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ABSTRACT

Sound design of experiments combined with proper 
implementation of appropriate statistical methods for 
data analysis are critical for producing meaningful 
scientific results that are both replicable and reproduc-
ible. This communication addresses specific aspects of 
design and analysis of experiments relevant to the dairy 
sciences and, in so doing, responds to recent concerns 
raised in a letter to the editor of the Journal of Dairy 
Science regarding journal policy for research publica-
tions on pen-based animal studies. We further elaborate 
on points raised, rectify interpretation of important 
concepts, and show how aspects of statistical inference 
and elicitation of research conclusions are affected.
Key words: experimental unit, replication, 
observational unit, hierarchical data structure, pen

Short Communication

Sound design of experiments and proper implementa-
tion of appropriate statistical methods for data analysis 
are critical for producing meaningful scientific results 
that are both replicable and reproducible (Milliken 
and Johnson, 2009). First, consider the concept of a 
“statistical unit,” as proposed by Robinson (2016) in 
a recent Letter to the Editor in the Journal of Dairy 
Science, a term that is decidedly vague and lacks a 
universal definition in the mainstream design of experi-
ments literature, particularly for agricultural applica-
tions (Kuehl, 2000; Littell et al., 2006; Casella, 2008; 
Milliken and Johnson, 2009; Stroup, 2013). Instead, 
let us define the “experimental unit” and the “observa-

tional unit,” both formally and in the specific context 
of the dairy sciences. The leading literature in design of 
experiments defines the experimental unit, also called 
the unit of replication, as the smallest entity that is 
assigned independently of all other units to a particular 
treatment; the word independent is key to this definition 
(Kuehl, 2000; Littell et al., 2006; Casella, 2008; Milliken 
and Johnson, 2009; Stroup, 2013). Experimental units 
are often assumed to be “exchangeable,” a statistical 
term that implies that the units do not differ in any 
fundamental way, so that reliable inferences would be 
obtained regardless of which treatment was assigned to 
each unit.

In the dairy sciences, individual cows can sometimes 
serve as experimental units; for example, if treatments 
were different types or doses of antibiotics individually 
injected to treat mastitis. Even then, cows may still 
be housed together in pens but individual cows within 
a pen are randomly assigned to different treatments. 
In dairy nutrition, it is often of interest to compare 
diets that, for logistical reasons, are commonly fed (i.e., 
randomly assigned) to pens, such that all cows in the 
same pen are offered the same diet. For example, if 
one wanted to compare 2 diets, one could design an 
experiment by randomly assigning diets A and B each 
to a different random set of pens, with each pen hold-
ing several cows. In this case, the pen is clearly the 
experimental unit. If 2 pens receiving different diets 
showed any difference in outcome, we would not know 
whether this difference was due to the intended diet ef-
fect, a confounded pen effect, or a combination of both 
effects. To effectively separate diet effects from pen 
effects would require more pens; that is, diets need to 
be replicated to multiple pens. How many more pens? 
This is a question of statistical power and depends on 
how large the diet effect is expected to be, how variable 
observations from pens fed the same diet are, and how 
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this variability partitions into pen-level (i.e., between-
pen) variability and cow-level (i.e., within-pen) vari-
ability. For further details on statistical power in the 
context of the dairy sciences, the reader may refer to 
Tempelman (2009).

Distinct from an experimental unit, to which a treat-
ment is independently applied, is the concept of an ob-
servational unit, also known as the sampling unit. This 
distinction is recognized in the response to Robinson 
(2016) by Lamberson (2016). An observational unit is 
defined as the physical entity on which an outcome of 
interest is measured in an experiment (Kuehl, 2000; Ca-
sella, 2008). In many simple designs, experimental units 
and observational units are synonymous; that is, they 
can be matched to the same physical entity (Kuehl, 
2000; Littell et al., 2006; Stroup, 2013). This was true 
in the prior example when assessing the effect of anti-
biotic treatments individually injected and can also be 
true for the diet example if the outcome of interest were 
measured at the pen level (e.g., total intake for the pen 
or total time spent feeding for all animals in a pen). If 
pen is the entity that is both independently assigned to 
treatment and measured for outcome, then pen serves 
as both the experimental unit and the observational 
unit. On the other hand, if the outcome of interest in 
the diet example was measured on individual cows in 
each pen, say milk yield, one encounters a natural “gap” 
or “mismatch” between the entity independently as-
signed to treatment (i.e., pen) and the entity measured 
(i.e., individual cow within a pen). This is an example 
of a nested design structure: the pen is nested within 
a treatment and the individual cow is nested within a 
pen, thereby creating a hierarchical structure in the 
data.

A hierarchical data structure refers to a configuration 
of the data where observations are not mutually inde-
pendent but rather have a correlation structure imposed 
by the experimental design. In our dairy example with 
diets applied to pens, pens consist of individual cows 
but these animals are not mutually independent and, 
consequently, neither are their observations. Specific 
biological reasons to explain lack of independence of 
observations collected on cows within a pen are context 
specific. In the dairy sciences, one can often anticipate 
within-pen dynamics; for instance, differential feed ac-
cess due to social behavior (e.g., dominance) or man-
agement practices (i.e., feed mixing). Notably, this kind 
of correlation between observations from cows within 
a pen is different from a general “pen” effect, which 
may be due, for instance, to pen size, condition of the 
substrate, or shade availability, to name a few. It is pre-
cisely due to this correlation (i.e., lack of independence) 
between cow-level observations that it is not possible 
to separate diet effects from pen effects in a nutrition 

study conducted on only 2 pens, regardless of the num-
ber of cows in each pen. Whenever observational units 
are nested within an experimental unit, as is the case 
here, the observational units are commonly referred to 
as subsamples, pseudoreplicates, or technical replicates 
(Casella, 2008) to indicate that these observations are 
correlated and thus do not constitute true independent 
replication. Data structures such as these are common 
in the animal sciences; examples include multi-farm 
studies, groups of animals entering a study in weekly 
clusters, or repeated observations collected over time 
on individual animals (i.e., test-day milk yield). Hier-
archical data structures, and thus underlying correla-
tions between observations, can often be recognized 
as nesting or blocking in the experimental design of a 
study. Both nesting and blocking are common elements 
of design in dairy trials; thus, it is not surprising that 
experimental units are often separate physical entities 
from observational units in dairy science experiments.

We emphasize: experimental units are defined in 
terms of independent treatment assignments whereas 
observational units are defined in terms of outcome mea-
surements. These are clearly different definition crite-
ria. As such, observations do not necessarily represent 
replications. However, observational units are usually 
contained within experimental units (Stroup, 2013), 
which in turn determine the amount of replication of 
a given experiment. As a side note, a potential excep-
tion is a repeated-measures design, and this depends 
on whether one labels the observational unit to be an 
individual cow or an individual cow at a specific time 
point—here, labels are less important than the concept 
that repeated measures on the same cow are mutually 
correlated. Even so, replication implies an independent 
repetition of a basic experimental component, such as a 
treatment, and is considered a prime requisite for valid 
and reliable experimental inference (Kuehl, 2000; Ca-
sella, 2008). The rationale to support true replication 
as a requisite for valid experiments is well explained by 
Kuehl (2000), including the following: (1) results are 
reproducible, at least under the specified experimental 
conditions; (2) results are not aberrant realizations of 
an experiment due to unforeseen circumstances; and (3) 
variability between experimental units defining experi-
mental error is properly estimated and thus subsequent 
hypothesis tests are properly calibrated.

To be able to identify hierarchical data structure; 
that is, when independent replication occurs and when 
it does not, it is most important to understand the com-
plete process involved in collecting data and carrying 
out a study. This understanding is also critical to ad-
equately specify the statistical model for data analysis. 
For illustration purposes, consider alternative layouts 
for a general 3 × 3 Latin square design consisting of 3 
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treatments, 3 periods, and 3 pens, with multiple cows 
per pen, thereby responding directly to the cases pro-
posed by Robinson (2016). It should be noted that the 
case presented in Robinson’s letter to the editor lacks a 
clear description of how the experiment was conducted, 
neither was the process of data collection clearly ex-
plained. As a result, the reader may surmise 2 plausible 
experimental scenarios, each leading unambiguously to 
1 of his 2 models. First, suppose a scenario A, in which 
dietary treatments are fed to cows via a common pen 
trough (i.e., treatment is randomly assigned to pen). 
For contrast, we also consider a scenario B, whereby 
treatments are randomly assigned and applied to indi-
vidual cows within a pen (e.g., via injection or feeding 
through Calan gate technology). For both scenarios, 
let us work through the exercise called “What Would 
Fisher Do?” (WWFD), which was introduced by 
Stroup (2013) to translate the description of an experi-
mental design to an ANOVA shell to an actual statisti-
cal model. The WWFD exercise is a general strategy 
that, in the context of data assumed to be normal, 
can be shown to be equivalent to the traditional mean-
squares ANOVA exercise (Milliken and Johnson, 2009) 
essential to identifying the proper experimental error 
and thus distinguish between an experimental unit and 
an observational unit. Figures 1 and 2 depict the imple-
mentation of the WWFD exercise to alternative layouts 
of a single (i.e., unreplicated) 3 × 3 Latin square design 
consisting of 3 treatments, 3 periods, and 3 pens, with 
multiple cows per pen. To follow the WWFD approach, 
it is important to note the relative positions of rows 
corresponding to treatment structure (i.e., the central 
column of the WWFD table) and rows corresponding 
to elements of the experimental design (i.e., left-most 
column of the WWFD table), as well as their combina-
tion (i.e., right-most column of the WWFD table) to 
properly characterize the data collection process. For 
technical details on the WWFD exercise, the interested 
reader is referred to Stroup (2013) and Stroup (2015). 
Figure 1 illustrates the WWFD exercise implemented 
for scenario A: treatments (e.g., diets) randomly as-
signed to pens. Here, random assignment of treatment 
is to pen within a given period, with reassignment of 
treatments at the beginning of each new period. Hence, 
pen within a period is the unit of randomization, and 
thus the experimental unit for treatment; this is re-
flected in the position of the term “pen × period” im-
mediately below the term “treatment” in the left-most 
and central columns of the WWFD table, respectively 
(Figure 1). In the “combined” section of the WWFD 
table, “pen × period | treatment” is read “pen × period 
after accounting for treatment”; its degrees of freedom 
are specified by subtracting the “treatment” degrees 
of freedom from those of the “pen × period” element 

of design. Being the experimental unit for treatment, 
the pen in a given period defines the level of indepen-
dent replication for treatment in the hierarchical data 
structure and thus identifies the experimental error 
term. This specification of pen in a given period as 
the experimental unit for treatment is neither optional 
nor subject to opinion—it is the way the experiment 
was set up. In turn, cow within a pen in a given period 
represents the observational unit, such that the term 
“period × cow(pen)” in the WWFD table defines the 
sampling error but not the experimental error (Figure 
1). For completeness, we note that the sampling error 
term represents variation among observational units, 
distinct from experimental error or variation among 
experimental units. Furthermore, recall that for a single 
(i.e., nonreplicated) Latin square design, the interaction 
between treatment and pen, as well as that between 
treatment and period, are assumed nonexistent to allow 
for estimation of a measure of error (Kuehl, 2000; Mil-
liken and Johnson, 2009) and are thus not considered 
in Figure 1. Adding the term “cow(pen)” in the WWFD 
table to recognize multiple cows measured in a pen does 
not override this assumption.

For contrast, consider the WWFD exercise imple-
mented for scenario B: treatments assigned to indi-
vidual cows within a pen (e.g., individual antimicro-
bial injections), as illustrated in Figure 2. The actual 
source terms in the WWFD table are similar to those 
shown for scenario A in Figure 1, but their relative 
positions in the table are modified to reflect differences 
in the randomization process and in data collection. 
More specifically, scenario B differs from scenario A 
in the relative position of the “treatment” row relative 
to the rows of elements of the experimental design of 
the WWFD table (Figures 1 and 2). In scenario B, 
treatments are randomly assigned to individual cows 
within a pen in a given period, with reassignment of 
treatments at the beginning of each new period. Hence, 
“period × cow(pen)” identifies the individual cow in 
a given period and constitutes the unit of randomiza-
tion, and thus the experimental unit (Figure 2). In this 
scenario, the individual cow in a given period is also 
the observational unit on which the outcome is mea-
sured, as identified by the bottom row in the WWFD 
table (Figure 2). In turn, the “pen × period” term in 
scenario B identifies the pen within a period as an ef-
fective blocking structure within which treatments are 
randomly allocated to individual cows in pens.

In the dairy sciences, experiments with a Latin 
square design are sometimes repeated with more than 
one square, yielding so-called replicated Latin squares 
or Latin rectangles (Kuehl, 2000). In this case, one 
can— and should—investigate the interaction between 
treatment and period, provided the same periods are 
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considered within each square, particularly if period 
were reflective of a physiological event (e.g., days in 
milk or time since calving; Tempelman, 2004). Further, 
notice that this far, we have treated period as an ele-
ment of experimental design (i.e., left-most column of 
the WWFD table in Figures 1 and 2), as is consistent 
with the general literature on design of experiments. 
However, specifically for some dairy applications, period 
may be legitimately considered either as an element of 
the experimental design or as an element of treatment 
structure, depending on the variability of days in milk 
within a period, and thus the stage of lactation (refer to 
Tempelman, 2004 for further details). The decisions on 
how to treat period (i.e., as an element of experimental 

design or as one of treatment structure), as well as the 
incorporation of the treatment × period interaction in 
replicated Latin squares, are not trivial and need to 
be made on a case-by-case basis. Indeed, studies based 
on replicated Latin square designs showed that dietary 
effects may depend on stage of lactation (Taylor and 
Allen, 2005), in which case inference should focus on 
treatment differences within periods (presuming period 
as an element of the treatment structure) as opposed 
to overall treatment effects. Further, treating period 
as an element of experimental design or of treatment 
structure has implications for downstream inference 
because it determines how the experimental error for 
the treatment of interest is defined (Tempelman, 2004).

Figure 1. “What Would Fisher Do?” exercise for scenario A: treatments independently assigned to pens within a period, based on Stroup 
(2013, 2015). This experiment has the general design structure of a single (i.e., unreplicated) 3 × 3 Latin square, consisting of 3 treatments, 3 
periods, and 3 pens of 125 cows each. The arrow indicates the position of the row corresponding to treatment structure relative to a row of the 
experimental design that identifies the unit of randomization for treatment, and thus, its experimental unit. For replicated Latin squares, the 
interaction between period and treatment should also be considered (Tempelman, 2004).

Figure 2. “What Would Fisher Do?” exercise for scenario B: treatments independently assigned to individual cows within a pen in a given 
combination, based on Stroup (2013, 2015). This experiment has the general design structure of a single (i.e., unreplicated) 3 × 3 Latin square 
consisting of 3 treatments, 3 periods, and 3 pens of 125 cows each, but assigns treatments within each pen-by-period combination. The arrow 
indicates the position of the row corresponding to treatment structure relative to a row of the experimental design that identifies the unit of 
randomization for treatment, and thus, its experimental unit. For replicated Latin squares, the interaction between period and treatment should 
also be considered (Tempelman, 2004).
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Once the WWFD exercise has been completed so 
that the randomization and data collection processes 
in scenarios A and B are fully characterized, one can 
then transfer the row elements of the “combined” 
section of the WWFD tables (right-most columns of 
Figures 1 and 2) into a linear predictor to specify the 
corresponding linear model for each scenario (Stroup, 
2013). For completeness and also to facilitate practi-
cal implementation, programming pseudo-code for the 
GLIMMIX procedure of SAS software (SAS Institute 
Inc., Cary, NC) specifying a general linear mixed model 
for scenarios A and B are included as Appendix A and 
Appendix B, respectively. Proper specification of a sta-
tistical model for data analysis is a rigorous process for 
which it is critical to have a strong grasp of hierarchical 
data structure by way of an in-depth understanding of 
the data collection process. Note that both experiments 
outlined in scenarios A and B have the general design 
outline of a 3 × 3 Latin square. Yet, differences in their 
randomization process lead to striking discrepancies 
in the hierarchical data structure relative to the spe-
cific treatment of interest, thereby identifying different 
physical entities as the actual experimental units (i.e., 
pen in a given period for scenario A and individual cow 
within a pen for scenario B).

In the interest of fulfilling the objectives stated for 
this communication, we now align our proposed sce-
narios A and B with the models proposed by Robin-
son (2016). Robinson’s model 1 is appropriate given 
scenario B, whereas Robinson’s model 2 follows from 
scenario A (Robinson, 2016). As noted before, scenarios 
A and B are not interchangeable and neither are their 
corresponding models; therefore, one cannot discuss 
either model without also giving context about the 
experimental design and the data collection process. 
Robinson fails to give a clear description of how the 
study was conducted, thereby making the decision be-
tween models 1 and 2 impossible. A clear and detailed 
description of how the data were collected and how the 
design was implemented is imperative for model speci-
fication. The inferential implications of disregarding 
experimental design and specifying a statistical model 
that does not match the process of data collection are 
not minor. If scenario A were to be improperly mod-
eled with Robinson’s model 1 (i.e., incorrectly treating 
cow as the experimental unit), one can anticipate at 
least 2 consequences of inferential relevance: (1) the 
denominator degrees of freedom for the F-test statis-
tic on treatment would be artificially enlarged from 
2 to 742 (Figures 1 and 2); and (2) the denominator 
of the corresponding F-test statistic would likely be 
somewhat decreased, thus inflating the corresponding 
F-ratio. These would, in turn, inflate type I error and 
thus increase the chances of false positives (Milliken 

and Johnson, 2009; Stroup, 2013). In other words, 
improperly specifying model 1 for scenario A would, 
on average, lead the researcher to conclude on more 
treatment differences as being statistically significant 
than should be.

Undoubtedly, subtle changes in how an experiment 
is run can have profound effects on how the statisti-
cal model for data analysis is specified (Milliken and 
Johnson, 2009; Stroup, 2013). The bottom line is that 
the statistical model should describe a plausible pro-
cess that gives rise to the observations by (1) captur-
ing the important independent variables affecting the 
outcome variable, and by (2) specifying any restrictions 
in randomization or any other data structure inducing 
correlation among observations. Mixed models are a 
statistical framework uniquely suited to this job (Lit-
tell et al., 2006; Milliken and Johnson, 2009; Stroup, 
2013), provided that they are properly implemented. 
The inherently hierarchical structure of mixed models 
can naturally accommodate data with a hierarchical 
structure; that is, mixed models can properly “see” 
animal-level data, even in cases in which the animal 
is not the experimental unit. Further, in the context 
of mixed models, there is no need to collapse animal-
level data into pen-level summaries, neither to “drop” 
animal-level data nor to “destroy” cow-level variance, 
as suggested by Robinson (2016). As such, mixed mod-
els can simultaneously recognize multiple sources of 
random variability in a data set, thereby assessing cow-
level variability and pen-level variability at the same 
time, and using one or the other as experimental error 
for a given treatment of interest, as appropriate. Thus, 
mixed models can be used to ensure that the experi-
mental unit for each treatment of interest is properly 
recognized within a study design, leading to proper 
recognition of the level of experimental error and thus 
to appropriate hypothesis testing. It is the estimated 
variation between the independent experimental units 
that determines the proper experimental error to assess 
treatment effects. Indeed, it is the estimated variance 
among experimental units that determines the estimat-
ed standard error of treatment differences (SED) that 
is used for classical hypothesis testing and ultimately, 
for elicitation of P-values. As worthwhile clarification, 
recall that it is the estimated SED, not the estimated 
standard error of the mean (SEM), that plays the 
meaningful role when testing for differential treatment 
effects. In fact, if there is any sort of hierarchical struc-
ture to the data (i.e., studies more complicated than a 
completely randomized design), the SEM is of no use 
for hypothesis testing (Littell et al., 2006; Milliken and 
Johnson, 2009; Tempelman, 2009; Stroup, 2013). This 
fact makes irrelevant points of Robinson’s comparison 
of SEM between model 1 and model 2 (Robinson, 2016). 
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Notably, if cow were inappropriately treated as the ex-
perimental unit in a pen-based study as in scenario A, 
the SED for comparison of dietary treatments would be 
badly understated because it would ignore pen-to-pen 
variability (Tempelman, 2009).

Additional implications of inappropriate identifica-
tion of the experimental unit of a study and improper 
specification of mixed models are broad in reach and 
encompass the important issue of scope of inference. 
In other words, what is the population to which any 
conclusions derived from a given study is meant to be 
applicable? Ideally, any experimental units used in a 
study would be considered a representative, if not a 
random, sample of a conceptual population of such 
units to which the conclusions are intended to apply. 
Hierarchical issues (i.e., cow, pen, herd) similar to those 
described for data structure apply here as well, such 
that the scope of inference of a study may be local 
(within a herd), regional (across herds in a given area), 
national or international, depending on the structure of 
data sources and the corresponding specification of ran-
dom effects in mixed models for data analysis. An ex-
plicit discussion of scope of inference is relevant here for 
3 reasons. First, a larger scope of inference, and thus a 
broader applicability of conclusions, is often accommo-
dated by adding layers to the hierarchical design (e.g., 
on-farm studies repeated at several farms or experi-
mental stations). Second, a sound experimental design 
should balance the allocation of experimental units and 
observational units such that meaningful results can be 
obtained at both smaller and larger scales of inference 
(i.e., cow level, pen level, herd level). For instance, if 
the variability between farms in their response to given 
treatments is considerable, it is important to character-
ize how farms differ, in addition to what occurs within 
individual farms. Last, scope of inference is likely to 
have implications on the seemingly pervasive issue of 
“research irreproducibility” across scientific disciplines 
that has been raised in multiple editorials published 
over the last several years (Ioannidis, 2005; Begley and 
Ellis, 2012; Nuzzo, 2015; Open Science Collaboration, 
2015). Arguably, numerous problems are recognized 
as contributors to research irreproducibility, includ-
ing unaccounted biases, “fishing expeditions” without 
adjustments for multiple testing, disregarded modeling 
assumptions, hypothesis myopia, asymmetric attention 
to unexpected results, and “just-so” storytelling, among 
others (Ioannidis, 2005; Nuzzo, 2015). Given the discus-
sion presented thus far on the importance of properly 
characterizing data structure when specifying models 
for data analysis, one wonders whether it is possible 
that a limited appreciation, or even misunderstanding, 
of scope of inference might be misleading scientists 
to overgeneralize research results from a study that 

supports only a far narrower scope of inference? If so, 
failure to reproduce results should not be surprising. 
Specifically in the context of the dairy sciences, we have 
shown how a disregard for hierarchical data structure 
can inflate degrees of freedom and F-ratios, thereby 
leading to an unduly high rate of false positives that, 
not surprisingly, fail to replicate. A conscious effort to 
recognize proper scope of inference is needed to provide 
context within which to interpret results of any given 
study so that the general and specific circumstances for 
reproducibility of research results can be delineated. 
Statistically significant results may indeed be valid but 
only for limited scopes of inference (e.g., within a farm 
or region but not necessarily applicable more broadly) 
or under specific constrained conditions (e.g., if there 
were uncharacterized interactions of treatment with 
other factors). That is, research results on the effect of 
a given treatment, even if well characterized and tested 
in one setting, may not be applicable in a different 
context. A continued discussion on the reproducibility 
of research findings (or lack thereof) is relevant as sci-
entists keep refuting themselves, resulting in confusion 
and disappointment among the general public, which in 
turn is likely to undermine public trust and discourage 
funding allocation for future research (American Asso-
ciation for the Advancement of Science, 2016). A closer 
consideration and better understanding of scope of 
inference might help explain, at least in part, research 
findings that are not reproducible. Further discussion 
on the issue of scope of inference in the context of the 
dairy sciences is provided by Tempelman (2009).

In closing, it is interesting to note that the same 
physical entity, either animal or pen, can play the role 
of an experimental unit or that of an observational unit 
within the same experiment (e.g., split-plot designs). 
In most cases, the existing general principles of design 
of experiments are such that virtually every quantita-
tively trained dairy scientist should be able to apply 
them to recognize the proper experimental unit for a 
treatment in a given pen-based animal study, be it cow, 
pen, or something else altogether. Proper case-specific 
application of these principles is important because 
the question of “what is the experimental unit” cannot 
always be reduced to a same answer for all treatment 
factors under all conditions. Proper identification of the 
experimental unit in a given study needs to be framed 
in the context of a specific research question—what is 
the effect of a treatment on a specific outcome of inter-
est?—in combination with the many logistical nuances 
of the data collection process (i.e., experimental design 
and corresponding data structure). The same research 
question could very well have animal as the experimen-
tal unit in a tie-stall study (that is, assuming proper 
randomization of treatments to cows, even if cows are 
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fed separately), and pen as the experimental unit in 
another study addressing the same question but now 
in the context of animals confined to pens. Given the 
many logistical scenarios in which research questions 
in the dairy sciences can be posed, it is difficult, if not 
impossible, to outline “be-all and end-all” guidelines de-
fining what is the experimental unit for every possible 
pen-based animal study; instead, statistical expertise 
should be sought and applied on a case-by-case basis. 
The need for such specialized statistical expertise raises 
awareness of the importance of modern quantitative 
training for the next generation of dairy scientists (i.e., 
our current graduate students), as well as continuing 
quantitative education of established dairy researchers, 
journal editors, and reviewers. Most importantly, it is 
worth emphasizing that specification of the experimen-
tal unit in a given experiment is not a matter of opinion; 
rather, it is determined by how the experiment was set 
up, how the data were collected, and the intended scope 
of inference. Untangling logistical nuances and inter-
preting their implications in an experimental setting 
may require tailored expertise in experimental design. 
In our opinion, engaged collaborative interdisciplinary 
research interactions between dairy scientists and stat-
isticians hold the key to ensuring efficient and powerful 
science that is both reproducible and replicable in the 
real world and thus ultimately relevant to stakeholders 
and to the public.
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Appendix A

The SAS code below corresponds to specification of a general linear mixed model for scenario A, Treatments 
independently assigned to pens within a period, following from the “What Would Fisher Do?” (WWFD) exercise 
in Figure 1. This SAS code assumes a (conditional) normal distribution on the response variable y and an experi-
mental design consisting of a single (i.e., unreplicated) Latin square:

If period were to be treated as an element of the treatment structure in the WWFD exercise, as is sometimes 
legitimate for dairy applications (Tempelman, 2004), the corresponding SAS code should be modified as follows 
to reflect the appropriate mixed model specification:

Further, for replicated Latin square designs, researchers should also incorporate into the model the interaction 
between treatment and period (Tempelman, 2004), either as a random effect or a fixed effect, consistent with the 
specification of period as an element of design or treatment structure (Stroup, 2013), respectively.

Appendix B

Accompanying SAS code corresponding to specification of a general linear mixed model for scenario B: Treat-
ments independently assigned to cows within a pen-by-period combination, following from the WWFD exercise 
in Figure 2. This SAS code assumes a (conditional) normal distribution on the response variable y and a single 
(i.e., unreplicated) Latin square design:
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If period were to be treated as an element of the treatment structure in the WWFD exercise, as is sometimes 
legitimate for dairy applications (Tempelman, 2004), the corresponding SAS code should be modified as follows 
to reflect the appropriate mixed model specification:

Further, for replicated Latin square designs, researchers should incorporate into the model the interaction 
between treatment and period (Tempelman, 2004), either as a random effect or as a fixed effect, consistent with 
the specification of period as an element of design or treatment structure, respectively (Stroup, 2013).
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