# Dynamic Cropping Systems and the Crop Sequence Calculator

Context, Concepts, Design, and Application

USDA Agricultural Research Service Northern Great Plains Research Laboratory Mandan, ND

# Context

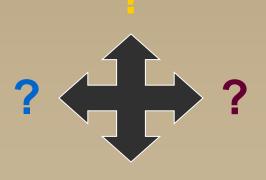
The sustainability of agriculture faces significant challenges in the 21st century. These challenges include:

- Population growth
- Dependence on fossil fuels
- Global climate change
- Globalization

From Hanson et al. (2007)



Adapting to future challenges will require the development of new and innovative production systems that...


....are highly <u>productive</u>, effectively utilize <u>renewable</u> resources, and minimize damage to the <u>environment</u>...

...all in a context of continuous socioeconomic and environmental flux.

From Hanson et al. (2007)

### Context

Consequently, future management strategies to increase agricultural sustainability must be <u>dynamic</u> in order to provide producers with multiple options for <u>adapting</u> to changing conditions.



# **Dynamic Cropping Systems**

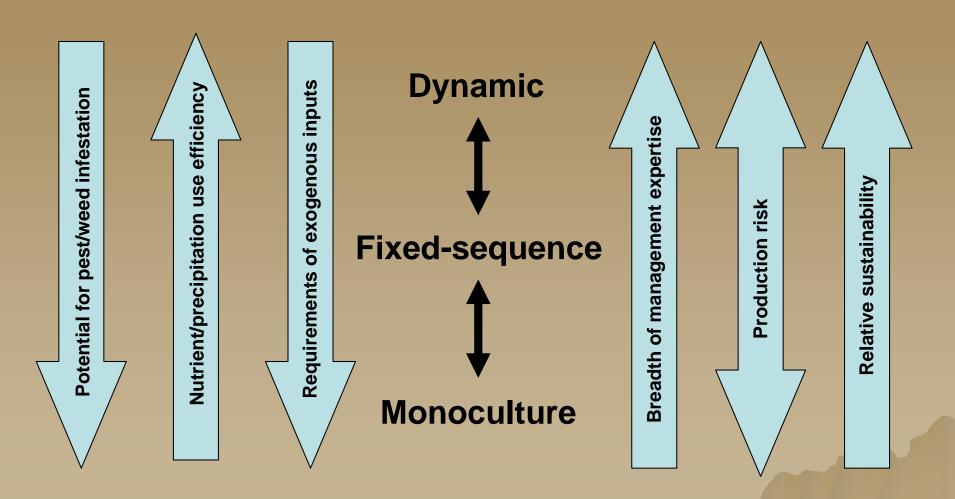
A dynamic cropping system is an annual strategy of crop sequencing that optimizes the outcome of...

- ✓ production,
- economic, and
- environmental goals

...by using ecologically sound management principles.

- Implicit to a dynamic approach to crop sequencing is the need for producers to possess information necessary to respond to continual change.
- Changes in factors such as weather, market conditions, government programs, and new information and technology influence the feasibility and profitability of growing certain crops in a particular year.

By taking these factors into account when making annual crop sequencing decisions, producers can create an adaptable cropping system; a system characterized by...


#### ...greater responsiveness and lower risk...

...than if a fixed-sequence cropping approach were used.

#### ----- Crop sequencing approach ----

| Attribute                              | Monoculture                                                    | Fixed-sequence                                                                                                             | Dynamic                                                                                                                                               |  |  |
|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Crop portfolio                         | Single crop                                                    | Multiple crops; number<br>dependent on regionally<br>adapted species,<br>economics, farmer<br>knowledge,<br>infrastructure | Multiple crops; number<br>dependent on regionally<br>adapted species, economics,<br>farmer knowledge,<br>infrastructure                               |  |  |
| Crop diversity                         | N/A                                                            | Diversity dependent<br>upon length of fixed<br>sequence                                                                    | Diversity inherently high due<br>to annual variation in growing<br>conditions and marketing<br>opportunities, as well as<br>changes in producer goals |  |  |
| Crop sequencing<br>flexibility         | N/A                                                            | None, although fixed-<br>sequence cropping<br>systems that incorporate<br>opportunity crops<br>increase flexibility        | High. All crops, in essence, are opportunity crops                                                                                                    |  |  |
| Biological and ecological<br>knowledge | Basic knowledge of agronomy                                    | Some knowledge of crop interactions is necessary                                                                           | Extended knowledge of<br>complex, multi-year crop and<br>crop by environment<br>interactions                                                          |  |  |
| Management complexity                  | Generally low,<br>though variable<br>depending on crop<br>type | Complexity variable<br>depending on length of<br>fixed sequence and<br>diversity of crops grown                            | Complexity inherently high<br>due to annual variation in<br>growing conditions, markets,<br>and producer goals                                        |  |  |

#### From Hanson et al. (2007)



- Information requirements for dynamic cropping systems pose significant challenges to agricultural research.
- Novel methodologies for evaluating crops and crop sequences are needed, along with the capacity to effectively translate results into useable decision aids for producers.



- At the USDA-ARS Northern Great Plains Research Laboratory, a crop by crop residue matrix was used to evaluate influences of crop sequence on agronomic and environmental attributes.
- 10 crops were evaluated in a matrix.

# Design

#### In the first year, 10 crops were...

- seeded in strips
- with a no-till drill
- in a uniform cereal residue.
- In the second year, the same crops were...
  - no-till seeded
  - perpendicular over the residue of the previous year's crop.

# Crop by Crop Residue Matrix

 ✓ Each matrix was present in the field for two years and replicated four times.

 Plots were monitored for two years following the matrix to quantify residual crop sequence effects.

| Cro | y y   | c Cro | op R   | esic  | due | Mat | rix |    |     |    |                      |                      |
|-----|-------|-------|--------|-------|-----|-----|-----|----|-----|----|----------------------|----------------------|
| Dne | e rej | plica | te, 10 | 00 pl | ots |     |     |    |     |    |                      |                      |
| 1   | 2     | 3     | 4      | 5     | 6   | 7   | 8   | 9  | 10  | 1  |                      |                      |
| 1   | 12    | 13    | 14     | 15    | 16  | 17  | 18  | 19 | 20  | 2  |                      | 1 <sup>st</sup> year |
| 21  | 22    | 23    | 24     | 25    | 26  | 27  | 28  | 29 | 30  | 5  |                      | ten                  |
| 81  | 32    | 33    | 34     | 35    | 36  | 37  | 38  | 39 | 40  | 9  |                      | crops                |
| 1   | 42    | 43    | 44     | 45    | 46  | 47  | 48  | 49 | 50  | 7  | $\langle $           | seeded               |
| 51  | 52    | 53    | 54     | 55    | 56  | 57  | 58  | 59 | 60  | 10 | $\backslash \square$ | in<br>strips         |
| 51  | 62    | 63    | 64     | 65    | 66  | 67  | 68  | 69 | 70  | 6  | N                    |                      |
| '1  | 72    | 73    | 74     | 75    | 76  | 77  | 78  | 79 | 80  | 3  |                      |                      |
| 81  | 82    | 83    | 84     | 85    | 86  | 87  | 88  | 89 | 90  | 4  |                      |                      |
| )1  | 92    | 93    | 94     | 95    | 96  | 97  | 98  | 99 | 100 | 8  |                      |                      |
| 5   | 2     | 7     | 1      | 8     | 4   | 6   | 9   | 3  | 10  |    |                      |                      |
|     |       |       | _      |       |     |     |     | _  |     |    |                      |                      |

2<sup>nd</sup> year, ten crops seeded perpendicular over crop residue

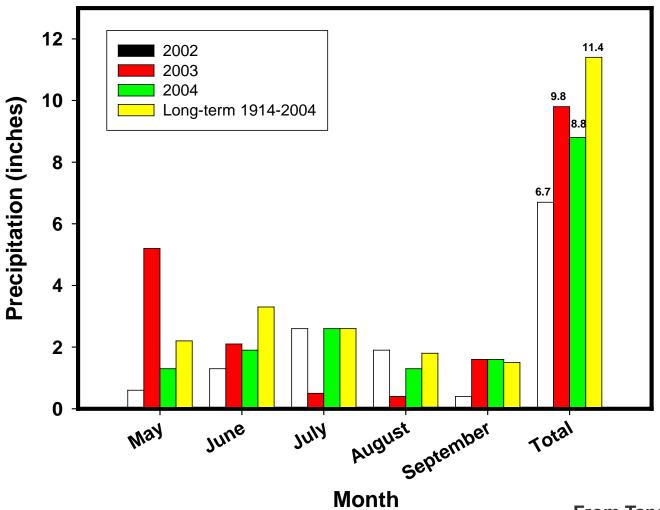
# **Crops Evaluated**

The following 10 crops were evaluated using the crop by crop residue matrix:

- ✓ Buckwheat (Fagopyrum esculentum Moench)
- Canola (Brassica napus L.)
- Chickpea (Cicer arietinum L.)
- ✓ Corn (Zea mays L.)
- ✓ Dry pea (Pisum sativum L.)
- ✓ Grain sorghum (Sorghum bicolor L.)
- Lentil (Lens culinaris Medik)
- ✓ Sunflower (*Helianthus annus* L.)
- ✓ Spring wheat (Triticum aestivum L.)

 Crops were evaluated at two sites, staggered by one year (2002-2003, 2003-2004).

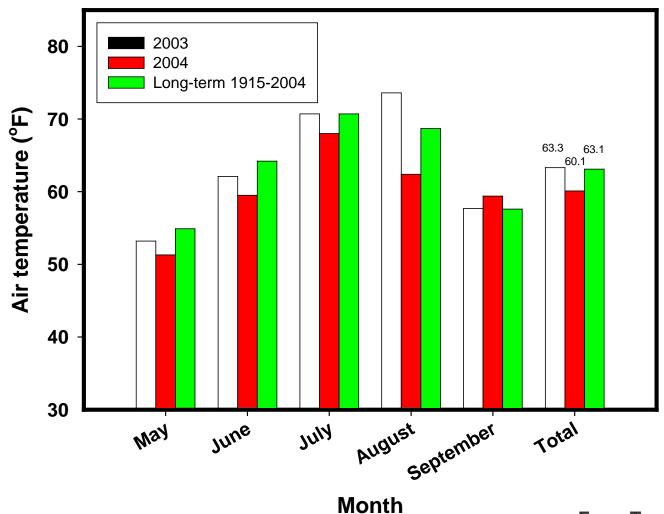
### Site Description


 The experiment was conducted on a nearly level (0-3% slope) Temvik-Wilton silt loam.

The Temvik-Wilton series consists of very deep, well drained soils that formed in a silty loess mantle overlying glacial till.

 USDA Soil Taxonomy: Fine-silty, mixed, superactive, frigid Typic and Pachic Haplustolls

# **Growing Conditions**


#### **Growing Season Precipitation**



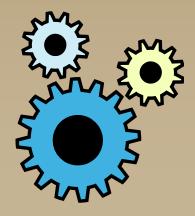
From Tanaka et al. (2007)

# **Growing Conditions**

#### Growing Season Air Temperature



From Tanaka et al. (2007)


### Evaluations

 The following evaluations were conducted by a multidisciplinary team of researchers during the project.

- ✓ Seed and residue yield
- Precipitation-use efficiency
- Leaf spot diseases
- Crop residue coverage of soil
- Soil water depletion and recharge
- ✓ Surface soil properties

# Application

Findings from evaluations helped identify crop sequence <u>synergisms</u> and <u>antagonisms</u>, thereby providing the necessary foundation for developing strategies to sequence crops over a longer period of time.



### Application

Information in the Crop Sequence Calculator addresses the...

#### ...what to grow, when to grow it, and how to grow it...

...considerations of annual crop sequencing in the context of optimizing economic, social, and environmental goals.

# Crop Sequence Calculator

- Information in this program is part of an on-going research effort at the Northern Great Plains Research Laboratory to create more sustainable cropping systems for the northern Great Plains.
- As this effort evolves, additional principles and guidelines will be presented in new versions of the Crop Sequence Calculator.
- No material in the Crop Sequence Calculator may be copied or distributed in part or whole without permission of the research scientists involved.