in insects in which gap junctions have been demon-
strated, in which the relevant Innexin has not been isolated. Gap
junctions appear poised to be recognized as playing significant
parts in highly important events like anti-parasite immunity, tox-
in-induced gut turnover and modeling, and metamorphosis. Isola-
tion and characterization of the way that the relevant Innexin(s)
contribute to these physiological processes in the most diverse
group of animals on the planet promises to provide interesting in-
sight for years to come.
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