Net Returns for 1999 and 2000

Research Results

Prices \& Costs Used in Estimating Net Returns

Crop	Crop Price (\$/lb)*	1999 Herbicide and Application Costs (\$/ac)	2000 Herbicide and Application Costs (\$/ac)	Seed Costs $(\$ / a c)$	Fertilizer, Planting, and Harvest Costs (\$/ac)	$\begin{gathered} \text { Base Loss } \\ \text { Cost } \\ \text { (\$/ac)** } \\ \hline \end{gathered}$
Canola	\$0.095	\$22.01	\$32.43	\$13.75	\$48.45	\$0.00
Crambe	\$0.090	\$22.01	\$22.58	\$5.40	\$48.45	\$0.00
Dry Bean	\$0.140	\$43.32	\$48.52	\$25.00	\$48.45	\$43.05
Field Pea	\$0.049	\$22.01	\$25.11	\$24.00	\$48.45	\$0.00
Flax	\$0.093	\$30.49	\$29.46	\$5.25	\$48.45	\$0.00
Safflower	\$0.122	\$27.49	\$28.37	\$8.75	\$48.45	\$0.00
Soybean	\$0.078	\$48.80	\$66.19	\$16.80	\$48.45	\$0.00
Sunflower	\$0.092	\$39.82	\$40.34	\$13.20	\$48.45	\$0.00
Wheat	\$0.049	\$24.81	\$30.95	\$7.80	\$48.45	\$0.00
Barley	\$0.035	\$24.81	\$30.95	\$5.63	\$48.45	\$0.00

* Higher of average 1998-2000 season-average price for North Dakota and the 2001 commodity loan rate.
** Government payments that would have been lost in 2000 if an acre planted to dry beans resulted in a loss of one acre of wheat base with a proven yield of 35 bu/ac.

1999 Net Returns (\$/ac)

Net returns for each crop sequence calculated using 1999 observed yields, and the prices and costs previously identified.

2000 Net Return (\$/ac)

2000 Crop

		Canola	Crambe	Dry Bean	Field Pea	Flax	Safflower	Soybean	Sunflower	Wheat	Barley
$\underset{2}{2}$	Canola	\$9.49	(\$48.56)	\$18.68	\$40.03	\$15.94	(\$13.34)	\$31.99	(\$1.60)	\$66.71	\$26.81
	Crambe	\$34.43	\$18.30	(\$28.64)	\$62.35	\$25.51	\$18.59	(\$15.86)	(\$22.13)	\$78.68	\$44.71
	Dry Bean	\$55.02	\$6.78	\$37.12	\$59.84	\$46.57	\$14.78	\$0.23	\$33.32	\$74.86	\$38.82
$\begin{aligned} & \boldsymbol{M} \\ & \boldsymbol{O} \\ & \mathbf{x} \end{aligned}$	Field Pea	\$39.79	\$10.81	\$53.93	\$35.63	\$33.25	\$50.08	\$20.29	\$32.66	\$68.81	\$37.72
	Flax	\$35.53	\$36.90	\$40.24	\$53.42	(\$31.42)	\$71.25	\$36.87	\$16.15	\$68.02	\$45.63
	Safflower	\$47.87	\$6.22	\$16.61	\$63.41	\$62.96	\$4.69	\$0.51	(\$11.13)	\$82.23	\$35.82
	Soybean	\$24.89	\$22.89	\$40.74	\$75.65	\$59.55	\$21.95	\$53.09	\$3.42	\$52.68	\$31.03
	Sunflower	\$34.77	\$55.99	\$41.37	\$37.96	\$55.55	\$47.14	\$70.51	(\$21.07)	\$62.01	\$23.97
	Wheat	\$39.36	\$24.58	\$19.05	\$56.50	\$45.07	\$50.29	\$24.75	\$13.69	\$46.01	\$41.50
	Barley	\$48.64	\$36.42	\$43.37	\$55.09	\$52.56	\$51.27	\$43.69	\$5.06	\$64.43	\$14.92

Net returns for each crop sequence calculated using 2000
observed yields, and the prices and costs previously identified.

Average of 1999 \& 2000 Net Returns (\$/ac)

Net returns for each crop sequence calculated using 1999 \& 2000 observed yields, and the prices and costs previously identified.

Potential Cost of Ignoring
 Crop Sequence Effects (\$/ac)

Maximum differences in average net returns that occurred for crops grown on different residues. Net returns for dry beans varied by as much as $\mathbf{\$ 1 0 5}$ per acre depending on the previous crop.

Planning Beyond the Current Year

- Don't just select the crop that has the highest expected net returns on the current crop residue.
- Remember the crop you select this year will affect next year's net returns as well.

