Rotations for the Northern Plains

Don Tanaka and Mark Liebig USDA-ARS Mandan, ND

Manitoba-North Dakota Zero Tillage Farmers Association 34th Annual Zero Till Workshop & Trade Show 10 January 2012

Adapted from Tanaka, D.L., and M.A. Liebig. 2012. Crop rotation principles for the northern Plains. P. 31-32. In Proc 34th Annual Zero Tillage Workshop and Trade Show, 9-11 Jan 2012. Minot, ND. Manitoba-North Dakota Zero-Tillage Farmers Assoc.

Overview

- Crop rotations in context
- Principles of sustainable crop sequencing
- Case study results from the Area IV SCD Cooperative Research Farm

Crop Rotations in the Northern Plains Pre-European Settlement

• Mandan, Hidatsa, Arikara

 Corn, bean, and squash (Three Sisters); sunflower, tobacco

• Strategies for success

- Diversity
- Recycling
- Limited cultivation
- Moisture conservation
- Regional adaptation

Crop Rotations in the Northern Plains Post-European Settlement

Crop Rotations in the Northern Plains

- Crop portfolio: Flax, spring wheat, barley, oat, corn, alfalfa, bromegrass, potato...
 - Moisture retention a significant issue.
 - Erosion; Fertility depletion

"Crop growing is hazardous in regions of limited rainfall... ...The country is better adapted to a mixed type of farming than to straight grain farming." (Page 72)

Crop Rotations in the Northern Plains

- Spring wheat fallow
 - Water-use efficiency $\leq 40\%$
 - Declining soil health

- - Weed and Residue Management Technology -
 - Opportunity/Flex crop rotations
 - Annual sequencing
 - Fixed or dynamic

Crop Rotations in the Northern Plains

• Fixed sequencing

- Limited flexibility to address challenges/opportunities
- Can lead to weed, insect, and disease infestations over time

• Dynamic sequencing

 Decisions made annually based on externalities as well as management goals

From Hanson et al. (2007)	Monoculture	Fixed-Sequence Rotations	Dynamic Cropping Systems
Crop portfolio	Single crop	Multiple crops; number dependent on regionally adapted species, economics, farmer knowledge, infrastructure	Multiple crops; number dependent on regionally adapted species, economics, farmer knowledge, infrastructure
Crop diversity	N/A	Diversity dependent upon length of fixed sequence	Diversity inherently high due to annual variation in growing conditions and marketing opportunities, as well as changes in producer goals
Crop sequencing flexibility	N/A	None, although fixed-sequence cropping systems that incorporate opportunity crops increase flexibility	High. All crops, in essence, are opportunity crops
Biological and ecological knowledge	Basic knowledge of agronomy	Some knowledge of crop interactions is necessary	Extended knowledge of complex, multi-year crop and crop by environment interactions
Management complexity	Generally low, though variable depending on crop type	Complexity variable depending on length of fixed sequence and diversity of crops grown	Complexity inherently high due to annual variation in growing conditions, markets, and producer goals

Dynamic Cropping Systems

Develop crop portfolio

Assess short-term sequencing effects

Evaluate long-term viability

Objective

Illustrate crop rotation principles for

field-scale grain production systems over

a ten year period (2001-2010).

Location

- SW of Mandan, ND
- Area IV SCD Cooperative Research Farm (1984-present)
- Four quarter sections (F, G, H, I)
- Approximately 400 acres.

Soil and Landscape

- Evaluations were conducted on a nearly level (0-3% slope) Temvik-Wilton silt loam.
- The Temvik-Wilton series consists of very deep, well drained soils that formed in a silty loess mantle overlying glacial till.
- Fine-silty, mixed, superactive, frigid Typic and Pachic Haplustolls

Field Management

- No-till management
- 750, 7340 JD seeders
- Weed control via preand post-emergent herbicide
- N and P adjusted to crop need and residual fertility.

Cropping Systems

Cereal crop - Fallow

2 yr system, 64 & 63)

26 yrs

Crop – Fallow System

Cropping Systems

Continuous spring wheat

(monoculture, 11)

26 yrs

Continuous Wheat

Cropping Systems

Spring cereal - winter wheat sunflower (3 yr system; F3, F2, F4 and 14, 15, 16) **26 yrs**

3 Year System

Cropping Systems

Spring cereal - winter wheat -

dry pea - corn - soy bean

(5 yr system; H4, H2)

5 yrs

5 Year System

Cropping Systems

Dynamic Cropping System

(long-term systems; H1, H3, F5, F6, G2, I2, I3, I7)

10 yrs

Dynamic System

Used spring wheat as indicator crop

10 yr (2001-2010)

Continuous 3-yrsystem 5-yrsystem Dynamic Cropping System

Precipitation Use Efficiency

PUE = seed yield / precipitation (from harvest of previous crop to the harvest of current crop) Units: Ibs/ac/inch of precipitation

PUE of each system

C-F

Continuous 3-yr system 5-yr system Dynamic Cropping System

Summary

Cropping systems need to be greater than 3-yr to take advantage of crop

diversity.

States of the

Summary (cont.)

- Continuous spring wheat might produce yield as great as diverse cropping
 - systems, but require greater
 - management inputs.

Summary (cont.)

Among continuous cropping options,
Dynamic Cropping Systems provide

opportunity for greatest diversity, yield stability, and precipitation use efficiency.

Acknowledgments

• Don Tanaka, Robert Kolberg, Marv Hatzenbuhler et al.

• Supervisors of the Area IV SCD Cooperative Research Farm

Thank You

Northern Great Plains Research Laboratory USDA-ARS, Mandan, ND http://www.mandan.ars.usda.gov/

JSDA

