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Abstract

Background: Atypical bovine spongiform encephalopathies (BSEs) are recently recognized prion diseases of cattle. Atypical
BSEs are rare; approximately 30 cases have been identified worldwide. We tested prion gene (PRNP) haplotypes for an
association with atypical BSE.

Methodology/Principle Findings: Haplotype tagging polymorphisms that characterize PRNP haplotypes from the promoter
region through the three prime untranslated region of exon 3 (25.2 kb) were used to determine PRNP haplotypes of six
available atypical BSE cases from Canada, France and the United States. One or two copies of a distinct PRNP haplotype
were identified in five of the six cases (p = 1.361024, two-tailed Fisher’s exact test; CI95% 0.263–0.901, difference between
proportions). The haplotype spans a portion of PRNP that includes part of intron 2, the entire coding region of exon 3 and
part of the three prime untranslated region of exon 3 (13 kb).

Conclusions/Significance: This result suggests that a genetic determinant in or near PRNP may influence susceptibility of
cattle to atypical BSE.
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Introduction

Transmissible spongiform encephalopathies (TSEs), or prion

diseases, are infectious, invariably fatal neurodegenerative disor-

ders that occur in humans, ruminants, cats, and mink [1]. TSEs

are unique in their ability to manifest through acquired, inherited,

and sporadic routes [1]. Classical bovine spongiform encephalop-

athy (BSE) is an acquired cattle TSE of unknown origin that

spreads through the consumption of meat and bone meal

contaminated with the infectious prion agent [2]. Classical BSE

is accepted as the probable cause of the human TSE variant

Creutzfeldt-Jakob Disease (CJD) [3,4]. Two BSEs distinct from

classical BSE, so called ‘‘atypical BSEs’’ (H-type and L-type) have

recently been identified in Asian, North American and European

cattle [2]. Approximately, 30 atypical BSEs have been identified

worldwide and their etiology is unclear.

Variation in the prion gene (PRNP) correlates with TSE

susceptibility in some mammals including cattle [1,5–7]. The

deletion alleles of two bovine PRNP insertion/deletion polymor-

phisms, one within the promoter region and the other in intron 1,

associate with classical BSE susceptibility [5–7]. These same alleles

do not correlate with atypical BSE susceptibility [8]. In 2006, a

United States atypical BSE case was identified and subsequently

found to have a PRNP nonsynonymous polymorphism (E211K)

that is homologous to the human PRNP E200K polymorphism

(observation by J.A.R). The human K200 allele is a highly-

penetrant risk factor for genetic CJD [9]. To date, the K211 allele

has not been observed in other atypical BSE cases or reported in

healthy cattle [10,11]. Thus, while the K211 allele may have been

a genetic cause for one case of atypical BSE, it has not accounted

for the majority of atypical cases. Consequently, any association of

PRNP alleles with atypical BSE was largely unknown prior to this

study.

PRNP variation in cattle is complex. Bovine PRNP polymor-

phism alleles reflect a region of high linkage disequilibrium (LD)

from the promoter through a portion of intron two, and a region

of low LD from intron two past the three prime untranslated

region. This genetic architecture is present across populations of

Bos taurus breeds and a similar trend has been observed in a small

sampling of Bos indicus influenced breeds [11]. A set of 19

haplotype tagging polymorphisms (htSNPS) was previously

developed that accounts for the genetic architecture of PRNP
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and characterizes haplotype diversity within and across PRNP

[11]. In this study, we used the htSNPs to test PRNP haplotypes for

an association with atypical BSE and report the association of a

relatively uncommon PRNP haplotype with atypical BSE.

Results and Discussion

The 19 PRNP htSNPs were used to determine PRNP haplotypes

of six available atypical BSE cases that originated from Canada,

France and the United States. The haplotypes were phased in

previously defined PRNP regions of high and low LD (Fig. 1A;

network 1 spans the high LD region, network 2 spans the low LD

region). Additionally, the entire prion protein (PrP) coding region

was sequenced for each of the six atypical BSE cases. None of the

cases contained previously unknown SNP alleles in the PrP coding

region or the K211 allele. However, one or two copies of a distinct

haplotype were identified by haplotype reconstructions in five of

the six cases. The haplotype spans a portion of intron 2, the entire

coding region, and a portion of the 39 UTR of PRNP (13 kb),

(haplotype ‘‘o’’, Fig. 1B and 1C, Table 1).

The frequency of the implicated haplotype in atypical BSE cases

was compared to its frequency in a control group of 114 diverse

DNA samples representing 21 breeds of U.S. beef and dairy cattle,

since unaffected controls from the farms where the atypical BSE

cases originated are not available, nor are diversity panels of beef

and dairy cattle in Canada and France. However, the control

group of U.S. cattle represents germplasm that is collectively found

in Canada, France, and the United States, and current evidence

from the international bovine HapMap project indicates that

diversity within Bos taurus breeds is similar between countries

(personal communication from T.P.L.S.). Therefore, we used the

group of U.S. cattle as a surrogate control in this study which

involves natural occurrences of atypical BSE cases from three

countries on two different continents. The implicated haplotype

was observed in both Bos taurus and Bos indicus individuals in the

control group and had a frequency of 0.050, ten-fold less than the

atypical BSE-cases (frequency = 0.50). A Fisher’s exact two-tailed

test showed a significant association of the haplotype with atypical

BSE (p = 1.361024), as did the difference between proportions

(CI95% 0.263–0.901).

This result suggests that a genetic determinant in or near PRNP

may influence susceptibility of cattle to atypical BSE. The

causative allele(s) remains to be identified and probably occurs

on the background of the implicated PRNP haplotype. Complete

sequencing of PRNP from atypical BSE cases and BSE negative

controls that both have the implicated haplotype may reveal PRNP

alleles with predictive power for atypical BSE. The implicated

haplotype itself does not effectively predict atypical BSE because of

its frequency in healthy cattle. However, our results combined with

the discovery of the PRNP K211 allele suggest that atypical BSE

may be managed through the identification of cattle with known

genetic risk factors for the disease and their removal from livestock

populations.

Materials and Methods

Composition of atypical BSE group
Atypical BSE cases were selected for this study solely on the

basis of available DNA for PRNP sequencing and genotyping.

DNA samples were obtained from six unrelated BSE cases

confirmed as atypical H or L type BSE by Western blot profile

(high or low molecular mass of unglycosylated protease-resistant

prion protein (PrPres) [12–14]. Two atypical L-type and two

atypical H-type BSE cases originated in France. Two additional

atypical H-type BSE cases originated from Canada and the United

States.

Composition of cattle control group
Samples from two cattle DNA diversity panels were used to

construct the cattle control group; the U.S. Meat Animal Research

Center (USMARC) Beef Cattle Discovery Panel 2.1 (MBCDP2.1)

[15] and the USMARC Dairy Cattle Panel (MDCP1.5) [11,16].

Breeds in this group include Angus (n = 8) Hereford (n = 8),

Limousin (n = 8), Simmental (n = 7), Charolais (n = 6), Beefmaster

(n = 5), Red Angus (n = 6), Gelbvieh (n = 6), Brangus (n = 5), Salers

(n = 5), Brahman (n = 6), Shorthorn ( n = 5), Maine-Anjou (n = 5),

Longhorn (n = 4), St. Gertrudis (n = 4), Chianina (n = 4), Holstein

(n = 8), Jersey (n = 7), Guernsey (n = 3), Aryshire (n = 2), and

Brown Swiss (n = 2). A total of 21 breeds and 114 individuals are

represented in the group.

PRNP amplification and sequence-based genotyping of
htSNPs

Twelve segments of PRNP were amplified for sequence-based

genotyping of 19 htSNPs (Table S1). In addition, the complete

prion protein coding region was sequenced. All but two PRNP

segments were amplified with the following reagents (per 55 uL

reaction), 1.25 units of Thermo-Start DNA Polymerase, 2.3 mM

MgCl2, 0.181 mM dNTPs, 0.4 uM forward and reverse

amplification primer, and 50 ng genomic DNA. Two segments

were amplified with identical concentrations of Taq, dNTPs,

primers, and genomic DNA as described above. However, one

segment, BTAPRNPDS13a2, was amplified with 1.36 mM MgCl2
and 3% DMSO and the other, segment BTAPRNPDS13b, was

amplified with 1.36 mM MgCl2 and 2% DMSO. PCR conditions

for the 12 segments were the following: 94uC for 15 min, 40 cycles

of 94uC for 20 sec, 58uC for 30 sec (excluding

BTAPRNPDS13a2), 72uC for 60 sec, and a final incubation at

72uC for 3 minutes. The primer extension temperature for

segment BTAPRNPDS13a2 was conducted at 53uC for 30 sec.

Following an Exonuclease I digestion [17], the amplicons were

sequenced with BigDye terminator chemistry on an ABI 3730

capillary sequencer (PE Applied Biosystems, Foster City, Califor-

nia). All sequencing primers listed in Table S1 were used in

duplicate or quadruplicate for each atypical BSE sample to obtain

multiple genotypes of each htSNP.

SNP genotyping, haplotype phasing and statistical
testing

PRNP sequences were processed for polymorphism detection

and genotyping with Phred, Phrap, Polyphred, and Consed

software [18]. Haplotype phase was determined with Phase

(version 2.1) [19,20]. The frequencies of PRNP haplotype ‘‘o’’ in

the atypical BSE case group and the control group were tested for

significance with a Fisher’s exact two-tailed test in WinPepi

(version 4.5) [21]. The 95% confidence interval for the difference

between the frequency proportions with continuity correction was

also calculated in WinPepi.

Supporting Information

Table S1 Oligonucleotides for amplficiation and sequence

genotyping of PRNP htSNPs and the complete PrP coding region.

This table lists the oligonucleotides used for amplification and

sequence genotyping of PRNP htSNPs and the complete PrP

coding region.

Found at: doi:10.1371/journal.pone.0001830.s001 (1.66 MB

XLS)
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Figure 1. Prion haplotypes of atypical BSE cases. (A) Physical map of bovine PRNP. Orange and yellow arrows represent untranslated and
protein coding regions, respectively. PRNP regions spanned by prion haplotypes are indicated by brackets labeled network 1 and network 2. (B) PRNP
haplotype relationships and frequencies in U.S. cattle. Haplotypes in network 1 are represented as yellow circles, are defined by 9 htSNPs and span a
portion of the PRNP promoter, exon 1, intron 1, exon 2, and a small portion of intron 2 (6.3 kb). Haplotypes in network 2 are represented as black
circles, are defined by 10 htSNPs and span most of intron 2, the entire coding region, and a portion of the 39 UTR of PRNP (13 kb). Numbers represent
the frequencies of PRNP haplotypes in the control group of U.S. cattle. (C) Atypical BSE case information. BSE type, country of origin, bovine taxa, age,
and PRNP diplotyes of the atypical BSE cases.
doi:10.1371/journal.pone.0001830.g001
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