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Summary

Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain.

In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics
is proposed for detection of insect-damaged wheat kernels, based on its capability to process non-stationary
signals and its suppression of mode mixing. The intrinsic mode function (IMF) kurtosis, IMF form factors, IMF

third-order Rényi entropies, and the mean of the degree of stationarity were extracted as discriminant features

used as the inputs to a support vector machine (SVM) for non-linear classification. In these experiments, 98.7%

of undamaged wheat kernels and 93.3% of insect-damaged ones were correctly detected, which indicated the

effectiveness of the proposed method for categorizing undamaged wheat kernels from insect-damaged wheat

kernels (IDK).

PACS no. 43.60.-c

1. Introduction

Stored grain suffers severe damage due to hidden, inter-
nally feeding insects [1]. In addition, insects cause nutri-
tional losses and contamination by excrement and frag-
ments. Therefore, the work of detection of insect-damaged
wheat kernels (IDK) is of great urgency. Previously, a va-
riety of methods have been explored to detect the insects
inside the wheat kernels, such as x-ray imaging, acous-
tic detection of larval movement and chewing, and car-
bon dioxide monitoring [2]. However, most of these meth-
ods are either slow, labor intensive, expensive, or cannot
quantitatively measure insect infestation levels [2]. To find
more efficient and convenient methods, detection tech-
niques based on impact acoustics have been studied by
many researchers.

Originally, detection techniques based on impact acous-
tics were applied to separate pistachio nuts with closed
shells from those with open shells [3]. After the work by
Pearson et al, improved procedures for sorting pistachios
were studied [4, 5, 6, 7, 8]. In addition, detection tech-
niques based on impact acoustics were used to separate
fully developed from underdeveloped hazelnuts [9], sep-
arate undamaged from damaged/cracked hazelnut kernels
[10], remove shell pieces from hazelnut kernels [11], dis-
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criminate between potato tubers and clods [12, 13], and
separate filled and empty walnuts [14].

The detection system used for sorting pistachio nuts,
[3], was improved to detect IDK [2]. The features of the
signals, both in the time domain and frequency domain,
were extracted by three approaches. First, a time-domain
signal model was developed with Weibull curve fitting.
The method achieved 88.8% detection accuracy for un-
damaged wheat kernels and 86.6% for insect-damaged
ones. Second, the time-domain variances in short-time
windows were computed, enabling 85.2% of undamaged
wheat kernels and 76.2% of insect-damaged ones to be
classified correctly. Third, the frequency spectra magni-
tudes were obtained through discrete Fourier transform
(DFT). It was reported that the detection accuracies of un-
damaged wheat kernels and IDK were 87.4% and 85.0%
respectively. When the three methods were combined to
extract features, and linear discriminant analysis (LDA)
was used for classification, the classification accuracies of
undamaged wheat kernels and IDK were 98.0% and 84.4%
respectively [2].

Pearson, Cetin, Tewfik and Haff developed a non-
destructive, real-time device to detect insect damage,
sprout damage, and scab damage in wheat kernels [15].
They emphasized that the maximum amplitudes of the
acoustic emission signals from wheat kernels could not
play a decisive role in distinguishing each type of sig-
nal. However, compared with the signals from undamaged
wheat kernels, the signals from IDK had a longer reso-

© S. Hirzel Verlag - EAA



Author's complimentary copy

Guo et al.: Detection of damaged wheat kernels

nance duration. For further study, in addition to the dis-
criminant features used before, the differential spectrum
and the maxima in short-time windows were used as dis-
criminant features, and the stepwise discriminant analysis
routine was exploited for selecting a small feature subset.
Using a neural network, 98% of undamaged wheat kernels
and 87% of insect-damaged ones were correctly classified.
In addition to high accuracy, the new sorting method pro-
vided celerity, with a throughput of 40 wheat kernels/s.

On this basis, a new adaptive time-frequency analysis
and classification method using impact acoustics was pro-
posed to separate three types of damaged wheat kernels
(IDK, pupal, and scab) from undamaged wheat kernels
[16]. Discriminant features were extracted from the adap-
tively segmented acoustic signal and were post-processed
by principal component analysis (PCA). Using a lin-
ear discriminant classifier, these three types of damaged
wheat kernels were separated from undamaged ones with
96%, 82%, and 94% accuracies respectively. Furthermore,
the algorithm presented adaptation capability to the time-
frequency patterns of signals, making it a more universal
method for grain kernel classification.

In this report, a new scheme based on EEMD using im-
pact acoustics is proposed for detection of IDK. The dis-
criminant features, including the IMF kurtosis, IMF form
factors, IMF third-order Rényi entropies, and the mean of
the degree of stationarity are extracted as the inputs into
a SVM classifier and the resultant detection accuracy is
measured.

2. Experimental apparatus

Figure 1 shows the experimental apparatus for dropping
wheat kernels onto an impact plate and collecting the im-
pact acoustic signals. The experimental apparatus includes
a vibration feeder, an impact plate, a microphone, and a
computer equipped with a sound card. The impact sounds
are affected by the structural properties of the substrate. To
compare suitabilities of different substrates, 2000 wheat
kernels were tested, 700 on glass, 700 on wood, and 600
on stainless steel plates. The differences between fluctua-
tion properties of the signals from undamaged wheat ker-
nels and IDK during the resonance decay process were
larger when using stainless steel, so the impact plate was
determined to be a block of stainless steel. The dimensions
were adjusted to maximize the resonance properties of the
impact plates, which ultimately were set at approximately
24 x 11 x 0.06 cm. Then, 600 wheat kernels, including
300 undamaged wheat kernels and 300 IDK, were used in
the experiment. To avoid the circumstance that the wheat
kernels bounce twice before leaving the impact plate, the
incline angle was set 30° above the horizontal and the drop
distance from the feeder to the impact plate was set at
50 cm through trial and error.

The impact acoustic signals were collected by using
a condenser microphone (SHURE BG 4.1). The micro-
phone was connected to a computer equipped with a sound
card (MAYA44), sampling at 48 kHz with 18-bit resolu-
tion.
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Figure 1. Schematic of experimental apparatus.

By using the vibration feeder, the wheat kernels were
channeled into a single-file stream. The freely falling
wheat kernels impacted the stainless steel, and the impact
acoustic signals were acquired and saved in the computer.

3. Signal processing

Traditional time-frequency analysis methods, such as the
short-time Fourier transform (STFT), Wigner-Ville distri-
bution (WVD), as well as the wavelet transform (WT),
are not very suitable for processing non-stationary and
non-linear signals because of lack of self-adaptive basis
functions. Huang, Shen, and Long et al put forward a
method, the Hilbert-Huang transform, whose core is em-
pirical mode decomposition (EMD), which is able to pro-
cess the non-stationary and non-linear signals [17]. How-
ever, the problem of mode mixing cannot be avoided,
which is the primary drawback of EMD.

To overcome the problem of mode mixing in EMD, a
new method called ensemble empirical mode decomposi-
tion (EEMD) was proposed [18]. EEMD is based on the
local characteristic time scales of a signal, and the sig-
nal can be self-adaptively decomposed into several IMFs,
where each of the IMF components contains a different lo-
cal characteristic time scale. Unlike EMD, the finite white
noise, which is uniformly full of the whole time-frequency
plane, is added to the signal by using EEMD. Then the
components of signals in different scales are automatically
separated into appropriate scales of reference. With suffi-
cient numbers of trials, the white noise can be eliminated
to achieve better decomposition results [18]. Based on its
capability for suppressing mode mixing, EEMD is widely
used in the field of fault diagnosis [19, 20], and signal de-
tection [21].

The EEMD algorithm can be described as follows:

1. Add a white noise series to the original signal to obtain

a general signal,
Xi(1) = x(1) + wi(2), i=12..., K,

where x () represents the original signal, w;(?) is the ith
added white noise series, and X;(#) is the general signal
of the ith trial.
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Figure 2. Examples of impact acoustic signals from an undam-
aged wheat kernel (a) and an IDK (b).

2. Apply EMD to X;(t), then each of the IMF components
c;; can be obtained, where c;; represents the jth IMF
component of the ith trial.

3. Add a different white noise series w;(f) to the original
signals, and repeat steps (1) and (2) until K trials.

4. Calculate the ensemble mean of K trials,

K

1
Cj(f) = ? Z ij,‘(t), (2)

i=1

j=12,...,mi=1,2,..., K, where mis the number
of IMF components.
5. Eventually, the original signal x(#) can be represented

as

m

xX(1) = )¢ (1) + ru(®), 3)

j=1

where ¢;(¢) represents the jth IMF component, and
rm(?) is the residue.
Generally, the result of decomposition will be closer to the
actual value if more trials are taken. Usually, K = 100.
Typical impact acoustic signals from an undamaged
wheat kernel and an IDK are shown in Figure 2. Compared
with the signal from the IDK, the signal from the undam-
aged wheat kernel may have a larger peak value, but the
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Figure 3. EEMD of the signals from an undamaged wheat kernel
(a) and an IDK (b).

peak values of the signals are quite variable so they are
not very useful for distinguishing IDK from undamaged
wheat kernels. However, the signals of undamaged wheat
kernels typically have larger fluctuation during the reso-
nance decay process. Relative to the signals of undamaged
wheat kernels, the signals of IDK have more stable decay
trends, associated with the intrinsic characteristics and the
resonance effects of their impacts on the steel plate.

Figure 3 demonstrates the EEMD of the signals from an
undamaged wheat kernel and an IDK. The main signal en-
ergy exists in the first several IMF components. This char-
acteristic indicates that the features should be extracted in
the first several IMFs.
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Figure 4. The mean and SD (dot and error bars) of IMF kurtosis
for 300 undamaged wheat kernels and 300 IDK.

4. Results

4.1. Feature extraction by EEMD method

In this paper, 5000 data points were acquired for each im-
pact, beginning 20 points before the maximum magnitude
of the whole signal. The IMF kurtosis, IMF form factors,
IMF third-order Rényi entropies, as well as the mean of the
degree of stationarity were extracted as the discriminant
features. The details of feature extraction are as follows:

4.1.1. The IMF kurtosis

The kurtosis, a dimensionless parameter, reflects the distri-
bution characteristics of signals. For a discrete signal, the
IMF kurtosis can be expressed as

N =4
Kurt, = % 2 (c’k—cf) (4)
k=1

4
o

where c; represents the kth data point of the jth IMF, ¢;
is the average of the jth IMF, N is the number of data
points, and o, is the standard deviation (SD) of the jth
IMF. Figure 4 shows the mean and SD of IMF kurtosis
for 300 undamaged wheat kernels and 300 IDK. Before
the 7th IMF component, the mean of IMF kurtosis for un-
damaged wheat kernels are larger than for IDK. However,
there is little information in the last several IMF compo-
nents. The first 6 IMF kurtosis components were extracted
for inclusion as discriminant features.

4.1.2. The IMF form factors

Form factors reflect distributional characteristics of signals
in the time domain. For a discrete signal, the IMF form
factors are represented as

/ N
% D=1 Cjz',k
=T <wN .’
% Y=t |Cj’k |

where c; represents the kth data point of the jth IMF, and
N is the number of data points.

Ky, )

Figure 5. The mean and SD of IMF form factors for 300 undam-
aged wheat kernels and 300 IDK.

Figure 5 shows the mean and SD of IMF form fac-
tors for 300 undamaged wheat kernels and 300 IDK. The
change trends of the mean of IMF form factors for undam-
aged kernels and IDK are generally similar. The two types
of kernel can be distinguished because the mean of IMF
form factors for undamaged wheat kernels are larger than
for IDK before the 9th IMF. The first 8§ IMF form factors
were extracted as discriminant features.

4.1.3. The IMF third-order Rényi entropy

For the jth IMF componentc; (j = 1,2,..., m), the IMF
Rényi entropy is

1 N
Ry(¢)) = 17— 1n(2 P;;k), (6)
k=1

where « is the order of Rényi entropy, here « > 0 and
a # 1. For a« — 1 with restriction of reaching 1, it reduces
to the Shannon entropy. N is the number of data points,
and P, is the probability density,

n
P, =c, / Y )
k=1

where c; is the kth data point of the jth IMF component.

Several empirical studies indicated that in addition to
appearing immune to the negative time frequency repre-
sentation values that can invalidate the Shannon approach,
the third-order Rényi entropy seemed to measure signal
complexity [22], so the IMF third-order Rényi entropies
were computed for this report. Figure 6 shows the mean
and SD of IMF third-order Rényi entropies for 300 un-
damaged wheat kernels and 300 IDK. The curves of the
two types present a general upward trend, and it is evi-
dent that the mean of IMF third-order Rényi entropies are
greater for IDK than for undamaged wheat kernels before
the 7th IMF component. Compared with the signals from
undamaged wheat kernels, the signals from IDK have a
more stable decay trend (Figure 2); therefore, the relative
complexities and the IMF third-order Rényi entropies for
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Figure 6. The mean and SD of IMF third-order Rényi entropies
for 300 undamaged wheat kernels and 300 IDK.
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Figure 7. The degree of stationarity from an undamaged wheat
kernel (a) and an IDK (b).

IDK are larger. This characteristic provides us with good
detection features. The first 6 IMF third-order Rényi en-
tropies were extracted as discriminant features.

4.1.4. The mean of the degree of stationarity
The Hilbert transform of the jth IMF ¢;(¢) is

[oe]

Cj(T)

1
yj(t) = ;PJ dT, (8)

—0o0
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where P is the Cauchy principal value, and the analytic
signal z;(#) is defined as

2i(1) = ¢;() +1iy;(1) = a;(1) exp (i6;(1)). 9)

where

2 2
a;(1) = \/(c,-(t)) + ()",
0;(1) = arctan (y;(1)/c;(1)).
and the instantaneous frequency is defined as

de; (1)
dr

w;(1) = (10)
Applying the Hilbert transform to each IMF, the original
signal x(¢) can be expressed as

m

x() = Y a;(t)exp (i0,(1))

j=1
= Zaj(t)exp <ila)j(t)dt>. (a1
j=1

Here the residue, r, (1), is left out, because it is either
a monotonic function or a constant. Equation (11) also
enables us to represent the amplitude and the instanta-
neous frequency as functions of time. The frequency-time
distribution of the amplitude is called Hilbert amplitude
spectrum, H (w, t), or simply Hilbert spectrum. Define the
marginal spectrum, i(®), as

N
hw) = J H(w,1)dt, (12)
0

then the mean marginal spectrum, n(w), is
n(w) = h(w)/N, (13)

where, for a discrete signal, N represents the number of
data points.
The degree of stationarity is defined as

(Y Hw,n\’
DS(w) = NL (1— ) ) dr. (14)

For DS(w), the higher the index value, the more non-
stationary is the process [17]. Distributions of the degree
of stationarity from an undamaged wheat kernel and an
IDK are shown in Figure 7. The degree of stationarity is
quite variable in different frequency ranges whether for the
undamaged wheat kernel or the IDK. The degree of sta-
tionarity for the undamaged wheat kernel tends to remain
larger than for the IDK, so we adopted the mean of the
degree of stationarity as one of the discriminant features.
The mean values and SDs of the partial discriminant
features of signals for randomly selected 300 undamaged
wheat kernels and 300 IDK are shown in Table I for the
first 4 IMF components, c; . . . ¢4, of the kurtosis, form fac-
tor, and Rényi entropy, as well as the mean of the degree
of stationarity. The mean values and SDs from all features
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Figure 9. Block diagram of the detection process.

indicate that the extracted features enable good separation
of differences between the two types of wheat kernels. Vi-
sual representations are presented in Figure 8, where the
red marks and the green marks represent the feature values
of undamaged wheat kernels and IDK, respectively. These
characteristics indicate that IDK can be distinguished suc-
cessfully from undamaged wheat kernels by using the se-
lected features.

Figure 9 shows the block diagram of the detection sys-
tem. The Matlab data acquisition toolbox was used for
saving the impact acoustic signals of undamaged wheat
kernels and IDK. Based on its capability to process non-

stationary signals and its suppression of mode mixing, the
EEMD scheme was adopted. Theoretically, when the am-
plitude of noise remains below a certain level, the results
of decomposition will be closer to the actual value if more
trials are taken, in this case, 100. The data acquired from
EEMD were saved as .mat files, making it more convenient
for feature extraction.

The main objects in the study are undamaged wheat ker-
nels and IDK. For each type, 300 wheat kernels were used
with 150 for training and 150 for testing. The wheat ker-
nels were not screened through any means.
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Table I. Partial feature statistics from 300 undamaged wheat kernels and 300 IDK Features.

Undamaged wheat kernels IDK

Mean SD Mean SD
IMF kurtosis (c;) 35.47 15.16 22.00 10.01
IMF kurtosis (c3) 63.54 35.36 30.40 17.58
IMF kurtosis (c3) 95.96 40.14 53.52 28.31
IMF kurtosis (c4) 63.08 25.19 40.76 22.28
IMF form factor (c;) 2.63 0.15 2.23 0.11
IMF form factor (c;) 2.73 0.22 2.17 0.15
IMF form factor (c3) 3.03 0.33 2.37 0.25
IMF form factor (c4) 2.99 0.35 2.40 0.33
IMF third-order Rényi entropy (c;) 5.27 0.44 5.76 0.41
IMF third-order Rényi entropy (c;) 4.72 0.50 5.44 0.43
IMF third-order Rényi entropy (c3) 4.37 0.43 4.90 0.47
IMF third-order Rényi entropy (c4) 4.86 0.39 5.26 0.46
The mean of the degree of stationarity 1.31 0.13 1.09 0.08

Table II. Classification accuracies for subsets of features.

Features Number of features Classification accuracy (%)
Undamaged IDK
L. Rényi entropy 6 92.0 74.0
II. Kurtosis 6 94.7 82.7
III. Stationarity average 1 91.3 88.7
IV. Form factor 8 99.3 91.3
I+11 6+6 96.0 85.3
[+101 6+1 53 87.3
+IV 6+8 98.7 92.7
II+11I 6+1 96.7 86.0
+1v 6+8 97.3 93.3
+1v 1+8 98.7 91.3
[+IT+111 6+6+1 98.0 87.3
[+1I41V 6+6+8 97.3 93.3
[+I+1V 6+1+8 98.0 92.7
+II+1V 6+1+8 98.0 91.3
[+II4+14+1V 64+6+1+8 98.7 93.3

4.2. Classification

Based on its superiority of non-linear classification, the
SVM software of Libsvm [23] was used in the experiment,
and the radial basis function (RBF) was adopted as the
SVM kernel function,

K(%-%) =exp(—7||%-%|°) (15)
The radial basis function can be a better choice relative
to the linear kernel function, because it can deal with the
circumstance where the relation between class labels is
nonlinear. For the SVM classifier, the penalty factor, C,
and the kernel function, y, are important parameters. The
grid-search (GS) algorithm [24] was adopted for select-
ing the optimal penalty factor and kernel function parame-
ters by finding the values giving the highest ten-fold cross-
validation accuracy in the training set (containing 150 un-
damaged wheat kernels and 150 IDK). For this experi-
ment, the best C and y were determined to be 256 and
0.0625, respectively. Different colors reflect percentage
accuracy differences (Figure 10).

1114

Table III. SVM Classification accuracies when using different
methods for parameter selection.

Method for SVM Classification accuracy (%)
parameter selection Undamaged IDK
Default parameters 98.0 91.3
Grid-search with ten-fold

cross-validation 98.7 933

Different combinations of the classification features are
shown in Table II for identification of subsets of optimal
features. When only one type of feature is considered, the
IMF form factors can be regarded as the optimal features,
achieving 99.3% detection accuracy for undamaged wheat
kernels and 91.3% for IDK. Using these features alone,
clear differences between undamaged kernels and IDK are
evident, and the features are beneficial particularly for de-
tection of undamaged wheat kernels. However, when all
21 discriminant features are used, the undamaged kernels
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Table IV. Classification outcomes for SVM to detect undamaged wheat kernels and IDK, with additional types of damaged wheat
kernels (300 scab-damaged and 300 sprout-damaged) included in experiment.

Damage category

Classification outcome (%)

Undamaged Insect-damaged Scab-damaged Sprout-damaged
Undamaged 87.3 1.3 10.7 0.7
Insect-damaged 6.7 773 6.7 9.3
Scab-damaged 14.0 14.7 66.7 4.6
Sprout-damaged 53 53 9.4 80.0

Table V. Comparison study of the conventional and selected methods.

Method Number of Classification accuracy (%) Processing time
features Undamaged IDK (s/kernel)

Conventional method 29 94.7 89.3 0.05

Selected method 21 98.7 93.3 0.34

Accuracy (%)

Figure 10. Grid-search algorithm with ten-fold cross-validation
for optimal parameters selection (the best C = 256, the best y =
0.0625).

and IDK both are classified with high accuracy, achiev-
ing 98.7% for undamaged wheat kernels and 93.3% for
IDK, which improved the effectiveness of the proposed
method. Table III reports the detection accuracy with dif-
ferent methods for parameter selection when using all 21
features included in the SVM.

Table IV reports the classification outcomes for an addi-
tional data set including the original 300 undamaged wheat
kernels and 300 IDK combined with 300 additional scab-
damaged and 300 sprout-damaged wheat kernels. The re-
sults indicated that the proposed method can classify four
types of wheat kernel with > 60% accuracy.

For further study, a comparative study was conducted
with the addition of two analyses: 1) computing the short-
time window variances and maxima of the impact acoustic
signals, 2) analysis of the frequency spectra magnitudes.
For the short-time window variances and maxima compu-
tations, we used 8 short-time windows which were 150
points in duration and incremented in steps of 120 points
so that each window was overlapped by 30 points. The first
window began 20 points before the maximum magnitude.

Then, all the short-time window variances and maxima
were normalized. For frequency spectra magnitudes com-
putations, the maximum magnitude and the 6 spectrum-
level values before and after the maximum were computed
and normalized.

Finally, a total of 29 normalized features, including 8
short-time variances, 8 short-time maximums, and 13 fre-
quency spectra magnitudes, were used as inputs to the
SVM, and the RBF kernel parameters as well as the
penalty factor were optimized with the grid-search al-
gorithm by finding the values giving the highest ten-
fold cross-validation accuracy in the training set. Table V
shows the results of the comparison study. Here, “Conven-
tional method” means extracting 29 features as described
above, “Selected method” means extracting 21 features
through EEMD method as in Table 2. The results indicated
that the selected method developed in this report can ob-
tain better detection accuracies for undamaged wheat ker-
nels and IDK than the conventional method.

5. Discussion

In this report, important features of impact acoustic sig-
nals were extracted by using an EEMD method. Although
the kurtosis, form factors and third-order Rényi entropy
features can also be extracted from original impact acous-
tic signals in the time domain, this extraction is done by
a procedure that reflects the general characteristics of sig-
nals rather than the local characteristics. However, feature
extraction through EEMD method can reveal the differ-
ent IMFs over which the features are separable for differ-
ent wheat kernel types and thus are useful for classifica-
tion. The discriminant features are separable in the first
several IMFs, but not in the last several IMFs. Based on
this characteristic, the discriminant features should be ex-
tracted from the first several IMFs.

It should be noted that the throughput of the system
in this paper is not rapid, approximately 0.34 s for pro-
cessing of each wheat kernel (Table 5). However, it is an
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acceptable throughput in this case because it matches the
processing speed of the experimental apparatus. Also, the
detection system has high accuracy, achieving 98.7% for
undamaged wheat kernels and 93.3% for IDK. In addi-
tion, the detection system is easy to acquire and low-cost.
Therefore, the system is suitable for small-sample detec-
tion for which the throughput is not demanded very high
but high precision is indeed required. For example, the US
Grain Inspection Service, Packers, and Stockyard Admin-
istration (GISPSA) guidelines classify samples through
sieving and visually inspecting a sample (1kg) to detect
the insects inside wheat kernels and determine the quality
of a particular shipment [25]. The method proposed in this
paper for detection of IDK is suitable for this work.

6. Conclusion and future work

In this paper, a new method based on EEMD analysis of

impact acoustics was developed for detection of IDK. The

features, including the IMF kurtosis, IMF form factors,

IMF third-order Rényi entropies, and the mean value of

the degree of stationarity enabled good detection accura-

cies.
The new method has the following characteristics:

1. EEMD, which is based on the local characteristic time
scales of a signal, can self-adaptively processes non-
stationary signals and suppresses mode mixing.

2. SVM can be used for classification, with 98.7% of un-
damaged wheat kernels and 93.3% of insect-damaged
ones detected correctly.

3. When other types of damaged wheat kernels are added
to the data set for classification, the proposed method
can still detect undamaged wheat kernels and IDK with
> 60% accuracy.

In future work, further technical details can be studied. For
instance, we can evaluate the detection performance in var-
ious controlled circumstances, such as the temperature, the
size of wheat kernels, and the level of maturity. Also, we
can improve the recognition rates for multi-class classifi-
cation.
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