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Abstract. Image prior and sparse coding learning methods have important uses in image denoising. Many
denoising methods learn priors either from the noisy image itself or an external clean image dataset. But
using only these as priors does not always reconstruct the image effectively. In addition, when the image is
corrupted by noise, the local sparse coding coefficient obtained from a noisy image patch is inaccurate, restrict-
ing denoising performance. We present a noise removal framework based on external prior learning and an
internal mean sparse coding method, making use of the innate sparsity and nonlocal self-similarity (NSS) of
natural images. Specifically, we first obtain external priors from a clean natural image dataset by Gaussian mix-
ture model. The external priors are applied to guide the subspace clustering of internal noisy image patches, and
a compact dictionary is generated for each internal noisy patch cluster. Then an internal mean sparse coding
strategy based on NSS is introduced into the sparse representation model, whose regularization parameters
then are deduced through a Bayesian framework. An iterative shrinkage method is employed to solve the
l1-optimization problem in the sparse representation model. Application of the noise removal model to 16 test
images demonstrates denoising performance exceeding other competing methods. © 2019 SPIE and IS&T [DOI: 10.1117/
1.JEI.28.3.033014]
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1 Introduction
Image denoising is a problem of fundamental importance for
enhancement of quality in image restoration and computer
vision. Due to the current trend of decreasing size of
CMOS/CCD sensors, pixels capture less light and images
can be more easily corrupted by noise, which makes denois-
ing of even greater benefit than previously for many image
processing applications.

In general, the purpose of image denoising is to restore a
clean image X from its noisy observation Y ¼ Xþ v, where
v is modeled as additive white Gaussian noise (AWGN).
Various denoising models have been exploited over several
decades, including sparse representation,1–6 filtering,7,8

wavelet/curvelet,9,10 low-rank,11–18 gradient,19,20 neural net-
work,21,22 and Markov random field methods.23,24

The problem of image restoration has been studied with
recent success by consideration of image prior information,
i.e., by learning consistent structure and texture information
from the image being denoised or from other natural images.
Numerous denoising models based on priors have been pro-
posed. A common approach is to learn the priors from the
given noisy image itself. For the noisy image, Dabov et al.25

proposed the famous BM3D algorithm. This algorithm
combined the similar noisy patches into 3-D cubes and
performed collaborative filtering to process the 3-D cubes.
Portilla et al.26 found that the use of Gaussian scale mixtures
in the wavelet domain enabled improvement of image qual-
ity. Relying on the sparsity inducing priors of the noisy
image itself, a joint patch sparse and group low-rank

model was proposed by Wen et al.,17 and notable restoration
effects were achieved. Gu et al.27 proposed the weighted
nuclear norm minimization (WNNM) method for image
denoising, utilizing the NSS prior of the noise image
itself.

Another method is to obtain image prior information from
a set of external clean images and then apply the prior infor-
mation to denoise the corrupted image. Jiang et al.28 pro-
posed a sparse model to eliminate mixed noise arising
from multiple sources that used a dictionary derived from
a clean image dataset. Xu et al.29 proposed a patch-group-
based NSS prior denoising (PGPD) model that learns the
NSS prior from the external clean image dataset to achieve
AWGN denoising. Moreover, Xu et al.2 proposed to learn the
NSS model from external data and the noisy image for real-
world image denoising. Similarly, Yao et al.30 proposed to
build a principal component subdictionary from the external
clean image dataset to improve the denoising effect. Liu
et al.31 proposed introducing the priors of the noise-free
image into a partial differential equation to realize denoising
of remote-sensing images. However, priors learned from the
noisy image itself may be inaccurate owing to the corruption
from impulse or other errors (e.g., analog to digital conver-
sion and communication channel errors), whereas the priors
learned from the external clean dataset may have structure
and texture information inconsistent with those of the noisy
image. An image prior guidance strategy is needed that
mitigates the existing defects induced by noise in external
or internal priors.
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In addition to image prior information, the sparse repre-
sentation model often plays a vital role in image denoising
tasks. Sparsity and NSS are two important features of natural
images. The use of sparsity or NSSmethods can also enhance
the image denoising performance. The seminal work on this
approach is the nonlocal mean (NLM) method (NSS) origi-
nally proposed by Buades et al.32 Inspired by NSS, Aharon et
al.1 proposed a K-means-based singular value decomposition
(K-SVD) algorithm to train an over-complete dictionary
based on image sparsity and redundancy, but the sparse cod-
ing distribution of nonlocal similar patches was not consid-
ered. Gao et al.33 proposed a sparse coding algorithm based
on a fixed prelearned ridge dictionary for data denoising.
Zhang et al.34 proposed a joint learning sparse coding method
to preserve the global structure of the data. To achieve
high-dimensional data representation, Shu et al.35 proposed
a structure-preserving sparse coding strategy. However,
although these methods imposed different constraints on the
sparse representation model, the accuracy of sparse coding is
rarely considered. Hence, there still remains a challenging
problem of how to use the redundancy of the image/data
most effectively to enhance the accuracy of sparse coding.

With the above considerations, we propose an image
denoising model based on external prior learning and inter-
nal mean sparse coding (EPL-IMSC). Figure 1 charts the
flow of the proposed model, which has a learning phase

and a denoising phase. In the learning phase, the Gaussian
mixture model (GMM) is applied to learn the external priors
from a clean image dataset. For noisy image patches, the
learned external priors contain abundant statistical informa-
tion of the structure and texture. First, in the denoising
phase, the external priors are used to guide the clustering
of noisy patches. The corresponding compact dictionary
for each cluster is generated by principal component analysis
(PCA). In this way, we avoid generating an over-complete
dictionary like K-SVD1 because many dictionary atoms
are not adaptive to the structure and texture of the given
noisy patch. Second, the internal mean sparse coding strat-
egy based on NSS is introduced into the sparse representa-
tion model and image denoising is realized. Note that there
are two differences from the PGPD29 approach: (1) PGPD
obtains the dictionary directly from a clean image dataset,
whereas our method is to learn external priors, and then
exploit the external priors to guide the clustering of internal
noisy image patches. (2) In PGPD, only NSS is considered.
In our model, we consider both local sparsity and NSS.
Extensive experiments indicate that the peak-signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)
of the proposed model outperform many state-of-the-art
algorithms.

The work in this paper makes three main contributions to
the field:

Fig. 1 The flowchart of the EPL-IMSC model.
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1. A strategy is developed for generating compact dic-
tionaries under the guidance of external priors. The
external priors are obtained from a clean image dataset
by GMM. The external priors are used to guide the
clustering of internal noisy patches. A corresponding
compact dictionary is generated by PCA on each noisy
patch cluster.

2. The internal mean sparse coding strategy based
on NSS is introduced into the sparse representation
model. The regularization parameters of the model are
determined under the Bayesian framework. In addi-
tion, we also present a simple iterative shrinkage
algorithm for solving l1-optimization problem.

3. External prior learning and internal mean sparse
coding are unified into a single noise removal
framework.

This paper is structured as follows. Section 2 presents
how to obtain external priors from a clean image dataset
and generate corresponding compact dictionaries. Section 3
introduces the internal mean sparse coding method, the
mechanism for determining regularization parameters under
the Bayesian framework, and a simple iterative shrinkage
algorithm. The experimental evaluation and performance
results are described in Sec. 4, and conclusions are presented
in Sec. 5.

2 External Prior Learning and Dictionary
Generation

2.1 Patch Group
The external priors are learned from a clean image dataset.
Figure 2 lists a clean set of nature images selected from
Kodak PhotoCD dataset.36 Each image is divided into
p × p size patches (e.g., p ¼ 8). From Fig. 2, one can see
that these images contain different regions with various
structures and textures. In order to make the external priors
more accurate, these patches are divided into three different
region sets according to the variance σ2: areas with variance
σ2 < 0.003 are smooth regions, those with variance 0.003 <
σ2 < 0.03 are structural regions, and those with variance
σ2 > 0.03 are textural regions. Then we employ the block
matching algorithm to group these image patches in each
region set. For each patch, the M most similar patches form
a patch group. Each patch group is expressed as a column
vector, denoted by fxmgMm¼1, where xm ∈ Rp2×1 is a patch
vector.

2.2 External Priors
Suppose that N patch groups are extracted from the images
above, denoted as Xn ¼ fxn;mgMm¼1, n ¼ 1; 2; : : : ; N, where
xn;m represents the m’th patch in the n’th patch group. These
patch groups contain abundant structure and texture informa-
tion with NSS properties. An important concern is how to
obtain external priors from patch groups Xn. Previously,
GMM was applied to model image patch priors.37,38

Inspired by this, we design to apply GMM to learn external
priors based on patch groups. We assume that each patch
group Xn, n ¼ 1; 2; : : : ; N comes from K different Gaussian
subspaces. For each patch group Xn, the latent variable γn;k,
n ¼ 1; : : : ; N, k ¼ 1; : : : ; K is introduced, which means that
if xn comes from the k’th Gaussian component γn;k ¼ 1,
otherwise γn;k ¼ 0. Hence, the log-likelihood function with
K Gaussian components can be expressed as

EQ-TARGET;temp:intralink-;e001;326;571 ln L ¼
XN
n¼1

ln

�XK
k¼1

πk
YM
m¼1

N ðxn;mjθkÞ
�
; (1)

where
P

K
k¼1 πk ¼ 1,N ðxn;mjθkÞ is the Gaussian distribution

of the n’th patch group, and θk ¼ ðμk; σ2kÞ.
An algorithm39 comprising iterations of expectation

followed by maximization stages is applied to optimize
Eq. (1). In the expectation stage, we calculate Eðγn;kjXn; θkÞ,
denoted by

EQ-TARGET;temp:intralink-;e002;326;452γ̂n;k ¼
πk

Q
M
m¼1 N ðxn;mjθkÞP

K
k¼1 πk

Q
M
m¼1 N ðxn;mjθkÞ

: (2)

In the maximization stage, we have

EQ-TARGET;temp:intralink-;e003;326;396μ̂k ¼
P

N
n¼1 γ̂n;k

P
M
m¼1 xn;mP

N
n¼1 γ̂n;k

; (3)

EQ-TARGET;temp:intralink-;e004;326;339σ̂2k ¼
P

N
n¼1 γn;k

P
M
m¼1ðxn;m − μ̂kÞðxn;m − μ̂kÞTP

N
n¼1 γ̂n;k

; (4)

EQ-TARGET;temp:intralink-;e005;326;303π̂k ¼
P

N
n¼1 γn;k
N

: (5)

Through iteration, the parameters of the GMM are con-
tinuously updated, which ensures the convergence of the
log-likelihood function. Figure 3 displays an example of the
convergence curves obtained when the number of Gaussian
components is K ¼ 72 or K ¼ 200 in the learning phase
of the EPL-IMSC model. Note that instead of arduously

Fig. 2 A clean image dataset.
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obtaining the dictionary of this patch group directly, separate
compact subdictionaries are obtained from similar groups of
noisy patches as described next.

2.3 Dictionary Generation

For a noisy image, patch group Y ¼ fymgMm¼1 is constructed
by using a block matching algorithm. As in Ref. 38, it is
assumed that the image y is corrupted by AWGN with vari-
ance σ2 and mean μ ¼ 0. Then the covariance matrix of the
k’th Gaussian component is σ2k þ σ2I, where I is the identity
matrix. By calculating the maximum a posterior (MAP),
the probability that the patch belongs to the k’th component
can be obtained. We have

EQ-TARGET;temp:intralink-;e006;63;375PðkjYÞ ¼
Q

M
m¼1 N ðymjθkÞP

K
i¼1

Q
M
m¼1 N ðymjθiÞ

; (6)

where θk ¼ ð0;σ2k þ δ2IÞ, θi ¼ ð0; σ2i þ δ2IÞ, i ¼ 1; 2; : : : ; K.
Equation (6) represents the probability that Y belongs to the
corresponding Gaussian component. Hence, the maximum
value of PðkjYÞ is considered to be the cluster to which
the noisy patch belongs. In other words, the noisy patches
are assigned to different clusters under the guidance of exter-
nal priors. The problem becomes how to generate a compact
dictionary for each noisy patch cluster. Although the corre-
sponding dictionary can also be obtained by singular value

decomposition (SVD) of the covariance matrix of each
Gaussian component, it cannot accurately represent the
structure and texture of the noisy patches. Therefore, we
propose to use a PCA strategy to generate dictionaries for
noisy patch clusters. For each cluster, it is assumed that
this cluster contains Q similar patches, and the covariance
matrix of the patch cluster can be calculated as

EQ-TARGET;temp:intralink-;e007;326;675ω ¼ 1

Q

XQ
q¼1

YYT; (7)

where ω is a symmetric matrix. Let Ω ¼ ω − δ2I, by SVD,
the eigenvector matrix D and diagonal eigenvalue matrix Λ
of Ω are obtained

EQ-TARGET;temp:intralink-;e008;326;590Ω ¼ DΛDT: (8)

The eigenvector matrix D extracts the main structural and
texture features from noise patch clusters, and the diagonal
eigenvalue matrix represents the importance of the eigen-
vector. The larger the eigenvalue is, the more important the
corresponding eigenvector is. Consequently, the principal
statistical structure and texture features of this cluster can
be represented by the q top eigenvectors of D, q < Q.
The corresponding dictionary Φ can be expressed as

EQ-TARGET;temp:intralink-;e009;326;471Φ ¼ fd1; d2; : : : ; dqg: (9)

In this way, each noisy patch cluster has a compact dic-
tionary, and there is no need to generate an over-complete
dictionary. The corresponding compact dictionaries of four
noisy patch clusters are shown in Fig. 4. For each dictionary,
one can see that the dictionary atoms are different. Therefore,
these compact dictionaries can better represent the character-
istics of the noisy patch clusters.

3 Internal Mean Sparse Coding
In recent years, the sparse representation model has achieved
good results in image denoising. It has been found that the
human visual system can represent a natural image in a
neural form of sparse coding.40 Mathematically, the original
image X can be expressed as X ¼ Dαx, where D is a diction-
ary and αx is sparse coding, i.e., a linear combination of
a small number of atoms from D that closely represents X.
In order to recover the latent clean image X from the given
noise image Y, this problem can be expressed as following
a l0-minimization problem:

Fig. 3 The convergence curve in the learning phase of EPL-IMSC
model.

Fig. 4 Dictionaries of four noisy patch clusters.
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EQ-TARGET;temp:intralink-;e010;63;752αy ¼ argminαkαk0; subject to kY − Dαk22 ≤ ϵ; (10)

where ϵ is a very small constant used to control the approxi-
mation error, and k · k0 counts the number of nonzeros in α.
In practice, the l0-minimization problem of Eq. (10) is non-
convex, and it is an NP-hard problem. The common practice
is to replace l0-norm with l1-norm, which transforms the
nonconvex optimization problem into convex optimization
problem. The sparse coding problem with minimum
l1-norm is usually transformed into Lagrange form. Hence,
Eq. (10) can be reformulated as

EQ-TARGET;temp:intralink-;e011;63;630αy ¼ arg minα
1

2
kY − Dαk22 þ τkαk1; (11)

where τ denotes the regularization parameter, which is used
to achieve a balance between the data-fidelity term and
the regularization term. At present, there are many effective
methods to solve l1-norm minimization problem, such as
the iterative threshold algorithm41,42 and the Bregman algo-
rithm,43 or to find an alternative strategy to avoid underes-
timation characteristic of l1-norm regularization.44 By
solving the minimization problem of Eq. (11), we can recon-
struct the latent clean image Xwith Dαy. For a given diction-
ary, the restored image Dαy should be infinitely approximate
to the clean image Dαx (i.e., Dαx ≈ Dαy). However, αy
comes from sparse coding of the noisy patch instead of
the latent clean patch, which leads to the result that αy inac-
curately represents αx. The issue then becomes how to
exploit the similarity of nonlocal patches to make αy very
close to αx.

3.1 Mean Sparse Representation Model
In Eq. (11), only local sparsity is considered without paying
attention to nonlocal self-similarity. More recently, local
sparsity and nonlocal self-similarity have been simultane-
ously applied for image processing problem.6,15 Intuitively,
using the similarity of nonlocal patches, it is possible to
make αy very close to αx (i.e., αx ≈ αy). The problem, how-
ever, is that αx is unknown. If αx can be estimated from non-
local similar noisy patches, we can reconstruct the latent
clean image. Assuming that αx obeys a random distribution,
the better estimate of αx is its mean EðαxÞ [i.e., α̂x ¼ EðαxÞ].
In general, EðαxÞ can be approximate by EðαyÞ. Hence,
we let α̂x ≈ EðαyÞ, which means that α̂x is very close to the
distribution mean of αy. The mean constraint is introduced
into Eq. (11), which can be expressed as
EQ-TARGET;temp:intralink-;e012;63;225

αy ¼ arg minα
1

2
kY − Dαk22

þ τkαk1 subject to kα − βkp < e; (12)

where β ¼ EðαyÞ, e is a very small constant. For each patch
xi, we select the T top patches that are most similar to xi,
denoted by xi;t, t ¼ 1; : : : ; T, and use the NLM method28,32

for estimating β, βi ¼
P

t∈Twi;tαi;t, where wi;t is the weight
and αi;t is sparse coding of xi;t. The wi;t is inversely propor-
tional to the Euclidean distance between xi and xi;t,
wi;t ¼ expð−kxi − xi;tk22∕hÞ∕W, whereW is a normalization
factor and h is a preset scalar. The Lagrange form of Eq. (12)
can be formulated as

EQ-TARGET;temp:intralink-;e013;326;752αy ¼ argminα

�
kY − Dαk22 þ τkαk1 þ ε

X
i

kαi − βikp
�
:

(13)

In Eq. (13), the first term is the data-fidelity term, the sec-
ond is the local sparse coding term, and the last is the internal
mean sparse coding term based on NSS. Therefore, the mean
sparse representation model considers both local sparsity
and NSS.

3.2 Determination and Solution of Model Parameters
There are two unknown parameters τ and ε in Eq. (13). τ and
ε control the complexity and over-fitting of the model. In
practice, it is very difficult to set these two parameters.
When deriving a shrinkage function for natural image
denoising, Ref. 45 discussed the method of setting wavelet
coefficients using Bayesian theory. Inspired by this, we
provide a Bayesian interpretation of Eq. (13) and present
an explicit way to determine the two parameters. Let
φ ¼ α − β. For a given image patch y, the MAP estimation
of sparse coding αy and φy can be formulated as

EQ-TARGET;temp:intralink-;e014;326;509ðαy;φyÞ ¼ argmaxα;φ Pðα;φjyÞ: (14)

According to Bayesian theory

EQ-TARGET;temp:intralink-;e015;326;466ðαy;φyÞ ¼ argmaxα;φfPðyjα;φÞPðα;φÞg
¼ argmaxα;φfPðyjα;φÞPðαjφÞPðφÞg: (15)

Assuming that the sparse coding α and variable φ are
independent of each other, we have

EQ-TARGET;temp:intralink-;e016;326;394ðαy;φyÞ ¼ argmaxα;φfPðyjα;φÞPðαÞPðφÞg: (16)

By comparing with Eq. (13), the likelihood function can
be expressed as

EQ-TARGET;temp:intralink-;e017;326;340Pðyjα;φÞ ¼ 1ffiffiffiffiffi
2π

p
σn

exp

�
−

1

2σ2n
ky − Dαk22

�
: (17)

According to Refs. 15 and 46, assuming that PðαÞ
and PðφÞ follow the independent identically distributed
Laplacian distribution, we have

EQ-TARGET;temp:intralink-;e018;326;262PðαÞ ¼
Y
i

Y
j

1ffiffiffi
2

p
σi;j

exp

�
−
jαiðjÞj
σi;j

�
; (18)

EQ-TARGET;temp:intralink-;e019;326;202PðφÞ ¼
Y
i

Y
j

1ffiffiffi
2

p
δi;j

exp

�
−
jφiðjÞj
δi;j

�
; (19)

where σi;j and δi;j are the standard deviations of αiðjÞ and
φiðjÞ, αiðjÞ, and φiðjÞ are the j’th elements of αi and φi,
respectively. Substituting Eqs. (17)–(19) into Eq. (13), we
have
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EQ-TARGET;temp:intralink-;e020;63;752

αy ¼ argminα

�
ky − Dαk22 þ

X
i

X
j

2
ffiffiffi
2

p
σ2n

σi;j
kαiðjÞk1

þ
X
i

X
j

2
ffiffiffi
2

p
σ2n

δi;j
kφiðjÞk1

�
: (20)

By comparing Eqs. (13) and (20), we can see that l1-norm
should be selected to represent regularization term for mean
constraint. Hence, we rewrite Eq. (13) as
EQ-TARGET;temp:intralink-;e021;63;644

αy ¼ argminα

�
ky − Dαk22 þ

X
i

X
j

τi;jkαiðjÞk1

þ
X
i

X
j

εi;jkαiðjÞ − βiðjÞk1
�
: (21)

Comparing Eq. (20) with Eq. (21), we obtain

EQ-TARGET;temp:intralink-;e022;63;552τi;j ¼
2

ffiffiffi
2

p
σ2n

σi;j
; εi;j ¼

2
ffiffiffi
2

p
σ2n

δi;j
: (22)

In each iteration, σi;j and δi;j can be estimated from non-
local self-similar image patches. The τi;j and εi;j are updated

through each iteration of αy and φy. By determining the
parameters τ and ε in the Bayesian framework, it is possible
to avoid manually setting parameters.

We adopt an iterative shrinkage algorithm to solve
Eq. (21). Note that subscript is omitted for brevity. Eq. (21)
can be rewritten as

Table 1 Parameter setting of the EPL-IMSC model.

Learning phase Denoising phase

Patch size (p × p) Noise level σ c δ η

6 × 6 (0–25] 0.19 0.01 0.30

7 × 7 (25–50] 0.13 0.07 0.38

8 × 8 (50–75] 0.12 0.06 0.35

9 × 9 (75–100] 0.05 0.05 0.50

Fig. 5 The convergence curve in the denoising phase of EPL-IMSC
model.

Algorithm 1 EPL-IMSC denoising

I. Learning phase:

1. Input:

A clean image dataset, the number of Gaussian components K .

2. Learning:

While ∼converged && t < Iteration

(a) E-step: calculate the response degree of the k ’th submodel
to the input data via Eq. (2);

(b) M-step: calculation of model parameters for the next
iterations via Eqs. (3)–(5);

End

3. Output: External priors.

II. Denoising phase:

1. Input: Noisy image y , external priors.

2. Initialization: x̂ ð0Þ ¼ y , y ð0Þ ¼ y .

3. While t < Iteration

(a) Iterative Regularization: y ðtÞ ¼ x̂ ðt−1Þ þ δ½y − y ðt−1Þ�;

(b) Estimate the standard deviation σ of noise:

σðtÞ ¼ η ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − ky − y ðt−1Þk22

q
;

(c) For i ¼ 1;2; : : : ; K

(1) Clustering the noisy patch according to the external priors
via Eq. (6);

(2) Generate compact dictionaries via Eqs. (7)and (8);

End for

(d) Estimate internal mean sparse coding by nonlocal similar
patches;

(e) Update the regularization parameters (τ and ε) via Eq. (22);

(f) Compute αðkþ1Þ using the soft-thresholding operator via
Eq. (27);

(g) Restore each patch in this cluster.

End

4. Output: The denoised image.
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EQ-TARGET;temp:intralink-;e023;63;752fðα; βÞ ¼ ky − Dαk22 þ τkαk1 þ εkα − βk1: (23)

According to Ref. 42, the following surrogate function is
introduced

EQ-TARGET;temp:intralink-;e024;63;708ζðα; α0Þ ¼
c
2
kα − α0k22 −

1

2
kDα − Dα0k22; (24)

where α0 ¼ DTy and c is a preset constant to make surrogate
function ζð:Þ convex. The surrogate function47 strategy can
be regarded as a proximal point method for convex optimi-
zation problems. Then we have

EQ-TARGET;temp:intralink-;e025;63;622

fðα; β; α0Þ ¼ ky − Dαk22 þ τkαk1 þ εkα − βk1
þ c

2
kα − α0k22 −

1

2
kDα − Dα0k22: (25)

After some manipulation, Eq. (25) can be simplified
into

EQ-TARGET;temp:intralink-;e026;63;542fðα; β; α0Þ ¼ τkαk1 þ εkα − βk1 þ
c
2
kα − z0k22 þ constant;

(26)

where z0 ¼ 1
c × DTðy − Dα0Þ þ α0. Hence, the objective

function Eq. (23) can be solved by an iterative shrinkage
operation. In the (kþ 1)’th iteration, we have

EQ-TARGET;temp:intralink-;e027;63;454αðkþ1Þ
i ¼

(
Sρ1;ρ2;βi ½zðkÞi � βi ≥ 0

−Sρ1;ρ2;−βi ½−zðkÞi � βi < 0
; (27)

where Sp1;ρ2;βið:Þ is the soft-thresholding operator, ρ1 ¼ τ
c,

ρ2 ¼ ε
c, and zk ¼ 1

c × DT½y − DαðkÞ� þ αðkÞ.

3.3 Summary of the Algorithm
The EPL-IMSC model consists of two phases. The first is the
learning phase. The main purpose is to learn external priors
from a clean image dataset. The second is the denoising
phase. Clustering noisy patches under the guidance of
external priors, we then utilize PCA to generate compact
dictionaries. δ is a predetermined constant (Table 1)
controlling the amount of noise feedback to the iteration.
σ is the standard deviation, which is estimated by

σðtÞ ¼ η ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − ky − yðt−1Þk22

q
, where η is also a predeter-

mined constant (Table 1). The magnitude of σ decreases
gradually as the iteration continues, and the noisy image
becomes clearer. Figure 5 shows the convergence curve
by applying the EPL-IMCS algorithm to a noisy Lena
image (σ ¼ 25) in the denoising phase.

Finally, image denoising is achieved by employing an
internal mean sparse representation model.

The proposed noise removal model is summarized in
Algorithm 1.

4 Experiment Results
All experiments are performed under the MATLAB2016b
environment on a machine with Intel® Core™ i7-6700
CPU of 3.4 GHz and 32 GB RAM. To evaluate the denoising
effect of the EPL-IMSC model, we performed experiments
on 16 images (as shown in Fig. 6). From Fig. 6, the eight
images in the first line are commonly used, the other eight
images in the second line are randomly selected from the

Fig. 6 16 test images: (a) Barbara, (b) Boat, (c) Man, (d) House, (e) C. man, (f) Hill, (g) Peppers, (h) Lena,
(i) 12003, (j) 35010, (k) 37073, (l) 69007, (m) 124084, (n) 128035, (o) 160068, and (p) 228076.

Table 2 The learning time (h) and the average PSNR/SSIM results on widely used test images.

K Learning time

σ ¼ 25 σ ¼ 50 σ ¼ 75 σ ¼ 100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

72 3.86 29.76/0.8737 27.70/0.7634 25.21/0.7089 23.26/0.6572

200 8.12 29.75/0.8734 27.71/0.7635 25.23/0.7090 23.29/0.6574
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Table 3 PSNR/SSIM results comparison on eight commonly used images.

σ ¼ 25 σ ¼ 50

Images BM3D EPLL FRIST WNNM STROLLR PGPD EPL-IMSC BM3D EPLL FRIST WNNM STROLLR PGPD EPL-IMSC

Barbara 29.79 29.35 27.64 30.25 27.97 29.86 29.40 27.01 24.85 27.32 25.77 24.94 26.81 27.35

0.8874 0.8831 0.8143 0.8976 0.8256 0.8878 0.8836 0.7946 0.7031 0.8039 0.7145 0.7078 0.7803 0.8137

Boat 25.56 25.37 25.69 25.67 25.35 25.85 25.95 26.32 26.71 26.73 26.98 26.52 26.84 26.96

0.8014 0.7939 0.8034 0.8047 0.7923 0.8066 0.8102 0.7053 0.6925 0.7082 0.7118 0.7084 0.7011 0.7109

C. man 29.68 29.43 29.70 29.84 29.85 29.27 30.12 26.14 26.42 26.10 26.17 26.33 26.46 26.51

0.8544 0.8584 0.8591 0.8597 0.8598 0.8517 0.8602 0.7762 0.7824 0.7731 0.7764 0.7803 0.7773 0.7835

Hill 28.99 28.89 29.14 29.27 29.12 29.83 29.09 26.92 27.33 26.69 26.99 26.96 27.22 27.30

0.7748 0.7679 0.7792 0.7796 0.7698 0.7821 0.7695 0.6747 0.6858 0.6639 0.6744 0.6751 0.6802 0.6861

House 32.15 32.48 32.12 32.49 32.52 32.91 32.92 29.49 29.28 29.12 29.45 29.53 29.92 29.65

0.8489 0.8576 0.8472 0.8531 0.8581 0.8585 0.8582 0.8122 0.8193 0.8104 0.8077 0.8128 0.8125 0.8129

Lena 30.05 29.98 30.18 30.15 30.18 30.03 30.29 29.06 29.18 29.24 29.22 29.03 29.10 29.27

0.8607 0.8599 0.8640 0.8644 0.8621 0.8592 0.8656 0.7794 0.7716 0.7832 0.7817 0.7785 0.7971 0.7983

Man 28.84 28.87 28.73 28.99 28.83 29.05 29.05 25.16 25.12 25.22 25.19 25.20 25.85 25.27

0.8047 0.8049 0.8012 0.8110 0.8010 0.8022 0.8019 0.7056 0.6965 0.7084 0.6979 0.7031 0.7096 0.7072

Peppers 31.27 31.12 31.15 31.25 31.13 30.14 31.38 29.19 29.28 29.34 29.36 29.35 29.22 29.33

0.8676 0.8690 0.8702 0.8724 0.8693 0.8568 0.8737 0.7936 0.7923 0.7930 0.7954 0.7948 0.7934 0.7939

Average 29.54 29.44 29.29 29.73 29.37 29.62 29.76 27.41 27.27 27.47 27.39 27.23 27.68 27.70

0.8676 0.8690 0.8702 0.8724 0.8639 0.8568 0.8737 0.7552 0.7429 0.7555 0.7450 0.7451 0.7564 0.7634

σ ¼ 75 σ ¼ 100

Images BM3D EPLL FRIST WNNM STROLLR PGPD EPL-IMSC BM3D EPLL FRIST WNNM STROLLR PGPD EPL-IMSC

Barbara 23.37 22.98 23.57 23.62 23.46 23.60 23.69 21.30 20.79 20.89 21.57 21.09 21.48 21.67

0.7112 0.6887 0.7302 0.7421 0.7287 0.7397 0.7476 0.6430 0.5871 0.5889 0.6541 0.6263 0.6389 0.6557

Boat 25.14 25.05 25.26 24.87 25.03 25.10 25.12 21.65 21.48 21.83 22.01 21.98 22.06 22.03

0.6410 0.6350 0.6457 0.6368 0.6413 0.6407 0.6410 0.5836 0.5744 0.5879 0.5902 0.5888 0.5909 0.5904

C. man 24.15 24.19 24.31 24.22 24.23 24.64 24.32 21.96 22.06 22.13 22.15 22.10 22.22 22.12

0.7341 0.7313 0.7364 0.7353 0.7349 0.7376 0.7369 0.6924 0.6918 0.6925 0.6980 0.6921 0.6974 0.6928

Hill 23.76 23.61 23.49 23.78 23.68 23.73 23.82 23.15 23.28 23.25 23.23 23.46 23.56 23.58

0.6118 0.5974 0.5831 0.6186 0.5987 0.6091 0.6194 0.5650 0.5679 0.5681 0.5726 0.5692 0.5615 0.5698

House 27.59 26.85 28.84 27.88 28.38 27.81 28.28 26.04 26.24 26.62 25.79 26.50 26.16 26.56

0.7645 0.7533 0.7849 0.7723 0.7821 0.7709 0.7817 0.7203 0.7233 0.7301 0.7173 0.7285 0.7195 0.7305

Lena 26.26 25.93 25.95 26.40 25.58 26.47 26.44 24.28 24.23 24.39 24.44 24.42 24.19 24.51

0.7516 0.7409 0.7421 0.7548 0.7373 0.7537 0.7552 0.7090 0.7085 0.7133 0.7279 0.7258 0.7065 0.7287

Man 24.71 24.82 24.57 24.88 24.90 24.36 24.95 21.83 21.59 21.50 21.82 21.93 22.98 21.92

0.6445 0.6362 0.6478 0.6492 0.6483 0.6442 0.6501 0.5978 0.5752 0.5845 0.6045 0.5972 0.6064 0.5963

Peppers 24.75 24.62 24.36 24.95 25.07 24.85 25.09 23.28 23.05 22.84 23.36 23.55 23.25 23.57

0.7368 0.7239 0.7209 0.7391 0.7397 0.7390 0.7392 0.6881 0.6819 0.6783 0.6904 0.6928 0.6858 0.6932

Average 24.97 24.62 25.04 25.08 25.04 25.07 25.21 22.93 22.84 22.93 23.05 23.13 23.24 23.26

0.6994 0.6883 0.6989 0.7060 0.7014 0.7044 0.7089 0.6499 0.6388 0.6430 0.6569 0.6526 0.6509 0.6572
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Berkeley segmentation dataset (BSD).48 AWGN is added to
those original images, the mean is zero and the standard
deviation is 25, 50, 75, and 100, respectively.

In EPL-IMSC, there are five parameters to be set. Similar
to Ref. 27, we set a larger patch size for higher noise level.
For different noise levels and patch size, we empirically set
parameters c, δ, and η as different values, as shown in
Table 1. The number of the similar patches in a patch group
is set to M ¼ 16. The size of the search window is set to
W ¼ 31. We compared the proposed EPL-IMSC model
with other state-of-the-art noise removal models, including
BM3D,25 EPLL,38 FRIST,6 WNNM,27 STROLLR,17 and
PGPD.29 These models are available from the author’s per-
sonal home page, and all parameters are defaults.

4.1 Experiments on Widely Used Test Images
We tested the effect of different values of the Gaussian com-
ponent K on the denoising performance. The learning time
(h) and the average PSNR/SSIM on widely used test images
are listed in Table 2. From Table 2, one can see that when the
number of Gaussian components K ¼ 200, the performance
of denoising only improve a little in the denoising phase, but
it takes more learning time in the learning phase. Therefore,
for all experiments, we set K ¼ 72.

The PSNR/SSIM results are reported in Table 3, and
we can see that the average PSNR/SSIM of the proposed
model is much better than other models. Although it is
slightly worse than other algorithms on individual images,
it does not affect the overall effect of the EPL-IMSC model.

Fig. 7 Denoising results on image “Lena” by different methods (σ ¼ 25Þ: (a) ground truth (PSNR/SSIM),
(b) noisy image (20.18/0.2709), (c) BM3D (30.05/0.8607), (d) EPPL (29.98/0.8599), (e) FRIST (30.18/
0.8640), (f) WNNM (30.15/0.8644), (g) STROLLR (30.18/0.8621), (h) PGPD (30.03/0.8592), and
(i) EPL-IMSC (30.29/0.8656).
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The denoising effects of different noise levels are
shown in Figs. 7–10. From the overall visual effect, one
can see that, as the noise level increases, BM3D and
EPLL blur the image texture, WNNM generates severe
artifacts, and PGPD destroys the local structure, whereas
FRIST and STROLLR smooth the image details and
edges. By comparison, our proposed model not only effec-
tively eliminates noise but also preserves the local details
of the image.

4.2 Experiments on Berkeley Segmentation
Data Set

The average PSNR/SSIM result of each method is shown
in Table 4. Obviously, the average PSNR/SSIM of the

proposed EPL-IMSC is clearly much better than other
methods on the whole. Figures 11 and 12 show the visual
effects of different denoising methods. As can be seen from
these figures, all algorithms generate artifacts when the
noise level is high, but the visual effect of our proposed
model is more pleasant.

In addition, we also tested the EPL-IMSC model on color
images and compared it with CBM3D.49 For simplicity, we
first transformed the color image from RGB to YCbCr and
then tested it on the luminance component. As can be seen
from first line in Fig. 13, the EPL-IMSC model restores the
texture of the butterfly wings better. In the second line of
Fig. 13, it is clear that the EPL-IMSC model more faithfully
recovers the details of the flower.

Fig. 8 Denoising results on image “Man” by different methods (σ ¼ 50): (a) ground truth (PSNR/SSIM),
(b) noisy image (14.16/0.1407) (c) BM3D (25.16/0.7056), (d) EPPL (25.12/0.6965), (e) FRIST (25.22/
0.7084), (f) WNNM (25.19/0.6979), (g) STROLLR (25.20/0.7031), (h) PGPD (25.85/0.7096), and
(i) EPL-IMSC (25.27/0.7072).
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4.3 Run Time
In addition to PSNR/SSIM, another important evaluation
method for denoising is the run time. Table 5 lists the
run time (s) of competing methods on 16 images. From
Table 5, we can see that the run time of BM3D is the short-
est, because BM3D is implemented by C++ mex-function
and with parallelization. PGPD runs faster than other meth-
ods, but it is slower than BM3D. The main reason is that
offline dictionaries are used in the model. In EPLL, the
priors are learned beforehand, and half-quadratic splitting
method can optimize cost function effectively. WNNM
requires a large number of online SVD operations. The pro-
posed EPL-IMSC is slower because it needs to train an on-
line dictionary for each noisy patch cluster. Both STROLLR
and FRIST take a long time, STROLLR involves a block
coordinate descent algorithm that combines image patch
sparsity and group low-rank, whereas FRIST needs to learn

online synthesis dictionary, and this method involves expen-
sive learning steps.

5 Conclusion
We proposed a denoising model based on external prior
learning and internal mean sparse coding. The whole
model can be divided into two phases: in the learning
phase, we first obtained external priors from a clear image
dataset. To make better use of the NSS of image patches,
we exploited the GMM model to learn external priors
from patch groups rather than from a single patch. In the
denoising phase, external priors were utilized to guide the
clustering of internal noise patches and a corresponding
compact dictionary was generated for each cluster. By
unbiased estimation of sparse coding, the mean sparse
coding strategy was introduced into the sparse representa-
tion model. We presented a method to determine model

Fig. 9 Denoising results on image “Barbara” by different methods (σ ¼ 7): (a) ground truth (PSNR/SSIM),
(b) noisy image (10.63/0.1118) (c) BM3D (25.37/0.7112), (d) EPPL (29.98/0.6887), (e) FRIST (23.57/
0.7302), (f) WNNM (23.62/0.7421), (g) STROLLR (23.46/0.7287), (h) PGPD (23.60/0.7397), and
(i) EPL-IMSC (23.69/0.7476).
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Fig. 10 Denoising results on image “Hill” by different methods (σ ¼ 100): (a) ground truth (PSNR/SSIM),
(b) noisy image (8.14/0.0395) (c) BM3D (23.15/0.5650), (d) EPPL (23.28/0.5679), (e) FRIST (23.25/
0.5681), (f) WNNM (23.23/0.5726), (g) STROLLR (23.46/0.5692), (h) PGPD (23.56/0.5615), and
(i) EPL-IMSC (23.58/0.5698).

Table 4 Average PSNR/SSIM results on randomly selected eight images from BSD.

σ BM3D EPLL FRIST WNNM STROLLR PGPD EPL-IMSC

25 27.56 27.48 27.76 27.81 27.85 27.74 27.97

0.8235 0.8178 0.8242 0.8256 0.8247 0.8238 0.8263

50 24.78 24.81 24.75 24.76 24.83 24.86 24.95

0.7528 0.7533 0.7529 0.7544 0.7561 0.7568 0.7564

75 23.42 23.58 23.56 23.59 23.62 23.77 23.74

0.7011 0.7102 0.7109 0.7117 0.7114 0.7125 0.7122

100 22.13 22.16 22.25 22.28 22.27 22.39 22.43

0.6258 0.6251 0.6266 0.6270 0.6262 0.6283 0.6279
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Fig. 11 Denoising results on image “12003” from BSD by different methods (σ ¼ 25): (a) ground truth
(PSNR/SSIM), (b) noisy image (20.18/0.4151) (c) BM3D (27.36/0.8179), (d) EPPL (27.32/0.8154),
(e) FRIST (27.60/0.8192), (f) WNNM (27.57/0.8167), (g) STROLLR (27.49/0.8172), (h) PGPD (27.53/
0.8161), and (i) EPL-IMSC (27.76/0.8186).

Fig. 12 Denoising results on image “160068” from BSD by different methods (σ ¼ 50): (a) ground truth
(PSNR/SSIM), (b) noisy image (14.16/0.1730) (c) BM3D (24.91/0.8091), (d) EPPL (24.83/0.7939),
(e) FRIST (25.07/0.8051), (f) WNNM (25.11/0.7886), (g) STROLLR (25.02/0.7964), (h) PGPD (25.26/
0.8093), and (i) EPL-IMSC (25.13/0.8090).
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parameters under the Bayesian framework. Finally, an iter-
ative shrinkage algorithm was applied to solve the l1-optimi-
zation problem. Extensive experiments indicated that the
EPL-IMSC model not only achieves good denoising effect
but also preserves the local details of the image very well.
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