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Abstract—Imagery acquired with unmanned aerial vehicles
(UAVs) has great potential for incorporation into natural resource
monitoring protocols due to their ability to be deployed quickly
and repeatedly and to fly at low altitudes. While the imagery
may have high spatial resolution, the spectral resolution is low
when lightweight off-the-shelf digital cameras are used, and the
inclusion of texture measures can potentially increase the clas-
sification accuracy. Texture measures have been used widely in
pixel-based image analysis, but their use in an object-based en-
vironment has not been well documented. Our objectives were
to determine the most suitable texture measures and the optimal
image analysis scale for differentiating rangeland vegetation using
UAV imagery segmented at multiple scales. A decision tree was
used to determine the optimal texture features for each segmen-
tation scale. Results indicated the following: 1) The error rate
of the decision tree was lower; 2) prediction success was higher;
3) class separability was greater; and 4) overall accuracy was
higher (high 90% range) at coarser segmentation scales. The
inclusion of texture measures increased classification accuracies
at nearly all segmentation scales, and entropy was the texture
measure with the highest score in most decision trees. The re-
sults demonstrate that UAVs are viable platforms for rangeland
monitoring and that the drawbacks of low-cost off-the-shelf digital
cameras can be overcome by including texture measures and using
object-based image analysis which is highly suitable for very high
resolution imagery.

Index Terms—Object-based classification, rangelands, scale,
texture, unmanned aircraft.

I. INTRODUCTION

R EMOTE SENSING data and image analysis tools have
become an integral part of rangeland mapping, assess-

ment, and monitoring in recent years. While satellite imagery
and aerial photography have been used for these tasks [1],
imagery acquired with unmanned aerial vehicles (UAVs) of-
fers several advantages. UAVs can be deployed quickly and
repeatedly and are less costly and safer than piloted aircraft.
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UAVs can also obtain subdecimeter resolution imagery. These
advantages make UAVs ideal for use in forest fire applications
and other natural disasters [2], particularly if orthoimagery can
be produced in near real time, and with high accuracy [3].

In rangelands, UAV imagery provides the ability to quantify
spatial patterns and patches of vegetation and soil not detectable
with piloted aircraft or satellite imagery [4], [5]. The questions
that ecosystem modelers and agencies charged with evaluating
rangeland health are attempting to solve cannot be answered
with the comparatively lower resolution of imagery from pi-
loted aircraft. UAV imagery, on the other hand, offers the ability
to detect and map spatial characteristics of vegetation and gaps
between vegetation patches associated with erosion risk and
wildlife habitat quality [5].

Due to low payload capabilities of small- and medium-size
UAVs, imagery is often acquired with inexpensive off-the-shelf
digital cameras. While the spatial resolution of this imagery is
high, the spectral resolution is not, and imagery usually lacks a
near-infrared band. For that reason, texture can be a potentially
useful parameter for mapping rangeland vegetation and soils
with this imagery.

Texture measures have been used extensively in remote sens-
ing, particularly with high and very high resolution images and
with panchromatic imagery [6]. In general, classification accu-
racies are improved by the use of texture [7]–[10]. Commonly
used texture measures are second-order statistics derived from
the gray-level cooccurrence matrix (GLCM). These statistics
describe changes in gray-level values of pixels and relation-
ships between pixel pairs in a given area [11]. Texture is a
statistical measure of structure and can be defined as smooth
when the within-class variability is lower than the between-
class variability. Likewise, texture is coarse when the within-
class variability is similar to or greater than the between-class
variability [12]. This property makes texture useful for dif-
ferentiating relatively smooth surfaces in an image (water or
bare ground) from coarser more textured surfaces (urban or
vegetated areas). With a fine enough resolution, lower textured
grass areas can be differentiated from higher textured shrubs,
which contain a larger amount of shadow pixels.

In pixel-based analysis, texture is calculated with moving
windows and suffers from the boundary problem, because
windows can straddle the boundary between two landscape
features and potentially different textures. This boundary prob-
lem increases with texture window size [10]. When texture is
calculated from segmented imagery, as is done in object-based
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image analysis [13], the boundary problem is minimized [14],
because the segments are relatively homogenous and texture is
calculated per segment.

Object-based image analysis has proven to be successful and
is often superior to pixel-based analysis with high and very high
resolution images that exhibit a large amount of shadow, low
spectral information, or a low signal-to-noise ratio [15], [16].
We used an object-based image analysis approach (eCognition,
now called Definiens Professional [13]) for mapping shrubs
with multispectral and panchromatic aerial photos [17] and for
mapping arid rangeland vegetation with QuickBird imagery
[18]. Analysis of UAV imagery with the same approach demon-
strated the ability to map small shrubs (30-cm diameter) and to
differentiate different types of bare soil and different densities
of grass cover [5].

In object-based image analysis, the analyst is faced with two
main challenges. The first challenge is the determination of
segmentation parameters, particularly the segmentation scale.
Because the segmentation parameters depend on both image
resolution and the objects of interest to be mapped, often, trial
and error, as well as visual analysis, is used to find acceptable
values [19]–[21]. An optimal scale parameter can be deter-
mined by using class separability indices [22] or by analyzing
local variance [23]. In many cases, multiple segmentation scales
are used to map detailed features at a fine segmentation scale
and broader features at a coarser segmentation scale [18],
[24]–[26]. In [27], the authors used a hierarchical segmentation
as a preprocessing tool for improving the subsequent feature
extraction process, which was driven by relationships of objects
at multiple scales. However, in this paper, our goal was to find a
single segmentation scale that would best separate bare ground,
shrubs, and grasses.

The second challenge is the determination of suitable fea-
tures for classification. In Definiens Professional, as in other
object-based image analysis software packages, potentially
hundreds of spectral, spatial, and contextual features are avail-
able for classification, and often, visual analysis or prior
knowledge is used to choose features subjectively. Due to
their complexity, texture measures such as GLCM are time-
consuming to calculate and display in an object-based envi-
ronment, particularly at fine segmentation scales. In addition,
if a high-dimensional feature space is used (such as all the
texture measures), the class samples have to be sufficient in
number to create a reliable covariance matrix [28]. This is often
prohibitive.

A faster and more objective tool for feature selection is a
decision tree, because it is a nonparametric statistical technique
that is not affected by outliers and correlations, it can reveal
variable interactions, and it is an excellent data reduction tool.
In a decision tree, a data set is successively split into increas-
ingly homogenous subsets until terminal nodes are determined
[29]. A common splitting rule in decision trees (and used in
this paper) is the Gini index, a measure of heterogeneity. If all
observations in a node belong to the same class, the Gini index
is zero; when different class sizes at the node are equal, the
index is one [29]. Decision tree results can be used by applying
the derived class prediction rules or by using the decision trees
as a feature selection tool. We used the latter application in

Fig. 1. BAT 3 UAV on catapult launcher ready for takeoff.

this paper and performed classification within the object-based
environment using a fuzzy classification approach.

Decision trees are commonly used for remote sensing ap-
plications and often reduce the classification error [30], [31].
Decision trees are also increasingly used in combination with
object-based image analysis due to their data reduction capabil-
ities [16], [18], [24], [32], [33].

In this paper, our objectives were to determine the optimal
segmentation scale and most suitable texture measures for
differentiating bare ground, shrubs, and herbaceous vegetation
in an arid rangeland using unmanned aircraft imagery. Results
are designed to be incorporated into a workable solution for
rangeland monitoring protocols using UAVs.

II. METHODS

A. Study Area and Data Collection

The imagery was acquired in October 2006 at the Jornada
Experimental Range in southern New Mexico in the northern
portion of the Chihuahuan desert. For this study, we selected
an area depicting a set of constructed shallow dikes designed
to retain water and promote vegetation growth. The chosen site
was a mixture of vegetation and areas of bare ground of various
soils. Dominant shrubs in the study area consisted of tarbush
(Flourensia cernua), honey mesquite (Prosopis glandulosa),
and broom snakeweed (Gutierrezia sarothrae), and dominant
grasses were bluestem (Bothriochloa laguroides), dropseed
species (Sporobolus spp.), and burrograss (Scleropogon
brevifolius).

The imagery was acquired with an MLB BAT 3 UAV. The
BAT system consists of a fully autonomous GPS-guided UAV
(10-kg weight), a catapult launcher, ground station with mission
planning and flight software, and telemetry system (Fig. 1). The
aircraft was equipped with a Canon SD 550 seven-megapixel
digital camera and flew at 150 m above ground, acquiring
imagery with 60% forward lap and 30% sidelap. The resulting
image footprints were 152 m × 114 m and had a pixel size of
5 cm. Eight images covering the dike area were orthorectified
using Leica Photogrammetric Suite 9.0 (Leica Geosystems
Geospatial Imaging LLC) with a root mean square error of
0.33 pixels and mosaicked into a single image. Brightness
differences between the images were minor, and no color
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balancing was required. Due to the object-based image analysis
approach used, minor changes in brightness values do not
affect the analysis, because individual pixels are aggregated into
image objects.

Ground data collection consisted of using a randomly se-
lected location, with a differentially corrected GPS, and delin-
eating 300 samples, 100 for each of the three classes of interest
(bare ground, shrubs, and grass) in polygon format. Because of
the object-based approach, samples in polygon format are more
appropriate than point locations [18]. In addition, because of
GPS error and the 5-cm resolution imagery, it is not possible
to relate GPS data to a single pixel. The average size of the
polygons was 56.1 m2 (SD: 5.2 m2) for bare ground, 16.3 m2

(SD: 2.5 m2) for grass, and 3.7 m2 (SD: 0.6 m2) for shrubs. The
difference in average size for each class was due to relatively
small patches of grass and the size of shrubs in this vegetation
community. Half of the samples were used for mapping pur-
poses, and half were retained for accuracy analysis.

B. Image Processing

The general workflow consisted of the following: 1) seg-
menting the image at multiple scales; 2) selecting suitable
texture measures to separate the three classes of interest by
using a decision tree; and 3) determining class separability as
well as classification accuracy with and without the selected
texture measures. The image was segmented using Definiens
Professional 5 [13]. Three segmentation parameters have to
be selected: scale parameter, color (spectral information), and
shape. The scale parameter is unitless and controls the general
size of image objects. A smaller scale parameter results in
smaller image objects. Color and shape are weighted from
zero to one, and smoothness and compactness, which are part
of the shape setting, can also be weighted from zero to one.
The segmentation is a bottom-up region merging technique,
whereby smaller segments are merged into larger ones based on
heterogeneity (similarity of spectral and spatial characteristics)
of adjacent image objects and controlled by the three segmen-
tation parameters [34].

Based on previous research in similar vegetation [5], [17],
[18], color/shape and compactness/smoothness were set to
0.9/0.1 and 0.5/0.5, respectively. The image was segmented at
15 segmentation scales starting with scale parameter 10 and
ending with 80 in increments of 5 (Fig. 2). Scale 80 was used
as the coarsest scale, because we wanted to retain individual
shrubs, and at a coarser scale than 80, shrubs were being merged
into broader image objects. The segmentation statistics are
shown in Table I.

C. Texture Features

In pixel-based analysis, GLCM statistics are computed for a
chosen pixel window (3 × 3, 5 × 5, etc.), while in object-based
image analysis as implemented in Definiens Professional 5, the
image is segmented first, using only the red, green, and blue
(RGB) values, then texture features are calculated for the image
objects. Border effects are reduced by taking into account pixels
that border the image object [13].

We used eight GLCM statistics and two gray-level difference
vector (GLDV) statistics in this paper. The GLDV is a sum
of the diagonals of the GLCM and a measure of the absolute
differences of neighbors. We used the average of the three input
bands and the average of the four possible directions to be
calculated due to the assumption that bare soil, shrubs, and
grass are not directionally biased.

The texture measures used were homogeneity (MHOM),
contrast(MCON), dissimilarity(MDIS), entropy(MENT ),
angular second moment (MASM), mean (MMEAN), stan-
dard deviation (MSTD), correlation (MCOR), GLDV angu-
lar second moment (V ASM), and GLDV entropy (V ENT ).
The statistics are defined as follows:

MHOM =
N−1∑
i,j=0

Pi,j

1 + (i − j)2
(1)

MCON =
N−1∑
i,j=0

Pi,j(i − j)2 (2)

MDIS =
N−1∑
i,j=0

Pi,j |i − j| (3)

MENT =
N−1∑
i,j=0

Pi,j(− lnPi,j) (4)

MASM =
N−1∑
i,j=0

P 2
i,j (5)

MMEAN =

N−1∑
i,j=0

Pi,j

N2
(6)

MSTD =
√

σ2
i ;

√
σ2

j , where

σ2
i =

N−1∑
i,j=0

Pi,j(i − µi)2

σ2
j =

N−1∑
i,j=0

Pi,j(j − µj)2 (7)

MCOR =
N−1∑
i,j=0

Pi,j
(i − µi)(j − µj)

σiσj
(8)

V ASM =
N−1∑
k=0

V 2
k (9)

V ENT =
N−1∑
k=0

Vk(− ln Vk) (10)

where Pi,j is the normalized gray-level value in the cell i, j of
the matrix, N is the number of rows or columns, σi and σj are
the standard deviations of row i and column j, µi and µj are
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Fig. 2. Image segmentations of UAV image mosaic, showing (a) 100-m × 100-m area of the aerial photo mosaic, (b) finest segmentation at scale parameter 10,
(c) intermediate segmentation at scale parameter 45, and (d) coarsest segmentation at scale parameter 80.

the means of row i and column j, Vk is the normalized GLDV,
and k = |i − j|. Every GLCM is normalized according to

Pi,j =
Ci,j

N−1∑
i,j=0

Ci,j

(11)

where Ci,j is the value of the cell i, j of the matrix.

D. Decision Tree Analysis

The concept behind a decision tree analysis is the successive
splitting of the data set into increasingly homogenous subsets
until terminal nodes are determined. In this paper, the response
variables were the vegetation classes, and the explanatory vari-

ables were the texture values for the sample objects. Texture
values for each of the sample objects for the three classes were
calculated and imported into the decision tree analysis software
CART by Salford Systems, which implements the algorithm
developed by Clausi [28]. The Gini index [35], a measure
of heterogeneity, was used as the splitting rule. Initially, a
maximal tree was grown and then pruned back to obtain an
optimal tree by using tenfold cross-validation. In this process,
a maximal tree is grown from 90% of the subsamples, and
10% of samples are reserved for assessing the misclassification
error. This process was repeated ten times, each time reserving
a different 10% for error assessment. The optimal tree is the
one with the lowest misclassification error. This analysis was
performed for each segmentation level.
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TABLE I
NUMBER OF OBJECTS AND MEAN OBJECT SIZE

FOR 15 SEGMENTATION SCALES

We identified the optimal texture measures at each seg-
mentation scale by assessing variable importance. Prediction
success, cross-validated error rate of the tree, and terminal
node purity, in conjunction with class separability and accuracy
from additional analysis, served as an indication of the optimal
segmentation scale for our data. We were also interested in
determining whether different texture measures dominated at
finer or coarser segmentation scales, and if one or few texture
measures would be suitable at most segmentation scales.

Correlations between texture measures have been reported
for several studies in pixel-based analysis [28], [36]–[38], but
not for object-based analysis. While correlation between vari-
ables is not a large concern in decision tree analysis, a classifi-
cation with multiple texture measures in Definiens Professional
is computer intensive, and fewer variables are preferred. For
that reason, correlation between texture measures was analyzed
using Spearmean’s rank correlation coefficient, which does not
require the assumptions of normality and linearity [39].

E. Classification Accuracy and Class Separability

Definiens Professional implements a fuzzy classification ap-
proach, whereby the outcome of a classification describes the
degree of membership to a specific class. The membership
ranges from zero (no assignment) to one (full assignment). The
closer an image object is located in feature space to a sample
of a class, the higher the membership degree is to this class.
The distance d between sample object s and image object o is
computed as follows:

d =

√√√√∑
f

(
vs

f − vo
f

σf

)2

(12)

where

vs
f feature value of a sample object for feature f ;

vo
f feature value of an image object for feature f ;

σf standard deviation of the feature values for feature f .

In order to convert the fuzzy classification results to a final
map with discrete classes, the class with the highest member-

ship degree is chosen for the final class assignment. The error
matrix is based on samples that represent image objects, but is
expressed in pixels. Classification accuracies (overall, produc-
ers, and users) and the Kappa Index of Agreement (KIA) [40]
were calculated for each segmentation scale for classifications
using only the RGB bands as well as using the RGB bands
plus the texture measures selected by the decision tree. This
allowed us to assess how much the classification was improved
by addition of texture features.

Separation distances between the classes are calculated in
Definiens Professional by determining for each sample of class
a the sample of class b with the smallest Euclidean distance
to it. This is repeated for samples of class b compared to
class a, etc. The Euclidean distances are then averaged over
all samples. Separation distances were calculated using the
following: 1) only the RGB bands and 2) using the RGB bands
plus the texture measures suggested by the decision tree for the
respective segmentation scales.

III. RESULTS

A. Decision Tree Results

The optimal texture features selected by the decision tree var-
ied for the segmentation scales; however, we observed several
trends. Table II shows the variable importance ranking for the
decision trees for each segmentation scale. Variable importance
is reported as a score in CART, ranging from 0 to 100, and it
reflects the contribution each variable makes in predicting the
target variable [35]. A score of 100 indicates the first splitter in
the tree. As the scale became coarser, fewer texture measures
were required by the tree to partition the classes. From scales
65 to 80, the same three texture measures (MENT , MCON ,
and MSTD) were chosen in the same order and with similar
scores. MENT most frequently received a score of 100, and
it was the texture measure chosen in every tree. In addition, it
ranked either first or second from scales 15 to 80. At finer scales
(10–40), MSTD, MDIS, or MCON had the highest scores.

In a decision tree, the cross-validated relative cost (CVRC)
is the misclassification or error rate of the tree, based on using
the tenfold cross-validation method in this paper. For each
segmentation scale, the tree with the lowest CVRC was chosen,
as is common in decision tree analysis. If a tree has a CVRC
of 0.25, it is interpreted as an error rate of 25% [35], meaning
that lower values of CVRC are desired. Results indicated that
the CVRC decreased from 60% at scale 10 to the lowest value
of 20% at scale 60.

The prediction success for the cross-validated samples also
indicated that segmentation scales at or near 60 appeared to
be most appropriate for this data set. Prediction success is
calculated similar to an error matrix, comparing the training
samples to the cross-validated samples in CART. At scales
10–30, the prediction success varied greatly for the three classes
of interest. At and beyond scale 35, the prediction success was
comparable for all the classes. The classes reached their highest
prediction success at scales 60 for grass, 75 for shrubs, and 80
for bare, while the overall prediction success peaked at scale 60
(Fig. 3).
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TABLE II
VARIABLE IMPORTANCE, REPORTED AS SCORES FROM CART, FOR 15 SEGMENTATION SCALES. A SCORE OF 100

INDICATES THE FIRST SPLITTER OR MOST IMPORTANT VARIABLE IN THE DECISION TREE

Fig. 3. Prediction success of decision trees for 15 segmentation scales.

The terminal node purity is another measure for assessing a
decision tree. Terminal node purity shows the homogeneity of
the terminal nodes of the decision trees and is an indication of
how well CART partitions the classes. In general, fewer nodes
with higher node purity are preferable to many nodes of lower
purity. It is also desirable that all classes show similar values of
node purity, which indicates a better classification based on the
decision tree. Terminal node purity followed a similar trend as
prediction success, with overall higher node purity above 88%
for scales 55 and coarser. At scale 65 and above, node purity
was above 90% for all classes with the exception of shrubs at
scale 75. The number of nodes in the decision tree gradually
dropped from a high of 15 at scale 10 to 3 nodes at scales 50–60,
after which nodes increased to 7 and then fell again to 4 at the
coarsest scale.

MCOR, MMEAN , and MENT were the three measures
showing the least correlation with other texture measures. At
finer segmentation scales (below 20–25), correlation coeffi-
cients often changed at a greater rate from one scale to the
next, while at coarser segmentation scales, the rate of change
in correlation coefficient was smaller. The highest correlation
coefficients that remained stable across all scale parameters
were found for MCON–MDIS and V ASM–V ENT .

B. Classification Accuracy and Class Separability

For all three class comparisons, class separability increased
with increasing segmentation scale, although for grass–shrub

Fig. 4. Class separation distances for three class combinations using only
RGB bands (closed symbols) and using RGB bands plus texture measures
selected by the decision tree (open symbols).

using RGB bands only, this increase was minimal (and not
visible on the graph at that scale) (Fig. 4). This behavior
occurred for RGB bands only as well as RGB bands plus
texture. In addition, when texture measures were included,
class separability was always greater than that for RGB bands
alone. This held true for all three class comparisons, with
only one exception for bare–shrub at scale 60. There was a
noticeable increase in separability after scale 40, particularly
for bare–shrub. Maximum separability for bare–shrub occurred
at scale 80, for grass–bare at scale 75, and for grass–shrub at
scale 65 (values for RGB+texture).

Similar to the class separability results, the overall accu-
racy and KIA increased with increasing segmentation scale
for both RGB and RGB+texture (Fig. 5). The inclusion of
texture increased the accuracy measures at all segmentation
scales with the exception of the coarsest scale 80, at which
the accuracy of RGB+texture was lower (92.25%) than the
accuracy of RGB bands alone (95.19%). In general, accuracy
percentages and KIA values were relatively high for both RGB
and RGB+texture, which is not surprising given the image
resolution and the fact that we only analyzed three classes.
Accuracies of producers and users showed confusion between
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Fig. 5. Accuracy assessment graphs for classification of UAV image into bare, grass, and shrub, showing (a) overall accuracy in percent and (b) KIA, for RGB
bands only (closed symbols) and RGB bands plus texture (open symbols).

Fig. 6. (a) Image mosaic, (b) entropy image, and (c) classification result at scale parameter 60.

grass and shrub until scale 40 was reached, after which both
producers’ and users’ accuracies were consistently over 80%,
with the only exception at scale 80, where producers’ accuracy
of shrubs dropped to 65% (RGB+texture). Both producers’ and
users’ accuracies for bare were consistently over 95%, with the
majority of values nearing 100%. The classification for scale 60
is shown in Fig. 6.

IV. DISCUSSION

The results of this paper give a strong indication that a
segmentation scale greater than 40 is most appropriate for
differentiating bare, grass, and shrub classes with UAV im-
agery in this arid rangeland. The results from the decision tree
analysis corroborate the results of the accuracy analysis: The
error rate of the decision tree was lower, prediction success
was higher, class separability was greater, and overall accuracy
and KIA were higher in > 40 than in < 40 scale parameters.
Taking into account all results, the optimal scale parameters
lie between 55 and 70 for this data set. This is also confirmed
by visual assessment, and if a single scale would be chosen,
we would select scale 60. While the absolute number of the
scale parameter changes with image resolution and classes of
interest, the knowledge that a relatively coarser segmentation
is more appropriate than a finer one is important. Based on

previous studies with aerial photos from piloted and unmanned
aircraft [5], [17] and QuickBird imagery [18] in this area, we
know that there is a tendency to segment an image at a finer
scale than the outcome of this study would indicate. This may
be due to the analyst’s familiarity with the pixel-based analysis,
or the tendency to want to capture every single shrub or grass
patch, or the belief that image objects can always be aggregated
to a coarser scale if needed.

Determining the optimal scale parameter is of utmost im-
portance in the object-based image analysis and, recently, has
been the topic of various studies [18], [22], [23]. An optimal
scale parameter is particularly important in studies such as ours,
where a single segmentation scale is used as a first assessment
of broad vegetation classes. We acknowledge that for more
detailed classifications, multiple segmentation scales may be
better suited so that vegetation patches could be mapped at
different scales and shrubs of different sizes could be classified
at greater detail.

Closer inspection of the imagery showed why the relatively
coarser scale parameters led to higher accuracy. At scales of
< 40, image objects were quite small and individual grass and
shrub patches consisted of multiple image objects. As the scale
increased, those patches, particularly shrubs, were delineated
more accurately and completely. At the coarsest scales, how-
ever, small shrubs were lost because they were more likely
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to be incorporated into neighboring objects (Fig. 2). Because
portions of shrub and grass patches may be relatively similar
spectrally and even with regard to texture, classification accu-
racy and class separability increased when those objects were
delineated more accurately, which occurred at segmentation
scales between 40 and 70.

As the study in [23] had shown, as objects are aggregated
with increasing segmentation, average local variance increases,
then levels out, and the authors used this behavior to determine
optimal segmentation scale. Others used a similar approach of
assessing local variance to determine appropriate scale in pixel-
based analysis [41], [42].

Another possible reason why the accuracy was higher as
scale increased, particularly with the incorporation of texture
measures, might have been the influence of an edge effect, even
though the edge effect is smaller in object-based analysis com-
pared to the moving window approach in pixel-based analysis
[12]. At a fine scale, there are numerous small image objects,
and therefore, the effect of the edge pixels is great. At coarser
scales and with larger image objects, the ratio between edge
pixels of an image object and the number of pixels in an image
object is lower than that at finer scales. It is also likely that
pixels that are edge pixels at small scales are integrated into the
image objects at large scales and are included with the spatially
adjacent classes.

The fact that fewer texture measures were chosen by the
decision tree as the scale parameter became coarser corrobo-
rates the findings of the accuracy assessment. Based on our
conclusion that a scale of 55–70 is most appropriate, the
most suitable texture measures based on variable importance
were MENT , MCON , and MSTD (Table II). Because
MCON and MDIS were strongly correlated at all scales,
either MCON or MDIS could be chosen. If only one texture
measure were to be used to reduce computing time, MENT
would be our choice, since it most frequently received a variable
importance score of 100. Entropy is a measure of disorder, and
contrast is a measure of spatial frequency or smoothness in an
image [43]. In our high-resolution imagery, it is apparent that
bare areas have considerably smoother texture (lower entropy
values) than either shrub or grass patches (Fig. 6), and shrubs
have a higher percentage of shadow and therefore higher spatial
frequency than grasses.

To our best knowledge, there have been no other studies of
the use of texture measures in object-based classification across
multiple scales. Therefore, comparisons can only be made with
texture studies in the pixel-based analysis using moving win-
dows. However, with regard to the choice of texture measures,
it appears that others found similar results, even with different
imagery. In a study of sea ice using radar imagery, Clausi [28]
reported that dissimilarity and contrast produced consistently
strong classifications for all data sets. Shokr [36] determined
that entropy and homogeneity were suited best for his study
of sea ice with radar imagery. Baraldi and Parmiggiani [38]
noted that contrast and energy (also called angular second mo-
ment) were most efficient for discriminating textural patterns
in AVHRR imagery. Coburn and Roberts [10] used texture
measures with digital aerial photography and found that entropy
yielded the largest gains in classification accuracy.

Since image objects are very small at the fine scales, more
edge pixels will be incorporated into the texture calculations,
possibly skewing the results. This is the most likely reason that
correlation coefficients often changed more erratically from one
scale to the next below scale parameters of 25, while the rate
of change in correlation coefficient was smaller as the scale pa-
rameter increased. Similar to our results, Clausi [28] and Barber
and LeDrew [37] reported that contrast and dissimilarity were
strongly correlated. On the other hand, Baraldi and Parmiggiani
[38] determined that contrast and homogeneity were strongly
and inversely correlated, while we observed an inverse but weak
correlation.

A knowledge of correlation is useful in this type of analysis.
Because decision trees are nonparametric in nature and cor-
related variables can be used as input, this tool may output a
set of suitable features that are correlated, as we saw in our
results. Since texture measures in object-based analysis are
time-consuming to compute, one wants to keep the number of
features to a minimum.

The class separability and accuracy analyses indicate that the
inclusion of texture measures improved the results at nearly all
segmentation scales. In general, classification accuracy was rel-
atively high, both for using only RGB bands and RGB+texture
bands. Therefore, the analyst has to decide whether a relatively
small increase in accuracy is warranted by the inclusion of
texture measures which have additional computing require-
ments. Using a workstation with two dual cores and 4 GB of
RAM, a classification using only RGB bands was completed in
1–3 min, depending on the segmentation scales. Adding one
texture measure increased the classification time to 55 min at
scale 75 and to 3 h when three texture measures were used. With
additional texture measures and a finer segmentation scale,
some classifications took up to 6 h to complete. The image file
size was 145 MB.

Due to the low flying height, the UAV imagery covered a
relatively small footprint on the ground, but the number of
pixels in the image was relatively high due to the 5-cm pixel
resolution. Therefore, UAV image analysis can be even more
computer intensive than the analysis of aerial photos from
piloted aircraft. Given those limitations, it is preferable and
less time consuming to use a decision tree analysis to find
the fewest most suitable variables than to perform a series of
classifications and/or class separability analyses to obtain the
same results, particularly if multiple segmentation scales are
analyzed.

While absolute scale parameters may have different values
in different landscapes and for different flying heights, we
expect that the approach of evaluating error rates and prediction
success from decision trees, coupled with assessment of class
separability and overall accuracy, can offer reliable guidance
for selecting an image segmentation scale in other landscapes
as well.

V. CONCLUSION

In this paper, we investigated texture measures at multiple
scales in object-based analysis for the purpose of differentiating
broad functional groups of vegetation in arid rangelands with
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subdecimeter UAV imagery. Relatively coarser segmentation
scales resulted in higher prediction success from the decision
tree, better class separability, and higher accuracy than finer
scales. The decision tree was a useful tool for narrowing
down suitable texture measures for ease of computing, and the
correlation analysis gave valuable insights into the changes in
correlation of texture measure pairs across multiple scales.

The results demonstrate that UAVs are viable platforms
for rangeland monitoring and that the drawbacks of low-cost
off-the-shelf digital cameras can be overcome by including
texture measures and using object-based image analysis which
is highly suitable for very high resolution imagery. Our results
will be incorporated into a rangeland monitoring protocol with
unmanned aircraft. With the recent increase in high-resolution
digital aerial cameras for piloted aircraft, the results have ap-
plicability in that field as well. Future studies will investigate
the suitability of this analysis approach for other vegetation
communities in arid rangelands and for more detailed vegeta-
tion classes. Additional studies are also needed to determine
if the correlation trends we observed for the various texture
measures across segmentation scales occur in other vegetation
communities.
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