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Abstract The US Department of Agriculture-Agricultural
Research Service (USDA-ARS), National Plant Germplasm
System (NPGS) plant collections are a critical source of ge-
netic diversity for breeding and selection of improved crops,
including vegetatively propagated plants. Information on
these collections is readily accessible to breeders and re-
searchers on the internet from the Germplasm Resources
Information Network (GRIN). The clonal collections are at
risk for loss due in part to their genetic diversity that makes
growing them in one location a challenge, but also because it
is difficult to have duplicate collections without incurring
great expense. The development of cryopreservation tech-
niques during the last two decades provides a low mainte-
nance form of security backup for these collections. National
plant collections for vegetatively propagated crop plants and
their wild relatives are maintained by the USDA-ARS, NPGS
at 15 sites across the country. These sites include various com-
binations of field, greenhouse, screenhouse, and in vitro col-
lections. Cryopreserved backup collections in liquid nitrogen
storage were instituted in the 1990s, increased greatly in the
2000s with the advent of new techniques, and are continuing
today. Collections of dormant buds of temperate trees, shoot
tips of in vitro cultures of many crops, and embryonic axes of
some large seeded or recalcitrant seeded plants are all part of
the clonal backup storage system.
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Introduction

Clonal plant germplasm collections in the USA are managed at
nine Clonal Germplasm Repositories and six other sites of the
USDA-ARS, National Plant Germplasm System (NPGS) orga-
nization (http://www.ars-grin.gov/npgs/collections.html). Since
their inception from 1980 to 1987, the repositories have
collected and identified over 41,500 clonally propagated
accessions. In these collections, approximately 31,070
accessions (from 4425 species) are maintained, characterized,
and available for distribution (Germplasm Resources
Information Network (GRIN); http://www.ars-grin.gov/npgs/
collections.html 2016). These collections include the genetic
diversity of temperate, subtropical and tropical, vegetatively
propagated fruit, industrial crops, nuts, ornamentals, specialty
crops, vegetables, and wild relatives. Genera and species
included in the NPGS holdings are listed for each germplasm
collection on the GRIN (http://www.ars-grin.gov/npgs/
collections.html , select “Genebank location” and then
“Species held at site”). Before the clonal repositories were
established, these plant materials existed in plant breeder
collections, or other ex situ locations, or in their native
habitats. These collections were not widely available and often
were destroyed when breeding programs were discontinued or
lost due to disease or weather (Jahn and Westwood 1982). Plants
in clonal collections must be maintained in an actively growing
state to preserve the selected genotypes or because they are
sterile or produce seed that cannot be stored. The original outline
of procedures for setting up the repository system was described
by Westwood (1989). A description of the clonal system and the
individual repositories was compiled at the 25th anniversary of
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creating the first repositories (Postman et al. 2006). Over the
past 35 yr, the collections at these institutions have become some
of the most complete collections in the world of the genetic
resources of their designated crop genera and are invaluable as
sources for breeding materials and research, as well as housing
some endangered or threatened plant species.

Maintaining vegetatively propagated plants requires a sys-
tem of field, greenhouse, and screenhouse facilities, depend-
ing on the requirements of the particular crop (Jahn and
Westwood 1982). The wide diversity of collections and their
growth requirements produces a challenge for clonal crop cu-
rators. Developing duplicates or backup collections for this
germplasm creates an additional challenge (Reed et al.
2004a). Unlike seed-propagated crops where seeds can be
exchanged and stored easily at a secondary site, clonal crops
require more land and labor or alternative storage techniques
for insuring security.

The development of cryopreservation techniques for clonal
crops began in the late 1970s (Sakai and Nishiyama 1978;
Sakai et al. 1978; Uemura and Sakai 1980; Katano et al.
1983; Sakai 1984; Kartha 1985). These techniques used
controlled-rate cooling followed by plunging in liquid nitro-
gen (LN) and were developed into protocols that were used
successfully to freeze and recover growing shoot tips (Grout
et al. 1978; Sakai and Nishiyama 1978; Sakai et al. 1978;
Kartha et al. 1979; Towill 1981; Sakai 1984; Towill 1984;
Harada et al. 1985; Sakai 1985; Stushnoff 1985; Withers
1985; Reed and Lagerstedt 1987; Taniguchi et al. 1988;
Towill 1988; Tyler and Stushnoff 1988). By the 1990s, germ-
plasm cryostorage of clonal propagules had begun (de
Boucaud and Brison 1995; Moriguchi 1995; Niino 1995;
Reed and Hummer 1995; Stushnoff and Seufferheld 1995;
Schafer-Menuhr 1996; Reed and Chang 1997; Dulloo et al.
1998; Forsline et al. 1998; Hirai et al. 1998; Panis et al. 1998;
Reed et al. 1998; Reed et al. 2000). It is now possible to plan
and implement clonal cryopreserved storage to safeguard
many irreplaceable collections (Reed 2001). A range of cryo-
preservation techniques are used for numerous genera and
species throughout the world (Benson 1999; Reed 2008),
and procedures for new genera or species continue to evolve.
Routine cryopreservation is now possible for many species,
and additional species are being added to the success column
on a regular basis. In this manuscript, the cryopreserved clonal
collections of the NPGS are described.

Plant Tissues for Cryopreservation

Any totipotent tissue may be used for cryopreservation of
clonal plants. The most commonly used tissues are shoot tips,
and to a lesser extent, somatic embryos and embryonic axes
(shoot and root axis of a seed). Embryonic axes derived from
seed are used for seed-propagated crops when the whole seed
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cannot be cryopreserved due to high oil content of the cotyle-
dons, large seed size, or general lack of cold tolerance. Axes
have a unique genetic makeup rather than a clonal character;
however, they are processed using the same techniques as
clonal propagules, so they are included in the clonal cryopres-
ervation category. In clonal cryopreservation procedures,
clonal integrity is required, so callus is not used and conser-
vative use of plant growth regulators is maintained to reduce
the possibility of somaclonal variation (Nehra et al. 1992;
Skirvin et al. 1994; Sahijram et al. 2003; Bairu et al. 2006;
Bairu et al. 2008; Bairu et al. 2011). The use of shoot tips and
somatic embryos requires tissue culture systems with
established micropropagation regimes (Bell and Reed 2002;
Normah et al. 2002; Sarasan et al. 2006; Bamberg et al. 2016).
Fortunately, some clonally propagated genetic resources are
maintained in vitro and could be used for cryopreservation
(Reed et al. 2013).

Tissue cultures, especially of tropical plants, may carry endo-
phytes (Abreu-Tarazi et al. 2010; Reinhold-Hurek and Hurek
2011). Endophytes, and any microorganism if present, manifest
themselves during post-cryopreservation recovery, hindering
plant regrowth; hence, it is a good practice to test cultures before
cryoprocessing (Wilson 1996; Van den Houwe and Swennen
2000; Hamill ez al. 2005; Orlikowska ef al. 2017). Some plants
(e.g., Saccharum and Musa) exhibit intense phenolic secretion
when cut or otherwise injured. Phenolic compounds may inhibit
shoot multiplication and plant recovery after liquid nitrogen stor-
age (Kerns and Meyer 1986; Qin ef al. 1997; Kumari and Verma
2001; Ozyigit et al. 2007; Mneney and Ndakidemi 2014).
Supplementing micropropagation medium, cryopreservation so-
lutions, or recovery medium with antioxidants often mitigates
the problem (Lux-Endrich et al. 2000; Lorenzo et al. 2001;
Huang ef al. 2003; Khan et al. 2007; Uchendu et al. 2009;
Uchendu et al. 2010; Reed 2013; Shimelis 2015). Shoot tips
of a few taxa such as Allium sativum, A. logicuspis, and selected
Citrus species can use propagules directly from greenhouse or
field plants for cryopreservation (Ellis ez al. 2006; Volk et al.
2012). Shoot tips of A. sativum and A. longicuspis are excised
from cloves of field-harvested bulbs, and shoot tips of Citrus
species are extracted from greenhouse-grown twigs.
Propagules of both genera are sterilized in 75% (v/v) isopropyl
alcohol (10 min) and 2% (v/v) sodium hypochlorite before pro-
cessing. However, post-cryopreservation recovery is done
in vitro so a workable system of culture is still required.

The pioneering research of Sakai (1960) opened a possibil-
ity of cryopreserving dormant winter buds (DB). Successful
dormant bud cryopreservation was reported for several fruit-
tree genera including Diospyros (Matsumoto et al. 2001),
Malus (Sakai and Nishiyama 1978; Forsline e al. 1998;
Stushnoff and Suefferheld 1995; Seufferheld et al. 1999;
Jenderek et al. 2011), Juglans (Jenderek et al. 2014), Prunus
(Towill and Forsline 1999), Pyrus (Suzuki et al. 1997,
Kovalchuk et al. 2014), and several forest and ornamental
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woody plant genera including Pinus (Kuoksa and Hohtola
1991), Betula (Ryyndnen 1996), Ulmus (Harvengt et al.
2004), and Fraxinus (Volk et al. 2009).

At the NPGS, dormant buds were used for cryopreserva-
tion of a wide range of Malus (apple) accessions, selected
Prunus cerasus (tart cherry) and Salix (willow) species
(Towill and Forsline 1999; Towill et al. 2004; Towill and
Widrlechner 2004; Towill and Bonnart 2005; Volk et al.
2008). Cryopreservation of dormant buds requires fewer re-
sources than using shoot tips or any other in vitro-derived
material. Currently, routine cryostorage of dormant buds is
reported for only a few genera of temperate trees and shrubs.
This is mainly due to a lack of genus- or species-specific
processing protocols, the narrow time window of deep dor-
mancy required for twig harvesting and processing (Jenderek
et al. 2017), or the absence of reliable post-cryopreservation
viability testing techniques that could substitute for grafting.

Advantages and Shortcomings of Material Type

Both meristem shoot tips (MS) and dormant buds (DB) prop-
agules have their advantages and shortcomings. Shoot tips
(apices) can be used at any time of year, but their processing
requires a tissue culture laboratory and aseptic cultures, mi-
croscopy skills, and an established in vitro plant recovery sys-
tem (Fig. 1a, b). It takes 3 to 5 yr. before a tree or a shrub that is
recovered becomes a plant capable of producing fruit. The use
of shoot tips requires micropropagation of about 180 to 200
shoots per accession. It takes from 2 to 7 mo (species depen-
dent) to produce the number and the quality of shoots required
for MS excision. With rare exception, the in vitro introduction
of field- or greenhouse-grown material is done at the primary
NPGS clonal repositories (Table 1). Usually, a primary repos-
itory provides 5 to 10 aseptic cultures per accession to the
Plant and Animal Germplasm Resources Preservation Unit
(PAGRPU) in Fort Collins, CO (also a part of the NPGS) for
cryopreservation. Upon arrival, all cultures are kept in quar-
antine (6 wk) and then routinely all monocotyledonous cul-
tures are tested for endophytes (2 to 3-wk procedure).
Cryopreservation of dormant buds is suitable only for
species that undergo a dormancy phase and some period
of low temperature that in the northern hemisphere takes
place during a winter season. The process requires suitably
sized budwood (previous-year growth; and thin twigs, with
a species-dependent diameter, usually 4 to 8 mm); the
budwood is processed in 3.5- or 7-cm twig segments that
usually have one or more buds depending on twig morphol-
ogy (Fig. 1c—e). Before plunging into liquid nitrogen vapor,
DB must be desiccated to about 25 to 30% moisture content
and slow-cooled to —30°C. After rewarming, DB recovery
for the majority of tree and shrub species requires grafting
onto rootstocks, a process that involves a skilled grafter,

proper rootstock selection, and post-grafting plant manage-
ment. Fruit production on the recovered DB typically occurs
in 1 to 2 yr. This process bypasses the normal juvenile phase
that would delay fruit production when a tree is recovered
from a cryopreserved aseptic shoot tip. Storage of DB re-
quires more space in a LN tank than for MS since the buds
(on 3.5- or 7-cm twig segments) are much larger than the 0.8
to 1 mm shoot tip explants. A MVE XLC 1830 cryotank
(Chart Industries, Garfield Heights, OH) can store 19,600
2-mL cryovials with MS; that is, 1237 accessions per tank
(16 cryovials per accession, 10 propagules per vial). For
DB, the individual buds are much larger and require storage
in larger tubes; hence, there is room for only 3960 polyole-
fin tubes (1.9 x 28 cm), with 247 accessions per tank (16
tubes per accession, 10 DB segments per tube) (Fig. 1f).
However, cryoprocessing of DB is faster and about tenfold
less expensive than cryopreservation of MS.

Cryostorage in the National Plant Germplasm
System

Applied cryopreservation and storage of cryopreserved clonal
propagules is currently performed at the PAGRPU. From
1991 to 2010, the initial accessions were cryopreserved at
the National Clonal Germplasm Repository, Corvallis, OR,
and shipped for cryostorage at the PAGRPU. The main tissues
originally used for clonal cryopreservation were MS, and a
few embryonic axes (Table 2). As of June 2016, cryopre-
served clonal storage at Fort Collins included 3903 clonal
accessions (12.6% of the NPGS clonal holdings) cryopre-
served with >40% post-cryoviability and stored in liquid ni-
trogen tanks. These accessions belong to 96 taxa grouped in
20 collections. The cryostored inventories include genetic re-
sources of asexually propagated genotypes such as apple
(Malus), banana, (Musa), blackberry, dewberry and raspberry
(Rubus), blueberry (Vaccinium), currant, gooseberry (Ribes),
garlic (Allium), grasses (Cynodon, Lolium, and Zoysia), hazel-
nut (Corylus), hop (Humulus), mint (Mentha), pear (Pyrus),
potato (Solalnum) and selected wild relatives, strawberry
(Fragaria), sugarcane (Saccharum), sweet-potato (I[pomoea),
tart cherries (Prunus), and various species of willow (Salix).
Initial cryopreservation was targeted at designated core collec-
tions that were deemed most representative of the genetic
diversity of each genus, so most of the cryopreserved acces-
sions are representatives of the core collections (Table 2).
Micropropagation protocols and the cryopreservation proce-
dures used are available at the PAGRPU website (https://
www.ars.usda.gov/plains-area/fort-collins-co/center-for-
agricultural-resources-research/plant-and-animal-genetic-
resources-preservation/docs/clonal-protocols/).

The PAGRPU laboratory standard for cryopreserved clonal
storage is to achieve >40% post-cryopreservation viability and
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Figure 1. Preparation of clonal
materials for cryopreservation: (@)
shoot excision for meristem
cryopreservation; (b) placing a
cane with cryovials in the liquid
nitrogen dewar; (¢) twigs with
dormant buds as received for
cryopreservation; (d) cutting of
dormant-bud twig segment; (e)
dormant bud segments in poly-
olefin tubes; (f) storage vault with
liquid nitrogen tanks at the NPGS
site in Fort Collins.

>60 viable propagules per accession stored in a liquid nitrogen
tank (termed 40/60 standard). A total of 4362 accessions
(14.0% of NPGS clonal holdings) were cryoprocessed, but
the viability of 459 accessions was <40% and/or less than 60
viable propagules were deposited in liquid nitrogen tanks,
hence, they do not fit the PAGRPU criteria of an effective
back up (Table 2). Out of the 3903, 44.5% of accessions were
cryopreserved as MS, 55.5% as DB, and <0.1% as embryonic
axes. Even using published and established cryopreservation
protocols, not all cryoprocesses were successful, i.e., they did
not result in >40% post-cryopreservation viability. Variability
in viability can result from genotypic variation in response to
applied procedures, or suboptimal culture medium, culture
age, culturing conditions, pretreatments, cold acclimation, de-
hydration, or conditions of the growing season for DB. The
least effective procedures were those applied for tart cherry
(12.9%) and willow accessions (48.2%) possibly due to the
lack of control over winter hardening conditions.
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Cryostorage Contingencies

Cryoprocessing efficiency depends on the kind of propa-
gule processed, the plant species, and the number of techni-
cians involved in the process, i.e., available resources.
Monocots require much more time for shoot excision, mak-
ing dicot plant species easier and faster to process. The
clonal cryopreservation efforts of the NPGS accelerated
over the years as techniques became standardized (Fig. 2).
Early storage (1990s) was part of the research program to
develop clonal cryopreservation methods, and a few acces-
sions were stored as each method was perfected (Reed
1999). Later as storage became more routine, PAGRPU
processed large numbers of accessions from in vitro collec-
tions provided by the clonal repositories and implemented
the 40/60 storage standard. To achieve 60 viable propagules
after cryopreservation at a 40% viability level, at least 150
propagules should be processed (Volk et al. 2016).
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Table 1. USDA-ARS, National

Plant Germplasm System Primary NPGS repositories Number of ~ Number of Total

(NPGS), and related sites that genera species accessions

hold clonally propagated

materials. The clonal repositories National Arid Land Plant Genetic Resources, Parlier, CA* 13 70 603

are sited in environments National Clonal Germplasm Repository, Corvallis, OR 64 664 8754

compatible with the crop species National Clonal Repository for Citrus and Date, Riverside, CA 9 10 1789

held. The total number of NPGS ) ) ]

maintained clonal accessions National Clonal Germplasm Repository for Tree Fruit/Nut 21 248 7257

available for distribution is Crops and Grapes, Davis, CA

approximately 31,072 National Germplasm Repository, Brownwood, TX 1 12 2328
North Central Regional Plant Introduction Station, Ames, IA* 152 622 2456
Ornamental Plant Germplasm Center, Columbus, OoH" 54 300 1013
Plant Genetic Resources Conservation, Griffin, GA? 45 196 1823
Plant Genetic Resources, Geneva, NY 7 103 4410
Subtropical Horticulture Research Station, Miami, FL 327 802 2790
Tropical Agriculture Research Station, Mayaguez, PR 285 483 1152
Tropical Plant Genetic Resources Management, Hilo, HI 19 58 709
United States Potato Genebank, Sturgeon Bay, WI* 1 92 836
Western Regional Plant Introduction Station, Pullman, WA® 24 64 542
Woody Landscape Plant Germplasm, Washington, DC 172 701 1493

Repositories holdings might be accessed at http:/www.ars-grin.gov/npgs/collections.html, under repository

locations

# Clonal collections maintained at NPGS repositories that predominantly hold seed collections

® Clonal collections maintained outside NPGS

Routinely, the laboratory processes 150 to 160 propagules
per accession. Using MS, the average number of accessions
cryopreserved by a technician varied from 35 (for monocot-
yledons) to 80 (for dicotyledonous species) per year, where-
as the number of accessions cryopreserved by DB was 200
to 300 accessions per processing season.

For cryopreservation of clonal propagules, crucial
equipment includes a functional tissue culture laboratory
with laminar flow hoods, growth chambers, autoclaves,
and laboratory appliances as well as the necessary mate-
rials, cryotanks, liquid nitrogen supply, an inventory man-
agement database, and a control (security) system to warn
of disturbance or equipment failure. Cryopreserved mate-
rials are entered into the GRIN database with a unique
identifier, information on the date of storage, the viability
of the controls and cryopreserved material, the number of
propagules, the type of propagule cryopreserved, and the
storage location. Records are kept on cryopreservation
technique, the growth medium used, and the origin of
tissue cultures or dormant buds. GRIN also stores infor-
mation on basic curatorial activities at the primary repos-
itories (e.g., regeneration, planting location for perennials,
germplasm exchange, distribution, and passport informa-
tion including GPS data and research data pertaining to
the genetic resources, based on publications). GRIN also
holds information on descriptors used in germplasm char-
acterization, listings of crops evaluated and the evaluation
data.

Value and Uses of Cryopreserved Collections

The loss of genetic resources from field genebanks is due to a
variety of causes (Groenendael et al. 1996; Heywood and
Iriondo 2003). The most common is the failure of plants from
diverse locations and genetic backgrounds to thrive in the soil
or climatic conditions of the genebank (Stuefer 1994). Diseases
or insect attack can also decimate living collections, and these
may become more common with climate change and its un-
known effects on living organisms (Botkin ez al. 2007; Nicotra
et al. 2010; Dullinger et al. 2012; Dullinger et al. 2013). For
clonal crops, the loss of breeding collections after a retirement
or change in research focus is a common occurrence due to the
resources required to maintain living plant collections (Jarret
and Florkowski 1990; Pence 2010). Seed banking is considered
the most cost-effective preservation method (Pence 2011), but it
is not appropriate for clonal crops. Information on costs of ex
situ preservation of clonal genetic resources is difficult to estab-
lish or find in literature and it varies from country to country
(Pence 2011). Dulloo et al. (2009) reported that preservation of
coffee genetic resources via cryopreservation was more cost
efficient than preservation in the field.

Adding these collections to clonal repositories and provid-
ing a backup in liquid nitrogen is an economical alternative for
preserving important genetic resources. Although these cryo-
preserved collections may rarely be used, they provide viable
alternatives to duplicate field genebanks and also allow a re-
duction in the number of security duplicate accessions needed
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Table 2.

Genera, propagule type, cryopreservation technique, and number of clonal accessions cryostored at the USDA-ARS National Plant

Germplasm System, Plant and Animal Genetic Resources Preservation Unit, Fort Collins, CO

Genus Propagule Cryopreservation Unique accessions Accessions in Accessions Cryopreserved accessions
type” technique” cryopreserved to a clonal collection  cryostored (%) meeting the 40/60 standard (%)
40/60 standard

Allium (garlic) ms v 100 312 43.3 74.1
Corylus ea,db, ms d,ed, dsc 5 798 0.6 83.3
Cynodon ms ed 33 175 18.9 61.1
Fragaria ms sc, dv 280 1382 20.3 98.2
Humulus ms ed, sc 90 387 233 84.1
Ipomoea ms ev 166 776 214 100
Lolium ms ed 15 Breeding collection

Malus db dsc 2155 4280 50.4 94.1
Mentha ms v, dv, ed 43 393 10.9 82.7
Musa ms dv 22 160 13.8 88.0
Prunus (tart cherry)  db dsc 12 130 9.2 12.9
Pycnanthemum ms ed 32 61 53 100
Pyrus ms, db sc, dv, dsc 219 1839 11.9 93.6
Ribes ms, db sc, dv, dsc 79 716 11.0 91.9
Rubus ms sc, dv 187 706 26.5 89.5
Saccharum ms dv 40 408 9.8 66.7
Salix db dsc 25 60 41.7 48.1
Solanum ms dv 61 836 7.3 100
Solanum PVP ms dv 332 332 dd 94.6
Vaccinium ms dv 42 828 5.1 100
Zoysia ms ed 5 5 100 100

“Propagule type: ms shoot tip, ez embryonic axis, db dormant buds

¥ Cryopreservation technique: d desiccation, dsc desiccation and slow cooling, dv droplet vitrification, ed encapsulation dehydration, ev encapsulation

vitrification, sc slow cooling, v standard vitrification

in a field collection. Clonal crops constitute a small fraction
(ca. 4.5%) of the total genetic resources maintained by the
USDA-ARS, National Plant Germplasm System, but the clon-
al plant group includes staple food (banana, potato, and sweet-
potato) and industrial crops (sugarcane), fruits and nuts (pear,
cherry, plum, peach, apple, citrus, hazelnut, walnut, and pe-
can), berries (blueberry, raspberry, cranberry, current, black-
berry, and strawberry), ornamentals (maple, willow, birch, ca-
mellia, oak, and rose), and other specialty crops (hops and

mint). Active breeding programs that use these collections
exist for most of these crops, and all of them contribute greatly
to the quality of our life and health.

Challenges for the Future

Although published cryopreservation procedures are not al-
ways applicable for all accessions, slight changes can often

180 -
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Figure 2. Cryostorage of clonal propagules in the USDA-ARS, National Plant Germplasm System since 1995 including the number of cryopreserved
clonal accessions processed yearly and the number that meet the genebank standard of 40% viability and 60 viable propagules (40/60) instituted in 2004.
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make the protocol work for most accessions in a genus (Reed
et al. 2003). A standard evaluation of the suitability of a pro-
tocol for a group of accessions is the first step toward storing a
collection, followed by suitable training of the staff (Turner
et al 2001; Reed et al. 2004a; Reed 2008). Consideration for
the natural growth conditions of a species such as desiccation
tolerance or cold tolerance or lack thereof can indicate which
type of protocol is most likely to be successful. Drought-
tolerant grasses (Zoysia, Lolium, Cynodon) were highly adapt-
able to cryopreservation by encapsulation-dehydration
(Chang et al. 2000; Reed et al. 2006). Shoot tips of plants that
are desiccation sensitive require more gradual dehydration
steps and other protocols are more suitable (Reed 2001).
Tissue culture protocols aimed at improving shoot growth
are often the key step to success. Changes in plant growth
regulators such as removing auxin from the recovery medium
can reduce callus production and increase shoot regrowth
(Chang and Reed 1999). Poor growth in vitro often results in
poor recovery from cryopreservation. Small changes or omis-
sions from a protocol can often render it ineffective, so staff
training and adherence to protocols should be emphasized. A
study of three laboratories implementing two cryopreservation
protocols showed that specific step-by-step instructions, and
careful adherence to those steps resulted in high recovery of
growing shoot tips after cryopreservation (Reed et al. 2004b).
Developing efficient shoot micropropagation procedures, re-
fining cryoprocedure details, and optimizing plant recovery
will increase the viability and quality of cryostored genetic
resources. Applying reliable cryopreservation protocols to
species that have not been studied will enlarge the scope of
plant species that can be successfully cryopreserved.
Establishing factors that will increase cryoprocessing efficien-
cy will also promote this type of plant preservation and con-
tribute to lowering costs of material introduction into
cryostorage (Keller ez al. 2008).

While cryopreserving genetic resources threatened with
epidemic disease outbreak has a priority, e.g., Fusarium wilt
of banana caused by Fusarium oxysporum f. sp. cubense
(Ploetz 2006) or citrus greening caused by Candidatus
Liberibacter asiaticus (Graca 1991; Folimonova et al.
2009), continuous efforts are needed to increase the number
of cryostored accessions representing the diversity of a collec-
tion. The remaining wild diversity of breeding and selection
material for clonally derived plant crops is diminishing, mak-
ing all plant collections more valuable and possibly irreplace-
able. Loss of plant germplasm translates to a decline in our
food diversity and in the portfolio of options for developing
crop cultivars that are suitable for cultivation today and in the
future. While a reasonable awareness of the necessity to pre-
serve genetic resources exists in our society, inclusion of crop
species not represented in NPGS and economic clonal crop
long-term backups are adding to the challenges facing this
group of crops.

The NPGS cryopreserved clonal collections are growing
annually, and additional genera and species are added to the
queue for storage as techniques develop and additional genera
are tested and adapted for storage. These clonal backups pro-
vide valuable security for those crops that cannot be stored as
seed but are vital to our economy, our diet, and our way of life.
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