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Particle trajectories above sinusoidal terrain
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SUMMARY

As heavy particles fall towards windswept topography, their motion is governed partly by gravitational forces
and partly by fluid forces resulting from the relative motion of the particles through the flow field. Topographically
induced perturbations of the flow field distort particle paths and ultimately modify deposition patterns at the surface.
Here, we calculate trajectories of particles falling toward a series of low-amplitude hills. Particle motion is obtained
by simplifying the dynamical equations of particle motion to kinematic form and then applying perturbation
techniques. This simplification is possible when the timescale of fluid motions is much longer than the characteristic
response-time of the particles. It is shown that, under the right atmospheric conditions, alternating regions of
convergent and divergent particle-paths will occur. An extension of the trajectory analysis yields expressions that
predict the point of surface impact as functions of the initial release point. This leads to a method for predicting
the point along the surface where deposition is either a maximum or a minimum.

Keyworps: Deposition Gravity waves Orography

1. INTRODUCTION

Stout et al. (1993) calculated trajectories for particles falling towards low-amplitude
sinusoidal hills and it was shown that under the right atmospheric conditions, focusing
of particle paths will occur. Particle motion was computed numerically by solving the
Newtonian equations of motion for each particle. In the present paper, we show that similar
results can be obtained analytically by first simplifying the equations of particle motion
to kinematic form and then applying perturbation methods. We then extend the trajectory
analysis to obtain expressions that predict the point of surface impact as functions of the
point of initial release and knowledge of the flow structure. This leads to a method for
predicting the point along the surface where deposition is a maximum or a minimum.

2. THEORY

We consider particles falling towards terrain with a surface which is described by a
simple sinusoidal function with amplitude &, wavelength L, and wave number k =27 /L

H(x) = h sin(kx). (D
The magnitude of the maximum slope of terrain with sinusoidal surface is

dH

| =kn )

max

&=

(@) Particle motion

The horizontal, lateral, and vertical coordinates are denoted (x, y, z) with unit vectors
(i, j, k). The coordinate system is oriented so that the gravitational vector acts parallel to
the z-axis in the —k direction. The particle velocity vector is V,, = (u;, v,, wp), and the
fluid velocity at the position of the particle is V = (u, v, w). The relative velocity vector is
Vi = V — V, which is the fluid velocity as seen by an observer moving with the particle.
The relative wind vector has components Vi = (Uyel, Urel, Wrel)-
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1830 J.E. STOUT and G. S. JANOWITZ

The drag of spherical particles has been studied extensively (see, for example, Zham
(1926)). In its most general form, the drag-force vector may be expressed as

7w D?
Fp=0Cp T'O Veel Vel 3)

where Cbp is the drag coefficient, D is the particle diameter, p is the fluid density, and V
is the magnitude of the resultant relative velocity vector V. The gravitational force acting
on a particle is

7w D3

5 (o~ P8, “

where p, is the particle density and the gravitational vector g = —gk. Vectorially summing
the fluid drag and gravitational forces acting on a particle and dividing by the particle mass
gives the equation of particle motion as (Stout et al. 1995)

dV, 3 p Cp

Pp —pP
- —'VreVre
dr 4p, D Wrel Op

F,=

g &)

The first term on the right-hand side expresses the acceleration of the particle because of
fluid drag, and the second term expresses the acceleration under gravity.
Time and velocity scales are introduced, and used to give non-dimensional variable

forms . v v
?: - Vp = __p_; i\/vrel = el P
T Wr Wr
where T = (mWry) ™! is the timescale of fluid motions as ‘seen’ by a particle falling verti-
cally at terminal velocity Wy through a fluid with vertical wave-number

6)

m= % — k*"2. (7)

Here, the Scorer parameter is denoted by £ and for the case of no mean shear £ = N /U,
where N is the Brunt-Viisild frequency and U is the basic wind speed. The terminal

velocity is
1/2
4 D p,—p
Wr=|-—g=" : 8
T ( 3 CDTg P ) 8)

where Cp, is the drag coefficient at terminal velocity. Combining Egs. (5), (6), and )
yields the non-dimensional form of the equation of motion

Cp ~ ~

dv,
—= = _‘/revre _k .
& “(CDT el ) ®)

The dimensionless parameter « is

gl —p/py) T
=" U 1
* mW2 T, (10)
and may be interpreted as the ratio of the timescale T of the fluid motions (as seen by a
falling particle) to the particle response time t,, defined as

Wr

= 11
21— p/pn) (1D

Tp
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PARTICLE TRAJECTORIES 1831

This timescale has been shown to be appropriate for particles undergoing linear or nonlinear
drag (Stout et al. 1995). For Stokes flow (linear drag) 7, reduces to the standard form
ppD /1811, where p is the fluid viscosity (Fuchs 1964).

An interesting limiting case is obtained when the timescale of fluid motions is much
longer than the response time of the particle, i.e. T > 7, or « is very large. This condition
is normally satisfied when small particles fall towards large-scale topographic flows; each
particle is then able to adjust immediately to follow changes in fluid motions. Dividing
the equations of motion by «, and taking the limit as « tends to infinity, we find that the
only relative motion is in the direction of the gravitational body force. Thus, as « tends to
infinity, then %y — 0, Vg — 0, Wy — 1 and Cp/Cp, — 1. In this case, the equation of
particle motion (Eq. (9)) reduces to kinematic form as

V,=V -k (12)

In other words, particle motion follows the fluid motion except for a constant drift velocity
in the direction of the gravitational body force, equal in magnitude to the terminal velocity.

The particle velocity can be expressed as the rate of change of the particle position-
vector. For two-dimensional motion, the dimensionless position-vector R is

R = kXi+mZk = Xi + Zk, (13)
and the dimensionless particle-velocity-vector is

< dR mdX,  dZ

V,= === ——=i+ —=k. 14
R (19
We consider a two-dimensional flow with a fluid-velocity-vector

V =i + ok. (15)

Combining Egs. (12), (14), and (15) and separating components yields the following
expressions for particle motion

dX k.~ ~

Foln ;H(X, Z), (16)
dZ o .

$=@(X, Z)—1. a7

Thus, as the particle falls through a moving fluid, it is assumed to adjust immediately to
match the horizontal fluid-flow and the vertical velocity of each particle is assumed to
adjust immediately to fall at the particle’s terminal velocity relative to the surrounding
fluid.

(b) Fluid motions

Solutions for two-dimensional flow over sinusoidal terrain were obtained from linear
theory by Queney (1948) and have been summarized by Smith (1979). Linear theory is
based upon the small-amplitude assumption which requires that kh < 1 where €%/k* < 1
(weak stratification) and £k < 1 where £%/k* > 1 (strong stratification).

For strong flow in a weakly stratified atmosphere with narrow hills (¢£2/k* < 1), the
flow field above sinusoidal terrain consists of evanescent waves. The horizontal and vertical
components of the fluid velocity are

U m U

(X, Z) = — +e—— sin(X) e 2,
u( ) WT+8kWT sin(X) e (18)
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~S 5 U S 5
w(X, Z) =e— cos(X)e™”. (19)
Wr

Here, the flow field is expressed as a function of the particle position ()/(\ . Z ).

For weak flow in strong stratification over a series of wide hills (£2/k? > 1), the flow
field above sinusoidal terrain consists of a series of vertically propagating waves. The flow
field may be written as

X, Z) v m U cos(X + Z) 20
u(X,Z)=— —e—— cos ,
Wr k Wr (20)
PN U s . =
DX, Z) = e— cos(X + Z). 1)
Wr

3. VERTICALLY PROPAGATING WAVES (£2/k? > 1)

(@) Particle trajectories (vertically propagating waves)

In this subsection, we derive expressions for the motion of particles falling through
vertically propagating waves. Particle position is expressed as an asymptotic expansion
assuming ¢ << 1, PR . .

X=Xo+eX +*X,+--- (22)
/Z\Z/Z\0+821+8222+"'. (23)

The fluid-velocity equations for vertically propagating waves (Egs. (20) and (21)) are re-
written using the asymptotic expansions for X and Z (Egs. (22) and (23)) which yield the
following expanded forms

U U o~
WX, 7) = W —sfkfﬁ cos(Xo + Z) 4+ O(e?), (24)
oo U )
w(X, Z) :8‘—}[]— cos(Xo + Zg) + O(&?). (25)
T

Insertion of Egs. (24) and (25) into Eqs. (16) and (17) and using Egs. (22) and (23) yields the
expanded kinematic equations for particles falling through vertically propagating waves
as

dT);) + ed#j; +0(e%) =¢ — svvq; cos(Xo + Zo) + O(e?), (26)
dzo dZ ) U s = 2
o Teg TOe ):_1+8WT cos(Xo + Zop) + O(&"), (27)
where
kU
= W (28)

The guiding principle of perturbation theory is that since the expansions must hold
for arbitrary values of the perturbation quantity &, terms of like order in & must separately
satisfy each equality (Van Dyke 1964). Thus, we can separate terms of like order. Integration
of the lowest-order terms yields the zeroth approximation which may be written as

Xo(t) = X, + o1, (29)
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Zo(t) = Z; — 1, (30)

where the initial release point is denoted by (X, Z.). This straight-line trajectory is equiv-
alent to the solution for particles falling within a layer of uniform flow above flat terrain.
Integration of the first-order equations yields the first-order corrections as

2@ =-7 s ? Csin(X 4+ Z o+ (¢ = DD = sin(Xi + Z), (31)
2@ =" df Csin(X+ Z + (@ — DD = sin(Xi + Z)): (32)

Ignoring second-order and higher terms, the full solution for the vertically propagating
wave-regime is obtained by combining the zeroth approximations and the first-order cor-
rections as follows

X)) =X+ ¢t — - l{SIH(Xi + Z+ (¢ — Dt) — sin(X; + Z)}, (33)
ZO=7Z—1+ . 1{sm(Xi + Z,+ (¢ — Dt) —sin(X; + Z))}. (34)

This solution consists of a straight-line trajectory, defined by the first two terms of each
equation, and a perturbation term that reflects the effects of topography. A unique trajectory
is defined by four dimensionless parameters Xi, Z;i, ¢ and mh.

A comparison of trajectories predicted by the analytical expressions derived here
with numerical predictions by Stout et al. (1993) is shown in Fig. 1. Here, A =200 m,
L=4000m,U=10ms™', Wr=4m s~! and N = 0.02 s7! or in non-dimensional form
mh =0.25, ¢ =3.17, Z; = 2.5, and X; varies from O to 47r. A comparison reveals that the
overall trajectory-pattern appears to be well represented by both the numerical solution of
the full particle-dynamics equations and by the analytical expressions derived here using
the immediate adjustment approximation. However, some small differences may be the
result of different initial conditions. Stout ez al. (1993) allowed all particles to be released
with no initial vertical velocity, whereas, in the present paper, the immediate adjustment
approximation determines the release conditions. For vertically propagating waves, fluid
perturbations are present at the release height, so that under the immediate adjustment
approximation the particle velocity at release depends on the initial release-point within
the fluid.

The magnitude of mh affects the magnitude of the perturbation term, but mh is
restricted to values much less than unity as a result of the small amplitude assumption
invoked in linear theory. Perhaps the most interesting of these four terms is ¢, which
expresses the relative slope of the constant-phase lines of the fluid flow to the natural fall
angle of the particle motion. A series of trajectories is plotted in Fig. 2, in which the value
of ¢ is systematically varied. Note that when ¢ < 1, which corresponds to a fall angle that
is larger than the angle of the constant-phase lines, the particle paths are fairly straight,
and the trajectory patterns are not considerably different from those above flat terrain.
Where ¢ > 1, which corresponds to a fall angle that is shallower than the angle of the
constant-phase lines, we find a focusing of particle paths which increases with increasing

When ¢ = 1, which corresponds to a fall angle exactly equal to the slope of the
constant-phase lines, we obtain the indeterminate form 0/0 for the perturbation terms. Using
L’Hopital’s rule, we find that in the limit as the value of ¢ tends to one, the perturbation
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Numerical Method (Stout etal., 1 993) (@)
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Figure 1.  Comparison of calculated trajectory patterns for particles falling through vertically propagating waves
with mh = 0.25 and ¢ = 3.17.

N>

Figure 2. Series of trajectories plotted for particles falling through vertically propagating waves.
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terms are well behaved and the trajectories are straight lines. In Fig. 2, we avoid this
problem by choosing a value of ¢ = 1.01, a value that is very close to, but not equal to,
unity.

(b) Impact location (vertically propagating waves)

In the previous subsection, expressions were derived for the trajectories of particles
falling through vertically propagating waves. Extending this analysis to predict the point
of surface impact is not difficult. In a steady flow, a one-to-one correspondence exists
between the initial release point (X i Z, ) and the surface impact location (X,, Z,).

Recall that the trajectory of a particle falling through vertically propagating waves
may be expressed as

~ ~ - M~ A~
X(@) =X + ¢t ‘8?F(Xi7 Zi, 1), (35)
Z0) = -—l+8—F(X1, Z, D, (36)
where the function F is
FR 20D = P bin®+ Zik @ - DD —snRi+ 2. 0D

Time is expressed as an asymptotic expansion as
T=To+¢eh+ . (38)

We denote the time and position at the moment of surface impact by a subscripted asterisk.
The horizontal and vertical particle positions at impact are

o~ o~ -~ o~ o~ o~ m - o~
X. (1) =X+ X = Xi + dtio + Ppety — 87€"F(Xi» Zi, 1), (39)
Z () - *0 + 8Z*1 - Z - *0 - Et*l +e— F(Xn Zl’ t*) - 8; SlIl(X*o) (40)
To lowest order we find that
T = Zi, @1)
and
X=X+ ¢Z:. 42)
Thus, we can rewrite the function F' as
FRi Zut) = 0 lsin(Ri+ 62) —sin%, + 79) “3)
The first-order correction for time is obtained from Eq. (40) as
T = (sin(X; + ¢Z)) — ¢ sin(X; + Z))}. (44)

k¢—1

Inserting Eq. (44) into Eq. (39) yields the final expression for the horizontal position of
surface impact as a function of the initial release point

X.(Xi, Z) = X + ¢ Zi — mho sin(X; + Z)). (45)
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Note that the horizontal impact location generally grows linearly with Z:, as it would
above a simpler flat surface, but, here, an additional perturbation-term reflects the effect
of topography. The perturbation term becomes less important as the steepness of the to-
pography kh is reduced and as the basic angle of fall W/ U becomes larger (particles fall
more vertically).

The impact height is

Z.(X,) = mh sin(X,). (46)

Now that we have obtained a relationship between the release point and the final
destination of the particles, we can answer an important question about trajectory spacing.
Along the surface, the horizontal spacing of individual trajectories is inversely proportional
to the surface deposition of particles. Given an initial spacing X, i» the change of surface
spacing of trajectories 0 X, is

X,
=1—mh cosX+Z 47
3%, ¢ cos( ) 47)
which has a minimum when X\i + Z =2nn, where n =0, 1, 2, . ... Thus, maximum

deposition (corresponding to minimum trajectory spacing) occurs where
Xomax =270+ (¢ — ) Z,. (48)

For ¢ = 4 and Z =2, we find that )?* max = 12.28 and 18.57 for n = 1 and 2 respectively.
From Fig. 2 we find that this agrees closely with the point along the surface with the
closest spacing of particle trajectories. The maximum trajectory spacing is found when
Xi+ Zi=2n(n+1/2), wheren =0, 1, 2 . . . . Thus, minimur deposition occurs where

Xomin =270+ 1/2) + (¢ — 1) Z,. (49)

For ¢ =4 and Z =2, we find that X «min = 9.14 and 15.42 for n = 0 and 1, respectively.
Again we find that this agrees closely with Fig. 2.

4. EVANESCENT WAVES (£2/k? < 1)

(a) Particle trajectories (evanescent waves)
In this subsection, we derive analytical expressions for the motion of particles falling
through evanescent waves. Using Eqs. (22) and (23), we expand the fluid-velocity equations
for evanescent waves (Eqgs. (18) and (19)) as

X, Z) = W + 8?14? sin(Xo) e + O(s?), (50)
— 5 Y S\ -2 2
w(X, Z)ZEW cos(Xg) e7° 4+ O(g?). 51
T

Inserting Eqgs. (50) and (51) into Eqs. (16) and (17) and using the expansions Egs. (22)
and (23) yields the expanded kinematic equations for particles falling through evanescent
waves as

dX, dX,

= Te gt o) =¢ + 8% sin(X,) e % + O(e?), (52)
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dz, dZ U .
_&?_0 + gq?i +0E)=—1+ T cos(Xo) €% + O(e?). (53)

As with the previous case, we obtain a straight-line trajectory as the zeroth approxi-
mation (see Egs. (29) and (30)). Integration of the first-order equations yields the first-order
corrections as

20=""2 180 cos(R, + D) — sin (X, + 97)
—e % {p cos(X;) — sin(X))}], (54)
20 =" L1 P eos R+ 6 + ¢ sin(R, + D)

—e~Z{cos(X)) + ¢ sin(X)}]. (55)

Ignoring second-order and higher terms, the full solution is obtained by combining the
zeroth approximations and the first-order corrections as follows

RGO =R + 67— 1’1’122 (% {¢ cos (X, + ¢7) — sin(R; + ¢1))
—e~4{ cos(X;) — sin(X)}], (56)
~ _ /\4 o~ mh¢ 't\_z A‘ ~ . AA ~
ZO =21+ 7 e eos(Xi + D) + @ sin(Xi + ¢1))
—eZ{cos(X;) + ¢ sin(X)}]. (57)

As with the previous case, we find that a unique trajectory is defined by four dimen-
sionless parameters X;, Z;, ¢ and mh. Trajectories of particles falling through evanescent
waves predicted by the analytical expressions derived here, along with numerical predic-
tions from Stout et al. (1993), are shown in Fig. 3. In this case, & =200 m, L = 4000 m,
U=10ms', Wr=4m s7! and N = 0.01 s~! or in non-dimensional terms mh = 0.24,
¢ = 3.24, and Z; = 2.4. The derived analytical expressions describe the general trajectory
pattern quite well. Panels (a) and (b) in Fig. 3 agree more closely than the corresponding
panels in Fig. 1. Most probably, this is because the fluid perturbations at the given release
height are negligible for evanescent waves and, therefore, the initial conditions are nearly
identical.

A number of trajectories are plotted in Fig. 4, in which the value of ¢ is doubled. Here,
there is no problem when ¢ = 1 since the denominator contains the term 1 + ¢*. When
¢ < 1, the particle paths are fairly straight and the trajectory patterns are not considerably
different from those above flat terrain. Where ¢ > 1, we find more substantial perturbations
in the particle paths, but we still do not find strong focusing with increasing ¢. This reveals
that evanescent waves do not produce such strong focusing as do vertically propagating
waves.

(b) Impact location (evanescent waves)
Recall that the particle trajectory for evanescent waves may be expressed as

X(t) = X + ¢f — e%Fx(fci, Z. D, (58)
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Numerical Method (Stout et al., 1993) (a)
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Figure 3. Comparison of calculated trajectory patterns for particles falling through evanescent waves with
mh =0.24 and ¢ = 3.24.
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>

Figure 4.  Series of trajectories plotted for particles falling through evanescent waves.
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7@ = ~~t+8 F(Xl, 7., 9. (59)

For evanescent waves, F, and F, are

Fo= P16 2 cos(@i+ D) — sin(i + 1)
—e”z{qb cos(X;) — sin(Xy)}1, (60)

O cos(R 4 6 + 6 sin(E, 4 47

Fo= gl PHeos(Ri 4 90 + ¢ sin X + ¢)
—e~A{cos(X;) + ¢ sin(X)}]. (61)

Substituting the asymptotic expansion for time (Eq. (38)) yields the horizontal and vertical
particle-position at the moment of surface impact as

) = = = o~ o~ m
X*:X*0+8X*1 :Xi+¢t*0+€¢t*1 —E-k—F*x, (62)
m ~
7. =T+ 67 = Zi — Tup — £Tu1 + 6 = 8% sin(X,o). (63)
To lowest order we find that
o= Zi, (64)
X=X+ ¢Z;. (65)

So we can rewrite the functions F,, and F,, at the surface as

Fi [ cos(X; + ¢Z;) — sin(X; + ¢ Z:) — e 2{p cos(X;) — sin(XD}],  (66)

_ ¢
s

F., = [cos(X; + ¢ Z) + ¢ sin(X; + ¢ Z;) — e Zi{cos(X;) + ¢ sin(X)D}.  (67)

)
1+ ¢?
From Eq. (63), the first-order correction for time is

—~

- %{F*Z —sin(X; + ¢ Z)}. (68)

Substituting this expression into Eq. (62) yields the horizontal impact location for particles
falling through evanescent waves as

}?*()?i, Z) = X\i + ¢Z — mhao e_Z sin(f(\i). (69)

The change of trajectory spacing is

oX. =1 he e 2 cos(X,), 70
=1—mh¢ e cos
0%, (70)
which has a minimum when 5(} =2nn,wheren =0, 1, 2. ... Thus, maximum deposition

(corresponding to minimum trajectory-spacing) occurs where

Xy = 2700 + $Z;. (71)
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For ¢ =4 and Z =2, we find that f*max = 8.0, 14.28, and 20.57 for n =0, 1, and 2
respectively. Thus, the top of each hill will receive the largest deposition for the conditions

specified. N
The maximum trajectory-spacing is found when X; = 27 (n + 1/2), where n =0, 1,
2. ... Thus, minimum deposition occurs where :

Xomin = 27(n 4+ 1/2) + ¢ Z.. (72)

For ¢ =4 and Z; =2, we find that X, i, = 11.14 and 17.42 for n = 0 and 1 respectively.
Thus, the troughs would receive the least deposition for the conditions specified.

5. SUMMARY

Analytical expressions are obtained for trajectories of particles falling through the
spatially varying flow-field above sinusoidal terrain. We consider strong stratification
with vertically propagating waves and weak stratification with evanescent waves. For such
large-scale flows, where the fluid timescale is often two orders of magnitude longer than
the particle response-time, we find that the immediate adjustment approximation is valid
and can be used to simplify the equations of motion to kinematic form. Using perturbation
methods, the kinematic equations are solved analytically to yield expressions for particle
trajectories. Trajectories in the two wave-types are similar in that they contain a linear term
to lowest order, but our results show that they are fundamentally different in the first-order
correction term.

Expressions were derived that link the release height to the location of the final
surface impact and a method was developed for predicting the point along the surface
where maximum and minimum deposition occur.
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