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Stink bugs cost the southeastern US cotton industry millions of dollars each year in crop losses and con-
trol costs. These losses are reduced by strategic pesticide applications; however, current methods of mon-
itoring these pests for making management decisions are time-consuming and costly. Therefore,
improved methods to identify and monitor these bugs must be investigated in order to optimize pesticide
applications. One such method would be to exploit the substrate-borne vibrational signals (SBVSs) of
these insects. Recordings of SBVS for two prevalent regional pests, the brown stink bug, Euschistus ser-
vus, and southern green stink bug, Nezara viridula, were segmented into separate pulses of variable dura-
tion based on signal energy. For each pulse, the linear frequency cepstral coefficients, dominant
frequency, and duration were calculated and used as features. These features were classified using a
Gaussian mixture model (GMM) and a probabilistic neural network (PNN) to discriminate these SBVS
from incidental sounds and SBVS of different species from each other. Detection of SBVS generated by
brown stink bugs was performed with over 92% accuracy for single male-female pairs with both PNN
and GMM and with over 86% accuracy for 30 individuals with both PNN and GMM. Detection of SBVS
generated by southern green stink bugs was performed with up to 82.5% accuracy with PNN and 68.0%
accuracy with GMM for 30 individuals. Also, both PNN and GMM were over 90% accurate in identifying
SBVS of brown and southern green stink bugs. Concurrent detection of SBVS from noise and identification
of SBVS of brown and southern green stink bugs was 83.3% accurate using PNN and 71.5% accurate using
GMM. These results indicated the capability of detecting and identifying stink bug species using their
SBVS.
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1. Introduction

Cotton, Gossypium hirsutum (L.), containing transgenes from the
bacterium Bacillus thuringiensis (Bt) has significantly reduced the
amount of foliar-applied insecticides used to control major pests
of the crop. However, because species of stink bugs are no longer
being controlled coincidentally by applications of these insecti-
cides, these insects have emerged as major pests and caused eco-
nomic damage to cotton (Panizzi et al., 2000; Greene et al.,
2001). In 2011, losses due to stink bugs were estimated to be over
$48 million in the United States, with control costs exceeding $5.3
million (Williams, 2012).

In order to preserve the benefits of Bt cotton that minimize the
amount of insecticides needed for acceptable control, detection
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methods must be developed to measure stink bug range, density,
and/or damage so pesticides are only applied when a damage
threshold is exceeded. Ideally, detection methods also will provide
pest species identification so new biological control treatments
(Saxena and Kumar, 1980; Cokl and Millar, 2009; Mankin, 2012),
such as interference with intraspecific communicatory substrate-
borne vibrational signals (SBVSs), will be targeted correctly.

Individuals of many pest species of stink bugs in the southeast-
ern United States communicate intraspecifically using SBVS,
including the southern green stink bug, Nezara viridula (L.) (Harris
et al., 1982; Cokl et al., 2000), the green stink bug, Chinavia hilaris
(Say) (Cokl et al., 2001), and the brown stink bug, Euschistus servus
(Say) (Lampson et al., 2010). Stink bugs use SBVS to locate and
court mates, with each signal being specific to the species produc-
ing it and to the stage in the mating process (Cokl and Virant-Dob-
erlet, 2003).
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Previous research on classifying insect sounds can be divided
into three categories — detection, monitoring, and identification
(Mankin et al., 2011). Detection and monitoring involve classifica-
tion of sounds of predefined types from background noise over
short or long periods. Identification involves classifying predefined
sounds into targeted categories, e.g. the species, family, order, or
males and females of a particular species that produced them.

Accurate automatic identification of insect communication
sounds has been shown using linear frequency cepstral coefficients
(LFCCs) as features classified with Gaussian mixture models
(GMMs) or probabilistic neural networks (PNNs). Previous research
on cicadas, which use a tymbal mechanism to produce sound, clas-
sify sounds from family Cicadidae into genera with accuracies of
94.4% using GMM and up to 97.9% using PNN using dominant fre-
quency, segment duration, and 23 LFCCs as features (Ganchev and
Potamitis, 2007; Ganchev et al., 2007); however, the previous re-
search only used high quality recordings with high signal-to-noise
ratios. In order to develop a model for detection and/or monitoring,
the model must be presented with segments of high energy noise
and be able to differentiate those noise segments from insect
sounds.

Accurate automatic detection of insect sounds has also been
performed by distinguishing incidental vibrations (e.g. moving,
eating, or tunneling) of different species from noise using cepstral
features with GMM classification. Sounds of the red palm weevil
were automatically detected from noise with up to 98.8% accuracy
using GMM as the classification method and mel-frequency ceps-
tral coefficients as features (Pinhas et al., 2008). Also, sounds of
the red palm weevil were automatically detected from noise with
over 96.9% accuracy and sounds of the rice weevil were detected
with 100% accuracy with GMM classification using dominant fre-
quency and 23 LFCCs as features (Potamitis et al., 2009). However,
no research focuses on using these techniques for automatic detec-
tion of insect vibrational communication or for concurrent detec-
tion and species identification.

The objective of this research was to detect and identify the
SBVS of the brown stink bug, E. servus, and the southern green stink
bug, N. viridula, on cotton by utilizing state-of-the-art identifica-
tion and detection techniques. These techniques included vari-
able-length segmentation, which has been shown to outperform
fixed-length segmentation, and the addition of dominant fre-
quency and segment length as features, which have been shown
to increase accuracy of species identification (Potamitis et al.,
2006, 2009;Ganchev and Potamitis, 2007).

Piezoelectric transducers have replaced microphones for
recording SBVS as microphones do not record vibrations through
soil and/or woody substrates well. Popular piezoelectric transduc-
ers include accelerometers, ultrasonic transducers, and film trans-
ducers (Mankin et al., 2011). For this study, a piezoelectric
accelerometer was used for recording SBVS.

2. Methods and materials
2.1. Rearing of insects and plants

Over 100 adults of brown and southern green stink bugs were
used for this experiment, including some reared from eggs from
mated females in the laboratory and some collected from fields
of cotton and soybeans at the Edisto Research and Education Cen-
ter near Blackville, South Carolina, in late spring and early summer
of 2008. Stink bugs were reared and/or held in multiple plastic
cages and fed a diet of fresh green beans and raw peanuts (Harris
and Todd, 1981). The cages were held in a controlled environment
room at 30°C and 70% relative humidity with a photoperiod of
14:10 (L:D) h. Three plants of cotton, Gossypium hirsutum (L.),

variety DP 164 B2RF (Delta and Pine Land 164 Bollgard 2 Round-
up-Ready Flex) were held in plastic black pots 27.9 cm in diameter
and 24.1 cm tall. The plants varied in height from 0.6 m to 0.9 m
and were blooming and setting bolls during experimentation.

2.2. Recording SBVS

All recordings were made from 23 to 26 June 2008 with sexually
mature adult bugs between 0900 and 2100 h in an anechoic cham-
ber located at the USDA Center for Medical, Agricultural, and Vet-
erinary Entomology in Gainesville, Florida. Recordings were made
using an accelerometer (Model 4370, Briiel & Kjaer, Naerum, Den-
mark) attached to the cotton plant by alligator clips at 55 cm above
the soil. This setup was enclosed in a 0.6 x 0.6 x 1.2 m wire mesh
cage to contain the insects.

Ten recordings of 90 s each were made of individual pairs of a
male and a female of the brown stink bug (BSB). Then, to consider
environments with increased incidental noise, ten recordings of
90 s each were made of 30 individuals of the BSB. Ten recordings
of 90 s each were also made of 30 individuals of the southern green
stink bug (SGSB). Recordings were amplified 20 dB using a charge
amplifier (Model 2635, Briiel & Kjer, Naerum, Denmark) and
30 dB using a secondary amplifier (Model 2610, Briiel & Kjeer, Nae-
rum, Denmark) and then bandpass-filtered between 70 and
2000 Hz before being digitized at 44.1 kHz using a speech-analysis
system (Model 4300B, Kay Elemetrics Corp., Lincoln Park, NJ).

2.3. Vibrational data analysis and recognition

An algorithm was written using Visual Studio (Microsoft, 2007)
to calculate the features of the SBVS recorded. First, each 90-s
recording was reduced 10x to a sample frequency of 4.41 kHz
and divided into 6 segments of 15 s each to reduce computational
demand. These segments were further divided into pulses using
the procedure described by Ganchev et al. (2007). The frame en-
ergy of each segment was calculated using:

Kframe
> (x(kL+1)* fork=0,1,...

i=1

Eyse(k) = ,M-1

where x(i) is the input signal, k is the frame indeX, Kfame is the
frame size, L is the predefined step size that determines the overlap
between successive frames, and:

Nrec - Kframe + L)

M= ﬂoor< L

where the floor operator stands for rounding toward the smaller
integer value, and N, is the total number of samples in the record-
ing. A frame size of Kgame =44 and a step size of L =5 was used,
which corresponds to a frame duration of 10.0 ms and a step dura-
tion of 1.13 ms. The start of a pulse was defined when E, ;. exceeded
the upper threshold, Tpigh, and the pulse continued until Eyse was re-
duced below the lower threshold, Tj,,. These thresholds were de-
fined as:

Thigh (k) = 0.96 - Thign(k — 1) + 0.04 - Eyee(k — 1)

T]ow(k) =0.75. Thigh(k)

for k=1,2,...,M where Tpign(0) = Eyse(0). Two pulses separated by
12 ms or less were combined into one pulse.

Then, LFCCs were calculated for each pulse. First, the input sig-
nal for each pulse were multiplied by a Hamming window and sub-
jected to a discrete Fourier transform (DFT), and the output energy
from the DFT was multiplied by the amplitude gain of each of 32
overlapping, triangular filters with a length of 11.5 Hz, covering
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60-250 Hz. The log-energy filterbank outputs were then subjected
to a discrete cosine transform (DCT):

B
LFCC; = ;(xicos (j(h%) %)) fori=0,1,...,]
where X; are the log-energy filterbank outputs, j is the order of the
LFCC, J is the number of LFCCs calculated, i is redefined in this equa-
tion as a filter index, and B = 32 is the number of filters. The Oth or-
der LFCC was discarded, and the 1st through 24th order LFCCs were
selected to be used in the identification process. Various numbers of
LFCCs were tested to determine contributions of higher order LFCCs.
The dominant frequency and duration were also used as features.
Cepstral mean subtraction and dynamic range normalization were
applied to all features.

Classification models, GMM and PNN, were made using these
features. The 10-fold cross-validation method was used to verify
each model, which includes dividing the dataset randomly into
10 subsets and repeating the holdout method ten times using each
subset as the testing set exactly once. The classification criterion
for classifying feature vector X to population i using PNN was:

gi(X) > g;(X) for all j#i

X=X 2

1 i
where g.(X) =———— ) e 2
&(X) (M)p/z(ﬂ,ni;

fori=1,2,...,N

where p is length of each feature vector, ¢ is the spread, n; is the
number of feature vectors for population i, Xj, is the kth feature vec-
tor for population i, N is the number of populations, k is redefined in
this equation as an index over feature vectors, and i and j are rede-
fined as population indexes. A population was defined as a set of
pulses classified as either SBVS from a particular stink bug species
or incidental noise. The classification criterion for classifying feature
vector X, to mixture component i for the GMM was:

hi(Xe) > hi(Xi) for all j#i

where hy(Xy) is the probability the feature vector X, belongs to mix-
ture component i or posterior probability, i and j are redefined as
mixture component indexes, k is a feature vector index, and:

oG (Xie| iy, Zi
hi(X,) = ] @ /}M )
Zj:1“j@(xk‘ﬂjvzj)

where ¢; is the weight for the ith mixture component, | is the num-
ber of mixture components, and the mixture density function:
1 Xe=r)' 271 Xt

Xl Zi) =————5€ 2z 1
P Xk, Zo) ((27I)p|2i|)1/2e (1)

where p is length of each feature vector, X; is the covariance of the
ith mixture component, and y; is the mean of the ith mixture com-
ponent. Parameters o;, ;, ~; were calculated iteratively using the
Expectation Maximization (EM) algorithm until convergence of
the likelihood function:

n J
L(X]at 1, 51) = H(Z“J‘P(Xk(“f’zw

k=1 \ j=1

where n is the number of feature vectors, k is a feature vector index,
j and i are mixture component indexes, J is the number of mixture
components, o; is the weight for the jth cluster, and the mixture
density function is described in Eq. (1). Two mixture components
(K=2) were used for either identification or detection, and three
mixture components (K = 3) were used for concurrent identification
and detection. The training set was used to calculate the initial
parameters o;, X; and y; but the testing set was used in the EM
algorithm.

Both the GMM and PNN were performed using MATLAB (Math-
Works, 2010). The PNN was performed using the ‘newpnn’ and
‘sim’ functions, using a spread of 0.50. The GMM was performed
using the ‘gmdistribution.fit’ function, with the start parameter gi-
ven as a structure array using the mean, covariance, and mixing
proportion matrices calculated from the training set.

First, classification models were made to detect SBVS of single
pairs of BSB, 30 individuals of BSB, and also 30 individuals of SGSB
from incidental noise. For detection of BSB and SGSB, all pulses
were manually labeled as ‘positive’ or ‘negative’. A ‘positive’ label
indicated a clearly identified stink bug vibrational signal in the
pulse. A ‘negative’ label indicated the pulse did not contain any
SBVS. False positives were defined in the classification model as
incorrectly classifying a ‘negative’ pulse as ‘positive’, and false neg-
atives were defined in the classification model as incorrectly clas-
sifying a ‘positive’ pulse as ‘negative’.

Then, classification models were made to identify SBVS of BSB
and SGSB, and pulses were manually labeled as ‘brown’ or ‘south-
ern green’, respectively. Pulses which did not contain any SBVS
were discarded. False match ‘A’ was defined as the classification
model incorrectly identifying a ‘brown’ pulse as ‘southern green’,
and false match ‘B’ was defined as the classification model incor-
rectly identifying a ‘southern green’ pulse as ‘brown’.

Then, classification models were designed to concurrently de-
tect and identify BSB and SGSB from incidental noise. All pulses
were manually labeled as ‘brown’, ‘southern green’, or ‘noise’. A
‘brown’ or ‘southern green’ label indicated a clearly identified
vibrational signal in the pulse from BSB or SGSB, respectively. A
‘noise’ label indicated the pulse did not contain any ‘brown’ or
‘southern green’ SBVS. False match ‘Ag’ was defined as incorrectly
identifying a ‘brown’ pulse as ‘southern green’, and false match
‘AN’ was defined as incorrectly identifying a ‘brown’ pulse as
‘noise’. Likewise, false match ‘B,’ was defined as incorrectly identi-
fying a ‘southern green’ pulse as ‘brown’, and false match ‘By’ was
defined as incorrectly identifying a ‘southern green’ pulse as a
‘noise’ pulse. In addition, false match ‘N5’ was defined as incor-
rectly identifying ‘noise’ as a ‘brown’ pulse, and false match ‘Ng’
was defined as incorrectly identifying ‘noise’ as a ‘southern green’
pulse.

3. Results
3.1. Detection of SBVS of BSB and SGSB from incidental noise

From the recordings of single pairs of BSB, 2009 stink bug pulses
and 1352 noise pulses were identified. Pulses were correctly iden-
tified with up to 94.1% accuracy with PNN, using dominant fre-
quency, duration, and 1st through 6th order LFCCs as features
(Table 1). Pulses were correctly identified with up to 92.5% accu-
racy with GMM, using dominant frequency, duration, and 1st
through 8th order LFCCs as features (Table 2).

Table 1

Accuracy of probabilistic neural network to detect substrate-borne vibrational signals
from male-female pairs of Euschistus servus using dominant frequency, duration, and
4-24 linear frequency cepstral coefficients (LFCCs).

No. of LFCCs Correct (%) False + (%) False — (%)
4 934 3.54 3.09
6 94.1 2.86 3.03
8 93.5 3.03 3.48
12 92.7 333 3.93
16 92.3 3.93 3.78
20 92.5 3.66 3.84
24 91.8 4.02 417
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Table 2

Accuracy of Gaussian mixture model to detect substrate-borne vibrational signals
from male-female pairs of Euschistus servus, using dominant frequency, duration, and
4-24 linear frequency cepstral coefficients (LFCCs).

Table 6

Accuracy of Gaussian mixture model to detect substrate-borne vibrational signals
from 30 Nezara viridula, using dominant frequency, duration, and 4-24 linear
frequency cepstral coefficients (LFCCs).

No. of LFCCs Correct (%) False + (%) False — (%) No. of LFCCs Correct (%) False + (%) False — (%)
4 92.5 3.99 3.51 4 61.9 7.45 30.7
6 92.1 3.27 4.58 6 61.9 7.88 30.2
8 92.5 3.21 4.28 8 62.1 8.19 29.8
12 923 3.30 4.40 12 68.0 104 21.6
16 91.6 3.63 4.76 16 66.0 215 12.5
20 90.5 4.55 491 20 62.4 221 15.5
24 90.7 497 4.34 24 48.9 13.8 373
Table 3
Table 7

Accuracy of probabilistic neural network to detect substrate-borne vibrational signals
from 30 Euschistus servus, using dominant frequency, duration, and 4-24 linear
frequency cepstral coefficients (LFCCs).

No. of LFCCs Correct (%) False + (%) False — (%)
4 89.1 3.69 7.21
6 90.7 3.49 5.76
8 89.2 4.49 6.35
12 88.9 4.69 6.39
16 88.4 4.87 6.77
20 88.6 4.90 6.52
24 88.2 4.97 6.87
Table 4

Accuracy of Gaussian mixture model to detect substrate-borne vibrational signals
from 30 Euschistus servus, using dominant frequency, duration, and 4-24 linear
frequency cepstral coefficients (LFCCs).

No. of LFCCs Correct (%) False + (%) False — (%)
4 78.3 15.1 6.63
6 85.5 10.5 4.00
8 86.0 9.15 4.90
12 85.5 8.53 5.94
16 74.2 21.0 4.76
20 70.8 249 4.25
24 71.1 24.5 442
Table 5

Accuracy of probabilistic neural network to detect substrate-borne vibrational signals
from 30 Nezara viridula, using dominant frequency, duration, and 4-24 linear
frequency cepstral coefficients (LFCCs).

No. of LFCCs Correct (%) False + (%) False — (%)
4 82.5 8.61 8.86

6 81.4 7.31 11.3

8 79.2 8.24 12.5

12 771 9.09 13.8

16 75.8 9.48 14.7

20 76.1 9.37 14.5

24 76.3 9.45 14.2

From the recordings of 30 BSB, 1373 ‘positive’ pulses and 1524
‘negative’ pulses were identified. The average dominant frequency
for ‘negative’ pulses was 104 Hz and the average dominant fre-
quency for ‘positive’ pulses was 105 Hz. Pulses were correctly iden-
tified using PNN with up 90.7% accuracy, using dominant
frequency, duration, and 1st through 6th LFCCs as features (Table
3). Pulses were correctly identified with up 86.0% accuracy with
GMM, using dominant frequency, duration, and 1st through 8th or-
der LFCCs as features (Table 4). The average dominant frequency
for false positives was 115 Hz, and the average dominant fre-
quency for false negatives was 112 Hz for the PNN model, using
dominant frequency, duration, and 1st through 6th LFCCs as fea-
tures. The average dominant frequency for correct ‘positive’ pulses

Accuracy of probabilistic neural network to identify substrate-borne vibrational
signals of Nezara viridula and Euschistus servus, using dominant frequency, duration,
and 4-24 linear frequency cepstral coefficients (LFCCs). False match ‘A’ was defined as
incorrectly identifying an E. servus signal as a N. viridula signal, and false match ‘B’ was
defined as incorrectly identifying an N. viridula signal as a E. servus signal.

No. of LFCCs Correct (%) False A (%) False B (%)
4 91.6 5.43 3.00
6 93.3 4.80 1.89
8 93.8 4.44 1.78
12 934 4.41 2.15
16 93.1 4.58 235
20 92.8 4.55 2.63
24 92.9 4.78 2.29

was 104 Hz, and the average dominant frequency for correct ‘neg-
ative’ pulses was 93.7 Hz for the PNN model, using dominant fre-
quency, duration, and 1st through 6th LFCCs as features.

From the recordings of 30 SGSB, 2166 stink bug pulses and 1389
noise pulses were identified. The average dominant frequency for
‘negative’ pulses was 89.5 Hz, and the average dominant frequency
for ‘positive’ pulses was 114 Hz. Pulses were correctly identified
with up to 82.5% accuracy with PNN, using 1st through 4th order
LFCCs as features (Table 5) and up to 68.0% accuracy with GMM,
using dominant frequency, duration, and 1st through 12th LFCCs
as features (Table 6). The average dominant frequency for false
positives was 111 Hz, and the average dominant frequency for
false negatives was 93.4 Hz for the PNN model, using dominant fre-
quency, duration, and 1st through 4th LFCCs as features. The aver-
age dominant frequency for correct ‘positive’ pulses was 118 Hz,
and the average dominant frequency for correct ‘negative’ pulses
was 83.5 Hz for the PNN model, using dominant frequency, dura-
tion, and 1st through 4th LFCCs as features.

3.2. Identification of SBVS of BSB and SGSB

Overall, 3482 pulses were classified- 2166 belonging to SGSB
and 1373 belonging to BSB. Pulses were correctly identified with
up to 93.8% accuracy with PNN (Table 7) and up to 90.6% accuracy
with GMM (Table 8), using dominant frequency, duration, and 1st
through 8th order LFCCs as features.

3.3. Concurrent detection and identification of SBVS of BSB and SGSB
from incidental noise

Overall, 6452 pulses were classified- 2913 noise pulses, 2166
pulses belonging to SGSB and 1373 pulses belonging to BSB. Pulses
were correctly identified with up to 83.3% accuracy with PNN,
using dominant frequency, duration, and 1st through 6th order
LFCCs as features (Table 9), and up to 71.5% accuracy with GMM,
using dominant frequency, duration, and 1st through 8th LFCCs
as features (Table 10).
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Table 8

Accuracy of Gaussian mixture model to identify substrate-borne vibrational signals of
Nezara viridula and Euschistus servus, using dominant frequency, duration, and 4-24
linear frequency cepstral coefficients (LFCCs). False match ‘A’ was defined as
incorrectly identifying an E. servus signal as a N. viridula signal, and false match ‘B’
was defined as incorrectly identifying an N. viridula signal as a E. servus signal.

No. of LFCCs Correct (%) False A (%) False B (%)
4 86.3 7.12 6.58

6 89.8 6.70 3.48

8 90.6 7.04 2.35

12 90.5 8.19 1.30

16 85.6 6.08 8.28

20 63.1 3.67 33.2

24 63.3 3.81 329

Table 9

Accuracy of probabilistic neural network to concurrently detect and identify
substrate-borne vibrational signals of Nezara viridula and Euschistus servus, from
incidental noise using dominant frequency, duration, and 4-24 linear frequency
cepstral coefficients (LFCCs). False match ‘Ag’ was defined as incorrectly identifying an
E. servus signal as a N. viridula signal, false match ‘Ay’ was defined as incorrectly
identifying an E. servus signal as noise, false match ‘B’ was defined as incorrectly
identifying a N. viridula signal as a E. servus signal, false match ‘By’ was defined as
incorrectly identifying a N. viridula signal as noise, false match ‘N’ was defined
as incorrectly identifying noise as an E. servus signal, and false match ‘Ng’ was defined
as incorrectly identifying noise as a N. viridula signal.

No. of Correct Ap An Ba Bn Na Np

LFCCs (%) (%) (%) (%) (%) (%) (%)

4 82.1 1.38 3.70 1.01 6.63 1.32 3.91
6 83.3 1.22 2.70 0589 7.24 1.29 3.69
8 82.2 1.02 2.90 0.682 7.41 1.52 4.29
12 80.0 0961 291 0.899 8.11 1.86 5.21
16 80.0 0914 2.87 0.682 8.77 1.88 4.88
20 79.5 0992 296 0.760 8.62 1.89 5.24
24 79.4 0961 293 0.775 8.52 1.89 5.52

Table 10

Accuracy of Gaussian mixture model to concurrently detect and identify substrate-
borne vibrational signals of Nezara viridula and Euschistus servus, from incidental
noise using dominant frequency, duration, and 4-24 linear frequency cepstral
coefficients (LFCCs). False match ‘Ag’ was defined as incorrectly identifying an E.
servus signal as a N. viridula signal, false match ‘AN’ was defined as incorrectly
identifying an E. servus signal as noise, false match ‘B’ was defined as incorrectly
identifying a N. viridula signal as a E. servus signal, false match ‘By’ was defined as
incorrectly identifying a N. viridula signal as noise, false match ‘N’ was defined
as incorrectly identifying noise as an E. servus signal, and false match ‘Np’ was defined
as incorrectly identifying noise as a N. viridula signal.

No. of Correct Ag An Ba Bn Na Ng

LFCCs (%) (%) (%) (%) (%) (%) (%)

4 61.2 2.62 2.48 2.87 13.2 8.21 9.41
6 67.4 2.40 2.03 1.39 13.1 6.71 7.01
8 715 2.96 141 141 9.55 5.69 7.49
12 69.9 3.55 1.47 0.729 8.73 5.16 10.5
16 59.5 3.63 1.02 1.08 7.44 8.91 18.4
20 41.9 1.39 0.667 18.5 3.75 13.0 20.8
24 43.4 143 0.636 18.1 4.48 199 12.0

4. Discussion

Both classification models, GMM and PNN, successfully classi-
fied BSB signals from noise. For both the single pairs of BSB and
the 30 individuals of BSB, both the GMM and PNN models were
over 86.0% accurate in classifying SBVS of BSB from noise. How-
ever, the PNN outperformed the GMM by 2.0% for pulses from sin-
gle pairs of BSB and by 5.2% for pulses from 30 individuals of BSB,
using dominant frequency, duration, and 1st through 6th order
LFCCs as features. The average dominant frequency of false posi-
tives and negatives was higher than the average dominant fre-
quency of the correctly identified pulses.

It also should be noted that the model accuracy decreased from
up to 94.1% for single pairs of BSB to up to 90.7% for 30 individuals
of BSB. This implies that increased instances of incidental noise re-
duce model accuracy. Some reductions in model accuracy could
have been due to a high rate of occurrence of noise pulses occur-
ring at the same time as signal pulses, resulting in incorrectly clas-
sified pulses.

Previous research detected locomotion and feeding sounds of
the red palm weevil from noise with up to 98.8% accuracy using
GMM as the classification method and mel-frequency cepstral
coefficients as features in a sound-isolated box (Pinhas et al.,
2008) and with up to 99.5% accuracy using GMM as the classifica-
tion method and 23 LFCCs and dominant frequency as features in a
field setup (Potamitis et al., 2009). Reduced accuracy in the present
study may be due to a lower signal-to-noise ratio. Red palm weevil
larvae are much larger and produce louder signals than BSB and
SGSB adults; consequently, their vibrations have higher signal-to-
noise ratios.

The PNN showed acceptable accuracy in detecting SBVS of SGSB
from noise with >82% accuracy. However, GMM only correctly
identified SBVS of SGSB from noise pulses with 68.0% accuracy. It
should be noted that the average dominant frequency of false pos-
itives was closer to the average dominant frequency of correctly
identified ‘positive’ pulses than that of ‘negative’ pulses. Also, the
average dominant frequency of false negatives was closer to the
average dominant frequency of correctly identified ‘negative’
pulses than that of ‘positive’ pulses. Both of these factors may have
contributed to the misclassifications.

Both classification models, GMM and PNN, showed acceptable
accuracy in identifying species of stink bugs. Both models were
over 90% accurate in classifying SBVS of BSB and SGSB. However,
the PNN outperformed the GMM by 3.2% using dominant fre-
quency, duration, and 1st through 8th order LFCCs as features. Pre-
vious research classifying sounds of Hemipteran insects of a family
into genera have shown accuracies of 94.4% using GMM and up to
97.9% using PNN for family Cicadidae, using dominant frequency,
segment duration, and 23 LFCCs as features; however, while the
methodology and results are comparable to the present study, it
should be noted the research of Ganchev and Potamitis (2007)
and Ganchev et al. (2007) classified sounds from family Cicadidae
into 4 genera and only used high quality recordings with high sig-
nal-to-noise ratios.

The PNN showed acceptable accuracy in concurrent identifica-
tion and detection of SBVS of BSB and SGSB from noise with up
to 83.3% accuracy, using dominant frequency, duration, and 1st
through 6th order LFCCs as features. However, the GMM only cor-
rectly classified SBVS of BSB and SGSB from noise pulses with up to
71.5% accuracy, using dominant frequency, duration, and 1st
through 8th order LFCCs as features. Most of the incorrect classifi-
cations were made when distinguishing SBVS of SGSB from noise.
These accounted for 10.9% of all classifications and for 65.5% of
all classification errors made with the PNN classification model,
using dominant frequency, duration, and 1st through 6th order
LFCCs as features. With the GMM classification model, these classi-
fications accounted for 17.0% of all classifications and 59.8% of all
classification errors made using dominant frequency, duration,
and 1st through 8th order LFCCs as features.

The PNN outperformed the GMM in both detection and identi-
fication. Because the PNN classifies unknown feature vectors
according to the weighted distance from all training feature vec-
tors instead of the distance from the average training feature vec-
tors for each mixture component, it is better at resolving clusters of
outliers than the GMM. Because stink bug species have been shown
to have a repertoire of songs, this may have given the PNN advan-
tage over GMM. Although previous research has shown over 96.9%
accuracy in distinguishing feeding and movement sounds of larvae
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in palm trees from noise in field conditions using GMM as the clas-
sification method with dominant frequency and 23 LFCCs as fea-
tures (Potamitis et al., 2009), this repertoire of songs may have
contributed to the reduced accuracy of the GMM classification
method for stink bug species as compared to previous studies.
However, because the features of these songs change with geo-
graphic region (Cokl et al., 2000), the GMM may still be useful
for adapting this technology to various locations because training
feature vectors are unnecessary if the mean, variance, and weight
can be appropriately estimated.

For both methods, the most accurate models included 4-12
LFCCs. However, most models showed the highest accuracy using
6-8 LFCCs. Negligible contributions were made using higher order
LFCCs.

Part of the reason that the inclusion of increasingly higher-or-
der, frequency-sensitive LFCCs in the models failed to increase
the accuracy of identification may be due to variations in the rates
of transmission of different frequencies over distance as the signals
moved along the plant from the insect to the sensor (Cocroft and
Rodriguez, 2005; Cokl et al., 2005; Mankin et al., 2011). Because
the insects were able to move freely during and between each
recording, the resultant LFCCs were averages over the different
spectral distributions resulting from the various configurations of
the insects during the experiments.

A limitation of this study is that it only includes incidental
noises of the insects themselves and does not include other low-
frequency noise such as wind, bird sounds, or voices. Future stud-
ies may include in-field testing where pest density is correlated
with the rate of positive detections of these insects.

5. Conclusion

The accuracy of the LFCC-PNN model indicated an acceptable
method to detect pulses of BSB and SGSB from incidental noise
and to identify pulses of BSB and SGSB. The accuracy of LFCC-
GMM model indicates an acceptable method to detect pulses of
BSB from incidental noise to identify pulses of BSB and SGSB. This
research showed the capability of an algorithm to identify and de-
tect stink bug species using their SBVS and the feasibility of using
insect sound identification and detection techniques to detect and/
or identify stink bug species in cotton.
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