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Erosion by Wind: ModelingI

L. J. Hagen
Wind Erosion Research Unit, USDA-ARS, GMPRC, Manhattan, Kansas, U.S.A.

Abstract
Models of wind erosion are used to investigate fundamental processes and guide resource management. 
Many models are similar in that temporal variables control soil wind erodibility, erosion begins when fric-
tion velocity exceeds a threshold, and transport capacity for saltation/creep is proportional to the cube of 
friction velocity. Conservation of mass equations that incorporate erosion processes have been developed to  
calculate soil loss, transport, and deposition. Components of the Wind Erosion Prediction System model 
are illustrated as an example.

Introduction

Numerous models of wind erosion exist. In regional- and 
global-scale models, dust generation is often coupled to 
diffusion, advection, and deposition models.[1] Their ap-
plications include prediction of dust impacts on past cli-
mates,[2] military operations,[3] health problems,[4] and 
current weather, particularly in East Asia.[5] Model results 
also demonstrate that dust is an important contributor to 
climate forcing.[6] There are numerous challenges in modi-
fying field-scale models for use on large areas.[1,7–9]

Field-scale erosion models are used to predict soil loss, 
plan conservation systems, and assess offsite impacts of 
wind erosion.[10,11] Many models exist to simulate specific 
effects such as sand ripples.[12] Models also serve to in-
crease and synthesize our knowledge about wind erosion 
of soil.

Wind Erosion Processes

The major factors that control soil wind erodibility are 
mainly temporal (Table 1), and their range of variation 
depends on weather, soil management, and soil intrinsic 
properties such as texture.

To begin erosion, friction velocity must overcome the 
forces holding particles on the surface. Threshold friction 
velocities for dry, monodisperse particles have been mea
sured[13] and theoretically analyzed (Fig. 1).[14] For mixtures 
of sizes, thresholds maybe slightly lower due to particles  
perched on a surface or higher when sheltered by immobile 
aggregates.[15] Both surface wetness and high humidity 
also tend to increase threshold velocities.[16,17] Saltation is 
not needed to entrain 0.07- to 0.10-mm-diameter particles. 

I Contribution from USDA, ARS in cooperation with Kansas Agricultural 
Experiment Station. Contribution 08-106J from the Kansas Agricultural 
Experiment Station, Manhattan, KS.

Abrasion creates mobile aggregates, and abrasion suscep-
tibility of clods/crust can be characterized by an abrasion 
coefficient. It can be directly measured or estimated from 
the crushing energy.[18,19] Intermittent field erosion in the 
short term is often caused by wind gustiness,[20] but longer 
term variations may be caused by surface armoring during 
erosion events.[21]

Modes of soil transport include creep (rolling, 0.8– 
2.0 mm diameter), saltation (hopping, 0.1–0.8 mm), and 
suspension (<0.1 mm). The creep/saltation transport ca-
pacity q (kg m–1 s–1) is proportional to the cube of friction 
velocity u* (m s–1). Many formulas for q have been pro-
posed,[15] and one formula is

	

ρa 2
* * *t( )

C
q u u u

g
= −

	
(1)

where C is a coefficient, ra (kg m–3) is air density, g (m s–2) 
is acceleration of gravity, and u*t (m s–1) is threshold fric-
tion velocity. The transport capacity for suspended parti-
cles is large, and their downwind discharge can be several 

Table 1  Factors that control wind erodibility of a dry, bare 
soil.

Soil state Factors

Aggregated 
(tilled) surface

Aggregate size distribution by layer

Dry stability of immobile aggregates by layer

Breakage coefficient of mobile aggregates 

Rock volume fraction (>2 mm diameter) by 
layer

Random and oriented surface roughness

Crusted and/or  
consolidated 
surface

Crust cover fraction 

Dry stability of crust/consolidated zone

Thickness of consolidated zone

Mass, cover, and breakage coefficient of loose 
soil on crust

Other parameters same as aggregated surface
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times that of saltation/creep as illustrated by measurements 
at dry Lake Owen.[22]

Wind erosion on a field-scale can be modeled using con-
servation of mass equations in successive control volumes 
each a few meters in length (Fig. 2).[23] Friction velocity 
above standing biomass is depleted to simulate wind fric-
tion velocity at the soil surface. Sources of saltation/creep 
discharge include entrainment of loose aggregates by wind 
drag and splash impacts, and abrasion from immobile 
clods and crust. Sinks for saltation/creep discharge include 
trapping by surface roughness, interception by standing 
biomass, and breakage to suspension-sized particles.

Similarly, sources for suspension discharge include 
entrainment of loose aggregates, abrasion from clods and 
crust, and breakage of saltation/creep aggregates. Sinks for 

suspension include interception by standing biomass and 
deposition on downwind immobile surfaces. Emission, 
abrasion, and breakage are modeled separately because the 
interparticle binding energy increases by roughly an or-
der of magnitude between each process. Moreover, not all 
processes may be present in a given surface condition, but 
each can be measured separately using a wind tunnel.[24,25] 
Analytic solutions for quasi-steady state conservation of 
mass equations have been developed for saltation/creep 
and suspension discharge[23] and the predictions validated 
using measured data from small fields.[26–28]

Field-Scale Wind Erosion Models

The most widely used model has been the empirical Wind 
Erosion Equation (WEQ).[29] The long-term annual soil 
loss per unit area (E) is given by

	 E = ICKLV	 (2)

where the factors are soil wind erodibility (I), climate (C), 
surface roughness (K), field length (L), and vegetation 
(V).

A continuous, process-based model, the Wind Erosion 
Prediction System (WEPS), has been developed (Fig. 3) to 
replace WEQ.[30] In WEPS, weather simulators drive five 
submodels that simulate surface conditions on a daily basis 
and erosion on a subhourly basis.

Additional models used to predict erosion include the 
Revised Wind Erosion Equation, Texas Tech Erosion 
Analysis Model, Wind Erosion on European Light Soils, 
Australian Land Erodibility Model, and Integrated Wind 
Erosion Modeling System.[31–35]
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Fig. 1  Threshold friction velocities for monodisperse particles 
(A)[16] and a particle mixture[17] containing 15% immobile ag
gregates with maximum diameter of transported particles shown 
(B).
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Fig. 2  Schematic of control volume illustrating major wind erosion processes on bare soil.
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Fig. 3  Flow chart illustrating components of the WEPS field-scale wind erosion model.
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