Carbon supply and storage in tilled and non-tilled soils as influenced by cover crops and nitrogen fertilization.

U.M. Sainju¹, B.P. Singh², W.F. Whitehead², and S. Wang²

Introduction

Cover cropping can provide additional residues that not only reduce soil erosion but also improve soil quality and productivity by increasing soil organic C (SOC) (McVay et al., 1989; Kuo et al., 1997). Similarly, N fertiliza can increase SOC by increasing crop biomass production and amount of residue returned to the soil (Gregorich et al., 1996; Omay et al., 1997). The increase in SOC due to these management practices can, however, be diffe in tilled and non-tilled soils due to difference in mineralization rates of pl residues (Cambardell and Eliott, 1993; Allmaras et al., 2000; Sainju et al., 2 These practices can provide opportunities to increase SOC in the southeas United States where SOC is usually lower than in northern regions becau rapid mineralization (Doran and Smith, 1987).

Objectives

Examine total C inputs returned to the soil from aboveground (stems a leaves) and belowground (root) biomass of cover crops, cotton, and sorghum from 2000 to 2002 as influenced by cover cropping and N fertilization.

Determine the effects of cover crops and N fertilization rates on SOC in and non-tilled soils at the 0 to 120 cm depth.

Treatments

Cover crops (main plot):

Rye, hairy vetch, rye/hairy vetch biculture, and winter weeds (no cover crop)

N fertilization rates (split plot):

Cotton (2000 and 2002): 0, 60, and 120 kg N ha⁻¹

Sorghum (2001): 0, 65, and 130 kg N ha⁻¹

Design: Split plot arrangement in randomized complete block with three replications in no-tilled, strip-tilled, and chisel-tilled soils of the same seri

Discussion and Conclusions

Cover crops and N fertilization have potentials to increase SOC, regardles tillage, in the southeastern United States. Because of higher C inputs from hairy vetch/rye biculture and associated cotton and sorghum residues, the biculture with 120 to 130 kg N ha⁻¹ either increased SOC at the surface soil in no-tilled plots or reduced its rate of depletion at the surface and subsurface soils in tilled plots compared with other treatments. A mixture of legume and nonlegume cover crops can sequester C at a greater rate than either species alone, especially in no-tilled soil. This will not only improve soil organic matter and soil productivity but also help to reduce global warming by sequestering a greater level of atmospheric CO₂ in the soil.

(1) USDA-ARS, Sidney, MT and (2) Fort Valley State Univ., GA

	Results	
	Although residue C returned to the s	soil was higher in cover crops th
	winter weeds, total aboveground and	d belowground C inputs from co
ation	and associated cotton and sorghum	were greater in hairy vetch/rye t
	than in monocultures, regardless of t	tillage (<i>lable 1</i>).
2	Significant differences in SOC in tille	ed and non-tilled soils between t
erent	were observed mostly at the 0 to 30 d	cm depth (<i>Tables 2, 3, and 4</i>). The
lant	higher with cover crops than with w	inter weeds, regardless of tillage
2002).	in SOC were greater in cover crops v	with 120 to 130 kg N ha ⁺ than wi
stern	treatments at 0 to 30 cm in strip-tille	d soil and at 10 to 60 cm in chise
ise of	soil.	
	The SOC level varied with cover cro	ps and time of sampling at 0 to 1
	no-tilled soil (<i>Fig. 1</i>). Levels of SOC v	were higher in vetch/rye than in
	weeds at 10 to 30 cm in no-tilled and	l at 0 to 60 cm in chisel-tilled soil
and	and 2).	
	Only rye and vetch/rye sequestered	C in no-tilled soil (<i>Table 5</i>). The
	sequestration rate was 267 and 33 kg	g C ha ⁻¹ yr ⁻¹ for vetch/rye and rye,
	respectively.	_
n tilled	After 3 yr, SOC at 0 to 30 cm, average	ed across cover crops and N rate
	higher in no-tilled and strip-tilled th	an in chisel-tilled soil (<i>Fig. 3</i>).
2		
ſ		
•		
1 es .		
	Rye	Hairy vetch
C		
SS OI		
1		

Hairy vetch and rye biculture

an in over crops biculture

reatments SOC was e. Increases ith other el-tilled

0 cm in winter (*Figs.* 1

es, was

Cover	Ν	No-	Strip	Chisel
crop	rate	till	till	till
	kg N ha ⁻¹	Mg :	residue C h	a ⁻¹
Weeds	0	6.8	11.0	12.0
	60-65	7.8	14.2	9.8
	120-130	10.0	14.0	13.8
Rye	0	12.2	13.9	11.6
•	60-65	13.7	16.6	14.8
	120-130	14.8	17.5	16.1
Vetch	0	16.4	15.8	18.4
	60-65	16.2	17.0	11.3
	120-130	15.8	17.6	17.5
Vetch/	0	17.7	20.2	18.9
rye	60-65	16.5	23.6	22.0
	120-130	18.9	22.4	20.6
LSD (0.0)5)	6.3	6.5	6.5

Table 1. Total cover crop, cotton, and sorghum C inputs

Table 2. Organic C in no-tilled soil

Tables 1-5.

from 2000 to 2002

			Soil de	epth (cn	1)	
Cover	N rate	0-10	10-30	30-60	60-90	90-120
<u> </u>	1400		10.50	20 00		
	kg N ha ⁻¹		Mg	soil C h	a ⁻¹	
Weeds	0	10.6	14.0	10.1	8.4	7.0
	60-65	10.6	13.8	11.7	9.4	6.4
	120-130	10.9	13.3	10.5	7.0	5.6
Rye	0	11.1	14.1	10.3	7.9	5.3
•	60-65	11.1	15.6	10.3	8.1	5.8
	120-130	11.5	17.1	11.3	6.6	6.8
Vetch	0	11.8	14.4	11.7	9.3	6.0
	60-65	11.2	16.1	12.9	8.1	6.3
	120-130	11.5	14.0	11.9	8.8	6.2
Vetch/	0	10.6	15.5	11.5	9.0	6.7
rye	60-65	10.9	16.0	10.7	7.3	5.7
•	120-130	11.6	16.5	11.0	6.7	5.7
LSD (0.0)5)	1.0	2.3	3.4	3.4	2.2

 Table 3. Organic C in strip-tilled soil

			Soil de	epth (cn	n)	
Cover	Ν					
crop	rate	0-10	10-30	30-60	60-90	90-120
	kg N ha ⁻¹		M	g soil C	ha ⁻¹	
Weeds	0	9.7	13.7	9.9	6.9	6.1
	60-65	8.8	14.0	10.1	8.0	5.6
	120-130	10.2	15.5	9.4	8.3	5.6
Rye	0	9.4	14.3	8.8	6.7	5.2
•	60-65	9.7	15.3	10.8	7.9	5.8
	120-130	11.0	16.7	10.3	6.4	5.4
Vetch	0	10.0	14.3	9.7	6.5	5.8
	60-65	9.9	14.5	9.2	6.5	5.7
	120-130	10.3	15.9	9.0	6.4	5.5
Vetch/	0	9.0	14.7	10.1	8.4	4.9
rye	60-65	9.1	14.9	10.6	7.3	5.4
	120-130	10.8	15.1	10.3	7.9	6.6
LSD ((0.05)	1.0	2.8	3.0	3.3	2.1

 Table 4. Organic C in chisel-tilled soil

			Soil depth (cm)					
Cover crop	N rate	(0-10	10-30	30-60	60-90	90-120	
	kg N ha ⁻¹			Mg so	il C ha ⁻	1		
Weeds	0	8	8.0	12.4	9.2	7.1	5.5	
	60-65	(9.2	13.1	9.8	6.7	4.5	
	120-130	(9.4	13.1	9.4	7.9	6.2	
Rye	0		8.9	12.9	8.8	7.6	6.0	
·	60-65	(9.0	13.7	9.1	7.1	5.8	
	120-130	(9.1	14.0	12.1	8.1	5.9	
Vetch	0	(9.1	13.9	10.9	6.4	6.0	
	60-65	(9.1	13.6	10.3	7.0	6.0	
	120-130	(9.5	14.6	12.1	8.0	6.6	
Vetch/	0	(9.5	14.3	10.4	8.1	6.4	
rye	60-65		10.1	14.2	11.0	8.3	5.0	
•	120-130	(9.5	14.6	11.6	7.8	6.0	
LSD (().05)	().9	2.2	2.9	3.4	2.3	

Winter weeds

 Table 5. Soil C sequestration rate at 0-30 cm depth

Cover crop	No-till	Strip till	Chisel till	
		-kg C ha ⁻¹ yr	-1	
Weeds	-967	-1233	-1066	
Rye	33	-733	-667	
Vetch	-133	-900	-500	
Vetch/rye	267	-467	-233	

References

Allmaras et al. 2000. J. Soil Water
Conserv. 55:365-373.
Cambardella and Eliott. 1993. Soil
Sci. Soc. Am. J. 57:1071-1076.
Doran and Smith. 1987. p. 53-73.
SSSA Spec. Publ. 19. SSSA,
Madison, WI.
Gregorich et al. 1996. Soil Sci. Soc.
Am. J. 60:472-476.
Kuo et al. 1997. Soil Sci. Soc. Am. J.
61:145-152.
McVay et al. 1989. Soil Sci. Soc. Am.
J. 53:1856-1862.
Omay et al. 1997. Soil Sci. Soc. Am.
J. 61:1672-1678.
Sainju et al. 2002. Soil Tillage Res.
63:167-179.