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INTRODUCTION

The story of agriculture is the story of weed interference. Weeds cost billions of dollars
annually in lost production and cost of control. For the past decades, herbicide application
in crop fields has been increasing substantially. It was estimated that about $3.1 billion
was spent annually to control weeds in the United States (McWhorther, 1984). British
crop growers spend in excess of 200 million pounds a year on weed prevention. Although
herbicides have assisted the economic viability of farmers and helped reduce the risk of
soil erosion, there are many situations where weed control with sprays is more expensive
than cultivation, and the use of herbicides may be seen as a potential ecological hazard
(Felton and McCloy, 1992). Reduced dependence on herbicides is desirable in cutting
down the costs of crop production and retarding the development of herbicide resistance.

Traditional approaches to herbicide application are based on the assumption that weeds
are uniformly distributed in the fields. However, the vast majority of agricultural fields
has, in some degree, spatial variations in weeds infestation. The distribution of weeds,
particularly grass weeds in cereal crops, is often “patchy”, rather than even or random.
Ben and Hamm (1985) pointed out that portions of cereal crop fields are free of weeds
and various weed species often can be found in a certain field. If weeds are automatically
identified and classified, they can be precisely targeted with specific herbicides (Scarr,
1997). It is obvious that a precision weed detection system combined with selective spray
has considerable potential in crop production.

It is a complex problem to discriminate between crops and different weeds species. With
the advancement of computer technology, machine vision systems are found to be a
possible solution for weed identification (Thompson et al., 1990). A machine vision
system classifies plants based on their color, shape, or texture information. Casady et al.
(1990) reported that color provides an excellent, but frequently overlooked, source of
information in machine vision applications. Guyer ef al. (1986) stated that weed detection
based on leaf shape would be quite complicated as the plant grows mature. Shape-based
discrimination is suitable for crops having leaves with distinct forms, e.g. sugarbeet. For
crops with spindly leaves, however, shape recognition would become complicated as the
leaves are often difficult to be separated from other objects. Scarr er al. (1997) reported
that analyzing a small, homogeneously textured sub-region within a plant image is a more
robust approach for identifying a particular species. When a set of variables or 1mage
features (including texture and shape measures) that characterize a particular image is
obtained, it can be used to generate a classification rule for crop/weed discrimination.



In recent years, the Near-Infrared Reflectance (NIR) method has been adopted as a
quantitative tool for pattern recognition in many areas. Dowell (1992) studied the
potential of using tristimulus values and spectral reflectance for identification of normal
and damaged peanut kernels using a monochromatic machine vision system, a contact
colorimeter, a non-contact colorimeter, and a spectrophotometer. Casady et al. (1990)
measured the optical properties of soybean seeds using a spectroradiometer. They found
that the reflectance between 436 and 724 nm provided the most useful information for
separating normal from damaged seeds. Majumdar et al. (1996) examined the potential of
using tristimulus values, color solid scale values, and reflectance characteristics of grains
as discriminating features among various seed types, including bulk samples of cereals,
pulses, oilseeds, and specialty crops. They concluded that the tristimulus values, the color
scale values, and the percent reflectance ratios at different wavelengths in the visible
range of the electromagnetic spectrum could be used to effectively identify most of the
grains tested in their study. Fleton and McClay (1992) developed a sensor to reliably
discriminate green plants (weeds) against a background of soil and dead plant materials
based on the spectral characteristics of green vegetation. The red and near-infrared
wavebands provided the optimal discrimination. They claimed that their sensor detected
more than 95% of weeds on most of the farms. Vrindts and Bacrdemacker (1996) studied
the possibility of classifying soil, crops, and weeds using their spectral responses at
certain wavelengths. Spectrum data of leaves of four crops (potato, sugarbeet, corn, and
chicory), soil, and weeds were collected. They concluded that plant leaves and soil could
be correctly classified on a limited number of wavelengths selected through a
discriminant analysis.

The NIR analysis has gained popularity as a direct result of improvement in spectrum
measurement techniques and the development of powerful mathematical tools, such as
multivariate statistical analysis in pattern recognition. Multiterm Linear Regression
(MLR), Partial Least Square regression (PLS), and Principal Component Regression
(PCR) have been used to extract necessary information from a huge amount of spectral
data (Wang, 1997). Zhang et al. (1998) demonstrated their research on noninvasive
monitoring of deep-tissue pH using NIR spectroscopic measurement combined with the
multivariate calibration technique - PLS analysis. The results showed that the calibration
models from PLS provided adequate accuracy and sensitivity for in vivo clinical
monitoring of deep-tissue. Wang (1997) measured the reflectance spectra of single wheat
kernels from 400 to 2000 nm to classify wheat for grading purpose. Principal Component
Analysis (PCA) was used to find the scores of each spectrum vector as inputs to a neural
network for final classification. The classification accuracy reached 98%.

Spectral reflectance combined with multivariate analysis may provide a new solution to
weed detection. If a limited number of significant wavelengths can be selected to identify
weeds and classify weeds species, new types of weed sensors can be designed for
practical field applications. Efficiency of herbicide use can be, as a result, greatly
improved.



The objectives of this research were

1. to investigate the feasibility of weed detection based on spectral characteristics of
crops, weeds, and soil,

2. to determine significant wavelengths for discriminating weeds against crops and soil,
and

3. to develop classification models and methods for weed detection using plant spectral

properties.
MATERIALS AND METHODS

Materials

Spectral characteristics of 35 plants species, including five crops (corn, common
sunflower, soybean, sorghum, and wheat), 30 weed species, and soil, were studied for
weed classification. For each plant species, spectra of leaves and stems were collected
separately at two growth stages - three and six weeks from the date of planting. To
provide replicate samples, crops and weeds were planted in three groups, with the dates
of planting apart from each other by two weeks.

Three species of weeds (Kochia, Redroot Pigweed, and Russian Thiestle) and wheat were
studied for this paper. Spectra of stems and leaves of these plant species were taken as
eight classes, while soil was defined as the ninth class. The spectra of each class were
randomly divided into two sets, the training set for setting up calibration model and the
validation set for validating the calibration model.

Equipment

Leaves and stems of plants were individually placed on a spectralon background and
illuminated with white light from a diode-array spectrometer (DA7000, Perten
Instruments, Inc., Springfield, IL). Plants were illuminated via an 8-mm diameter fiber
bundle positioned 13-mm from the spectralon surface and oriented 45° from vertical. A
2-mm diameter reflectance probe was oriented vertically, 18 mm from the spectralon
surface. The reflectance probe carried the reflected energy to the spectrometer which
measures visible (400-750 nm) and NIR (750-1700 nm) reflectance at a rate of 30 spectra
per second. Procedures included collecting a baseline, collecting eight spectra from each
sample, and averaging these eight spectra. Collecting and averaging the eight spectra took
less than one second. The baseline was a spectrum of the spectralon background.

Data Analysis

Raw absorbance Log (1/Reflectance) data in the spectra region of 400-1700 nm were
collected using the optical radiation measurement system. The spectra were transferred
from ASCII file to binary file so as to be readable by GRAMS/32 (Galactic, 1996), a
spectroscopic software package combining data importing, processing, viewing,



organizing, and accessing capabilities. The add-on application PLSplus/IQ of the software
included powerful multivariate analysis tools, such as PCA, PLS-1, and PLS-2, which can
be used to build quantitative calibration models as well as qualitative discriminant
models. These software packages were used as the main data analysis tools for this
research. Figure 1 shows the procedure for developing the weed-classification calibration
model.

Data Preprocessing

1. Spectrum Normalization:

Raw spectra from the spectrometer were truncated to the range between 406 nm and 1680
nm. The discarded regions, 400-406 nm and 1680-1700 nm, showed large fluctuations
which were caused by measurement errors.

Many uncontrollable factors had strong effects on raw spectra. The samples that were
measured using diffuse reflectance often exhibit significant differences in the spectra.
Light scattering could often be considered as the most important contributor to the
variation in the spectra data. Standard Normal Variate (SNV) is a method for removing
the major effects of light scattering on spectra. It removes the mean value from a
spectrum and normalizes the spectrum using the standard deviation of the responses
across the entire spectral range. Equations (1) and (2) show the SNV algorithm.
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where
A is an n by p matrix of the training set of spectra across the entire spectral range,
A;is a I by p vector of the ith spectrum in the training set,

% is the mean response of the ith spectrum in the training set,
n is the number of spectra in the training set,

p is the number of wavelengths in the spectra, and

Ajisnvy is the SNV-correlated 1 X p vector of the ith spectrum in the training set.

Another preprocessing procedure, mean centering, was required by the PLS algorithm.
Mean spectrum calculated from all the spectra in the calibration set was subtracted from
single spectra. This process enhanced the subtle differences between the spectra.



2. Significant Wavelengths Selection

Practical real-time in-field weed detection requires a minimum number of significant
wavelengths to be used to classify weeds, crop, and soil background. Spectral regions
containing no useful information for discrimination do not need to be included in
calibration. Reducing the number of wavelengths also reduces the use of computer
memory and processing time. Efforts were made to select significant wavelengths within
the visible and NIR wavebands using the following methods.

a. Mean difference:

This method averages the normalized training set of spectra within each class. The mean
spectra of different classes were then subtracted from each other to produce the mean
differences between classes. Figure 2 shows mean differences between wheat stem and
Redroot Pigweed stem, between soil and Redroot Pigweed stem, and between wheat leaf
and Redroot Pigweed stem, respectively. The peaks and valleys selected from mean
differences between different classes were compared. If a peaks or a valley was found in
more than one mean differences, it was chosen as the significant wavelength. The
significant wavelengths selected for three weed species, Kochia, Redroot Pigweed, and
Russian Thistle, against wheat and soil were 464, 542, 635, 676, 705, 1074, 1449, and
1515 nm.

b. Category Contrast

Observations on normalized mean spectra of different classes revealed that, at certain
wavelengths, the contrasts between major categories of object features were maximized.
Such wavelengths found for the contrast between the leaf (wheat and weeds) category and
stem (wheat and weeds) category were 675 and 1453 nm. In general, the peak values at
1453 nm (NIR region) of plant stems were higher than those at 675 nm (red region). To
the contrary, the peak values at 1453 nm for plant leaves were generally lower than those
at 675 nm. The contrast was signified at the wavelengths of 545 and 614 nm between
green leaves and reddish stems. In addition, spectra reflection of soil was different from
plants (wheat and weeds) in the general trends across the entire visible and NIR
wavebands. Two wavelengths 751 and 1453 nm can be used to categorically differentiate
soil from living plants. Figure 3 shows the optical characteristics of Redroot Pigweed
stem, wheat leaf, wheat stem and soil. Based on category contrast, five wavelengths (545,
614, 675,751, 1453 nm) were selected for calibration.

In addition to these methods, “divergence”, as introduced by Tou and Gonzalez (1974),
was also studied for significant wavelengths selection. Divergence is a measure of
“distance” or dissimilarity between two classes. Different from the mean-difference and
category contrast methods, the divergence method considered the statistical distributions
of the spectra responses when calculating the “distance” and to evaluate the effectiveness
of class discrimination.



Divergence (Jy) is defined as the total average information for discriminating class { from
class j for pattern x (spectrum, in this study).

Pi(x)
Jy= J-[p,.(x)-— pj(x)]lnmdx
x / (3)
where
pi(x) is the probability of occurrence of x, given that it belongs to class ¢, and
pj(x) is the probability of occurrence of x, given that it belongs to class j.

If two pattern classes are characterized by two n-variate normal populations, the
divergence for these two classes becomes

J, = %tr[(q —c)c;' - C;‘)]+ %:r[(c;‘ +C;' Yo, —m, Ym, —m, )]

“4)
where
m; and m;are the mean vectors of class i and j, respectively, and
C; and C; are n X n covariance matrices of classes 7 and j, respectively.
At each wavelength, since n = 1 and C; = (;, Equation (4) can be expressed as
1 1 1 I 1 1 2
Ji=7|lo’ -0 2)[*"—-“] g (—"-i-—] th—H

where
i and g are the mean responses of class i and j at this wavelength
o; and gj are the standard deviations of the responses of classes i and j at this
wavelength.

Divergence for classes i and j can then be plotted over the entire spectral range. Peaks on
this plot can be selected as the significant wavelengths. Divergences for soil vs. Redroot
Pigweed stem, wheat stem vs. Redroot Pigweed stem, and wheat leaf vs. Redroot
Pigweed stem are shown in Fig.4. From Fig. 2 and Fig. 4, the similarities between mean
difference and divergence were obvious. For example, both mean difference and
divergence curves of “Soil vs. Redroot Pigweed” showed peaks within the ranges of 700 -
100 nm and 1400 - 1680 nm. Peaks also found between 500 and 600 nm on the
divergence and mean difference curves for “wheat stem vs. Redroot Pigweed”. The
similarity between the divergence and mean difference curves demonstrated in Fig. 2 and
4 suggested that the mean difference method is a reasonably effective method for
significant wavelengths selection.



3. Assignment of Feature Values

Feature values are data given to each class, each group of classes, or each feature of class
to set up calibration model. They represent the characteristics of classes or groups of
classes. In this study, the feature values were assigned in two ways:

— Randomly assign values to each group, or
- Assign values to features representing the contrasts between category of objects.

Two calibration models were developed in this study. Model I used eight significant
wavelengths selected by the mean difference method. Random feature values were
assigned to each class or group of classes. It was found that different combinations of
feature values had different effects on calibration results. Results based on various feature
value combinations were compared.

Model I was based on the five significant wavelengths selected using the category
contrast method. Four features of samples were selected, each corresponding to a
category contrast. A feature value was the differences between two mean difference
responses: '

C = deu—Qgrs )
C, = Q15— Qg e
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€, =am—ies 5

where

A5, 8614 » Ag75 , A7s1 , Ay are mean responses of a class at wavelengths 545, 614, 675,
751, and 1453 nm, respectively, and
C,, C3, C3, and Cy are feature values of the class.

PLS Calibraiion

Partial Least Squares (PLS) is a mathematical tool that can be used to decompose the
spectra into a set of “variation spectra”, called eigenvectors, or factors, that represent the
changes in the absorbances within the wavelength range of the spectra. =

PLS performs the decomposition on both spectral and feature data simultaneously so that
the calibration models established are directly related to the features of interest.



A= 8§ XF
(nxp)  {nxf)  (rum)

C = U % P:_.
(nxm)  {nxf) (f xm) (10)

where
A = spectra data,
C = feature values,
S, U = spectral and feature value scores assigned to F, and F,, respectively,
F,, F. = spectral and feature value factors (eigenvectors), respectively,
n = number of spectra in the training set,
p = number of data points (wavelengths) in a spectrum,
m = number of features, and
J = number of factors.

The training set consisting of spectra of nine classes was used as the input to PLS/IQ
software to set up the calibration model. Before PLS analysis was performed to the
training set, the data were preprocessed (SNV and mean centering). PLS analysis gave the
number of factors used in the calibration model and the predicted feature values.

Once the calibration model was established, the validation set of spectra was tested using
the model. The qualitative discriminant Analysis (DA) available in the GRAMS/32
(Galactic, 1996) allowed an “unknown” spectrum to be compared against multiple
models, each of which was established using spectra of one specific class. This algorithm
gives an indication of the likelihood of unknown spectrum matching a particular model
and identifies it as the corresponding class. For nine classes, this method requires the
establishment of nine separate PLS calibration models.

In this study, classification was accomplished using a slightly different method. Instead of
nine separate calibration models, only one PLS model was established for all nine classes.
Once the model is set up, the feature values predicted by the model, together with their
corresponding classes were used as inputs for a multivariate DA model. The DISCRIM
procedure in the Statistics Analysis System (SAS, 1993) was then used to generate
multiple discriminant functions. For the validation set of spectra, the PLS model in
GRAMS was used first to predict the feature values. The DA model then examined the
predicted feature values and classified the spectra into different classes.

Procedure

The procedures for data analysis and processing using Model I and Model II are
summarized as follows:

Model I used four groups of classes, i.c. weed leaf (WL), weed stem (WS), wheat (WH),
and soil (SOI). The procedure included the following steps:



Data normalization using SNV

Mean centering

Significant wavelengths selection based on the mean difference method
Random or orderly selection of the feature value for each group of spectra
PLS analysis

DA Analysis

Model IT used nine classes directly. The procedure included the following steps:

¢ Data normalization using SNV
Mean centering

* Wavelengths selection based on category contrast
* Assignment of feature values based on category contrast
» PLS analysis
e DA analysis
RESULTS AND DISCUSSION
Model I

To classify four groups of samples, one feature was used and various combinations of the
feature values were randomly assigned to each group. The results showed that value
assignment had a strong effect on classification.

When the feature values were assigned orderly based on some spectral characteristics, the
classification results were improved. One spectral characteristic feature was general color
perception. Visual perceptions have suggested that the leading color for wheat and weed
leaves was green and the leading color of weed stems and soil was brown. Two feature
value assignment schemes (Table 1) were compared. The first scheme supported the
visual perception, whereas the second scheme opposed it. The results are shown in Table
2 and Table 3. Feature values assigned in accord with visual perception resulted in a
higher classification accuracy for wheat and weed stem. The classification accuracy of
weed stems reached 100%.

Table 4 gives the results of discriminant analysis using the model based on eight
wavelengths and a feature values assignment scheme of WL = 1. WS =3, WH =2, and
SOI=5. Assigning a larger value to the soil class improved the classification accuracy for
the wheat class (from 25.30% to 51.81%) with the cost of decreased classification rate for
the weed stems class (from 100% to 88.89%). It seemed that Model 1 successfully
classified most of the weed stems with a few misclassifications between soil and reddish
weed stem. The model however had great difficulties in dealing with wheat leaves,
which, as a whole, were largely misclassified into weed stems and leaves.
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CONCLUSIONS

1. Study of spectra differences between weeds, crops, and soil provided useful
information for selection of significant wavelengths, which may be used to design a
practical weed sensor.

2. Two calibration models were developed for weed detection. The first model used
eight wavelengths selected by mean differences between spectral responses of
different classes and one feature with feature values randomly assigned to different
classes. The second model used five wavelengths selected using category contrast and
four features with feature values assigned using category contrast. Both models used
partial least squares and discriminant analysis for classification. The second model
outperformed the first model, especially in differentiating weed species.

3. Among nine classes tested (leaf and stem of wheat, leaves and stems of three weed
species, and soil), soil was classified from other classes with a classification rate of
100%. Weed stems can be, in most cases, correctly identified from other classes.
However, to correctly identify stems of specific weed species and to differentiate
between green objects - wheat leaf, wheat stem, and weed leaf - were more difficult.

4. Further study should be conducted to improve the classification accuracy by
collecting a larger amount of samples of plants and soil. With large sample sizes,
divergence feature function can be applied to select the effective wavelengths
statistically, which may further improve the calibration models.
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Table 1 Feature-value Assignment Scheme

Scheme WL WS WH SOI
(Weed (Weed (Wheat Leaf + (Soil)
Leaf) Stem) Stem)

Scheme 1 1 2 3 4

Scheme 2 1 3 2 4
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Table 2 Classification results for Model I

using six wavelengths and feature values of
WL=1,WS=3,WH=2,and Soil=4

To
VARIETY WL WS WH SOI Total
WL 0 34
0% 100%
WS 0 18
0% 100%
From [WH 0 83
0% 100%
SOI 0 o| 7
0% 0% 100%
Table 3 Classification results for Model 1
using six wavelengths and feature values of
WL=1,WS=2, WH=3,and Soil=4
To
VARIETY WL wSs WH SOI1 Total
WL 0 34
0% 100%
wSs 0 18
0% 100%
From |[WH _-3 0 83
1 0% 190%
SOI 0 TR I 7
0% 0% 0% 100%




Table 4 Classification results of Model I
using 8 wavelengths and feature values of
WL1=1, WS =3, WH = 2, and Soil = 5

To
VARIETY WL WS WH SOI Total
WL Rt 0 14 0 34
: 0% 41.18% 0% 100%
WS o 16 2 0 18
0% 88.89% 11.11% 0% 100%
From i R

WH 38

] 45.78%

SOI 0

0%

Table 5 Classification results of Model IT
using 5 wavelengths and feature values
based on category contrast
To
VARIETY WL WS WH SOI1 Total
WL 0 9 0 34
0 26.47% 0 100%
WS M L 3 0 18
8333% 16.67%| 0 100%
From e e _

49.40% 1.20%| 49.40% 0 100%
SOI 0 o 0 5 5
0 0 0 100% 100%




Table 6 Classification results of Model I for 9 classes
using 5 wavelengths and feature values

based on category contrast

VARIETY| KCL KCs RRL RRS RTL RTS WHL WHS SOI Total
KCL 0 1 0 0 0 0 7
0%| 14.29% 0% 0% 0% 0% 100%
KCS 1 0 1 0 0 0 4
25% 0% 25% 0% 0% 0% 100%
RRL 0 2 0 9 0 0 23
0%] 8.70% 0%| 39.13% 0% 0% 100%
RRS 0 0 0 0 0 12
0% 0% 0% 0% 0% 100%
RTL 0 0 0 0 0 4
0% 0% 0% 0% 0% 100%
RTS 0 0 0 0 0 2
0% 0% 0% 0% 0% 100%
WHL 5 0 22 0 0 50
10% 0% 44% 0% 0% 100%
WHS 0 0 0 : 0 33
0% 0% 0% 6.06%| 12.12% 0% : 0% 100%
S01 0 0 0 0 0 0 0 5
0% 0% 0% 0% 0% 0% 0% 100%




Table 7 Classification results of Model I for 9 classes

using 8 wavelengths and feature values of
WLI=1,WS=3, WH=2,and Scil=5

VARIETY| KCL | KCS RRL | RRS | RTL | RTS | WHL | WHS SOI | Total
KCL 4 0 0 0 2 0 0 7
-57.14% 0% 0% 0%| 28.57% 0% 0%| 100%
KCS ] 2 0 0 0 i) 0 4
0%|! 50% 0% 0% 0% 0% 0%| 100%
RRL 13 0 7 0 2 1 o} 23
56.52% 0% 30% 0%| 8.70%| 4.35% 0% 100%
RRS 0 0 0 0 0 0 2 12
0% 0% 0% 0% 0% 0%| 16.67%] 100%
RTL 0 ) 0 0 0 0 0 4
0% 0% 0% 0% 0% 0% 0% 0%| 100%
RTS 0 0 0 0 0 0 0 0 2
0% 0% 0% 0% 0% 0% 0% 0%| 100%
WHL 22 0 4 0 14 of: . 10 0 0 50
44% 0% 8% 0% 28% 0% 20% 0% 0% 100%
WHS 0 0 0 1 9 10 of . 48 0 33
0% 0% 0%| 3.03%| 27.27%| 30.30% 0%] 39.39% 0% 100%
soI 0 3 0 0 0 0 0 0| 2 5
0% 60% 0% 0% 0% 0% 0% 0% 40%| 100%




Table 8 Validation results of Model II for 9 classes
using 5 wavelengths and feature values
based on category contrast

From | KCL KCS RRL RRS RTL RTS WHL | WHS SO1 Total
KCL 0| 0 0 0 0 1 0 0 7
0% 0% 0% 0% 0%| 14.29% 0% 0% 100%
KCS 0 0 0 1 0 4
0% 0% 0% 25% 0%| 100%
RRL 1 0 9 0 0 20
100%
RRS g
100%
RTL 3
100%
IRTS 2
100%
WHL 48
100%
'WHS 31
100%
S0I 5
100%

\




Raw Data from Spectrometer

Data Preprocessing

A

Light Scattering Correction
- Standard Normal Variats {SNV)

/

Significant Feature Value
Wavelangth Selection Assignment

=~ 7

Selected Wavelengths Selecled Feature Value
Raw Spectra Data PLS
> (PLS/1Q)
Discriminant
Analysis
(SAS)

Fig. 1 Procedures for Calibration Establishment
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