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Abstract

Conservation biological control emphasizes the preservation and enhancement of natural enemies and is the cornerstone of all

approaches to biological control. This review critically examines recent and current research efforts in conservation biological
control by predators and parasitoids of Bemisia tabaci worldwide. A large number of natural enemy species have been identified
from many agricultural systems. Further research has demonstrated that these natural enemies may act along with other mortality
agents to inflict high levels of mortality on populations of B. tabaci. Less effort has been placed on determining the factors

constraining or potentially enhancing biological control. The widespread use of broad-spectrum insecticides in many crops has
severely hampered the contribution of predators and parasitoids to pest suppression. However, the arsenal of selective insecticides
has grown in the past decade and their increased usage may permit the true integration of biological control into IPM systems. The

effects of species interactions (e.g., intraguild predation) and host-plant attributes on disruption of biological control are poorly
understood in most systems. Research in the area of habitat manipulation and enhancement is minimal. Very little research has
addressed the evaluation of natural enemy effects on B. tabaci population dynamics in any system. As a result our ability to predict

and exploit these effects for pest suppression are limited. Problems in estimating and interpreting parasitism are highlighted. Recent
life table studies of B. tabaci in Arizona cotton are summarized to demonstrate how integration of natural enemies with use of
selective insecticides resulted in the development of an efficient pest management system. Avenues for future research are discussed

that may enhance the use of conservation biological control as a key tactic in IPM of B. tabaci. Published by Elsevier Science Ltd.
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1. Introduction

Bemisia tabaci remains a key pest of many field and
horticultural crops throughout subtropical and tropical
regions of the world with significant problems also
occurring in protected agricultural systems in temperate
regions (Brown et al., 1995). Many biological character-
istics, including multivoltinism, broad host-range, abil-
ity to migrate, high reproductive rate, tolerance for high
temperatures, ability to vector a variety of devastating
plant viruses, and a propensity to develop resistance to a
wide class of insecticides underlie its pest potential and
have contributed to the difficulty of developing robust
and sustainable management systems. Significant ad-
vances have been made in understanding the biology,
behavior, ecology and population dynamics of this pest,
and in developing and implementing pest management
systems (Gerling and Mayer, 1996). However, biological
control of B. tabaci by parasitoids, predators and fungi
represents a key strategy whose potential has gone
largely unrealized in many affected cropping systems
throughout the world. This is a function of many factors
including heavy reliance on insecticides as the primary
tactic of control, problems in overcoming some of the
biological characteristics of the pest noted above,
especially its role as a plant virus vector, and the
relatively small amount of research effort devoted to the
topic of biological control compared with other areas of
investigation.

It is generally acknowledged that biological control
alone is unlikely to provide adequate pest control, but
through careful integration with other pest suppression
tactics it could represent a significant source of
sustainable control (Dowell, 1990; Gerling, 1992; Cock,
1994; Heinz, 1996). A paradigm for pest management of
B. tabaci in many affected crops can be represented by
the pyramid depicted in Fig. 1 (see also Ellsworth and
Martinez-Carrillo, 2001). Current management systems
for many crops are dominated by the use of insecticides
that typically rely on sampling, threshold, and resistance
information to optimize timing of applications and
make best use of existing chemistry (Palumbo et al.,
2001). A variety of avoidance strategies that form the
underlying foundation of the management pyramid
have been largely untapped, and are the subject of
several articles in this Special Issue. Although some
of these ‘‘avoidance’’ strategies might require elements
from the upper portions of the pyramid, for example,

sampling for augmentative biological control and area
wide survey, the overall effect of avoidance would be the
lowering of pest density with a reduction in the need
for prescriptive insecticidal control. The integration of
‘‘avoidance’’ strategies into overall management pro-
grams could significantly improve the efficiency and
sustainability of integrated pest management (IPM)
systems for this pest. In this context biological control
represents a crucial strategy that needs to assume a more
dominant role in research and implementation efforts.

1.1. Research effort in biological control

Given the worldwide distribution and the long
standing history of the pest problem (Oliveira et al.,
2001) there is a large, and exponentially expanding,
literature base for B. tabaci (including B. argentifolii)
with over 3500 citations (excluding abstracts) since 1894
(Cock, 1986, 1993; Naranjo et al., 2000). Published
research in all areas of biological control has assumed a
relatively small proportion of this literature, although
there has been a steady increase in effort since the mid
1980s (Fig. 2). About 42% of all citations on biological
control were published since 1996 indicating a growing
interest in this pest control strategy. Considerable
research has been conducted to examine and define the
basic biology and behavior of natural enemies asso-
ciated with B. tabaci (Table 1). Such laboratory and
greenhouse studies have, and continue, to provide
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important information bearing on the potential of
particular natural enemies being considered for intro-
ductory, augmentative or conservation biological
control applications. This literature was not further
partitioned because of the difficulty of categorizing
many of the studies by biological control approach.
Comparing the three main approaches to biological
control, the greatest amount of effort has been placed in
the area of conservation, followed closely by augmenta-
tion (Table 1). Introduction, or classical, biological
control has received the least attention, although there
has been considerable research in this area, particularly

in the United States (Lacey and Kirk, 1993; Kirk and
Lacey, 1996). The progress of these efforts have been
primarily reported through published abstracts of
symposia, conferences, and workshops (Naranjo et al.,
2000). Efforts in augmentation have primarily focused
on protected agricultural systems (e.g., van Lenteren
et al., 1997; Hoddle et al., 1998; Gerling et al., 2001),
although some research has examined the potential
utility and efficacy of augmentation in field crops (e.g.,
Heinz et al., 1999; Simmons and Minkenberg, 1994;
Joyce and Bellows, 2000). Biological control with
parasitoids has received the most attention, followed
by use of arthropod predators and fungal pathogens.
These patterns derive from a combination of factors,
including pest distributions centered in semi-arid regions
of the world, differences in faunal compositions in
specific crops, and the difficulty of directly measuring
predation.

1.2. Scope of this review

Gerling et al. (2001) and Faria and Wraight (2001)
provide general discussions of recent efforts in biological
control of B. tabaci with parasitoids, predators and
fungi. These reviews include descriptions of known
agents, examination of various aspects of natural enemy
biology and ecology, introduction and augmentation
biological control, and application in various pest
management programs. This article will focus more
specifically on a critical examination of research on
conservation of existing predators and parasitoids as an
approach for integrating biological control into current
and developing IPM systems. Conservation of fungi will
not be explicitly covered because these agents are used
mostly as inundative agents in biological control of this
pest (Faria and Wraight, 2001). Emphasis is placed on
research efforts during the past 5–10 years as there have
been many prior review articles addressing issues of
conservation, and general biological control. This
review will focus primarily on unprotected agricultural
systems. However, many of the principles discussed
would be applicable to conservation of augmented
agents in protected systems as well. Examples and
research in field crops, especially cotton, will be
frequently highlighted as this reflects my own research
and experience, and also the bias in the published
literature on this pest. Suggested avenues for further
research are highlighted in the final section.

2. Conservation biological control

Conservation of natural enemies is often credited with
being the oldest form of biological control. However,
compared with classical and augmentation biological
control it has received relatively little attention as a
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Fig. 2. Historical summary of research on B. tabaci/argentifolii and

the proportion of effort in the area of biological control as indicated by

the published literature (3580 publications, excluding abstracts) as of

August 2000 (Naranjo et al., 2000). The first report on this pest was

published in 1889; for clarity the timeline is shown beginning around

1930.

Table 1

Summary of research literature on B. tabaci/argentifolii in the area of

biological controla

Category Publications % of totalb % of

conservationb

Biology/behavior 135 28.5

Systematics 47 9.9

Reviews 37 7.8

Classical 11 2.3

Augmentation 117 24.7

Conservation 137 28.9

Survey 75 54.7

Insecticide effects

Laboratory 20 14.6

Field 31 22.6

Experimental 13 9.5

Efficacy 17 12.4

Parasitoids 310 65.4

Predators 160 33.8

Pathogens 59 12.4

aThere were 474 total publications (excluding abstracts) in all areas

of biological control as of August 2000 (Naranjo et al., 2000).
bPercentages may not sum to 100 within a section due to overlap in

categories, and/or overlap in coverage within individual citations.
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method of arthropod pest suppression (Ehler, 1998;
Landis et al., 2000). DeBach (1974) defines conservation
biological control as ‘‘ymanipulation of the environ-
ment to favor natural enemies, either by removing or
mitigating adverse factors or by providing lacking
requisites’’. This broad definition emphasizes the funda-
mental importance of conservation to all approaches of
biological control. The efficacy of imported or mass-
reared natural enemies in many systems will likely
depend on attention to conservation measures that
improve the suitability of the environment into which
they are released (van den Bosch and Telford, 1964;
Gurr and Wratten, 1999).

Conservation biological control can be broadly
categorized into three overlapping components which
encompass survey and potential of extant natural
enemies, elucidation and manipulation of factors con-
straining or enhancing natural enemy abundance and
activity, and evaluation of biological control efficacy
(Fig. 3). Published research in conservation biological
control represents about one-third of all the biological
control literature on B. tabaci, and this pattern has been
relatively consistent over time (see Fig. 2). Further
partitioning of this biological control literature indicates
that survey and identification of potential natural
enemies comprises the bulk of research efforts in
conservation (Table 1). Considerable research also has
been conducted to examine the factors constraining or
enhancing biological control. The vast majority of this
research has focused on the effects of insecticides on
predators and parasitoids. Very little research has
addressed biological control efficacy, and many of these
studies provide only preliminary or inconclusive results
(see Section 2.4). These three components, and their
associated approaches and methodologies (Rabb et al.,
1976; Luck et al., 1988) will now serve as a template for
assessing research effort and progress in conservation
biological control of B. tabaci.

2.1. Survey: is there potential for biological control?

The interest in and use of conservation as a biological
control approach is predicated on the assumption that

there is some potential for pest suppression from either
extant natural enemies, or agents added through
introduction or augmentation. Thus, surveys to deter-
mine the identity and potential of candidate natural
enemies are a crucial first step. Natural enemies of B.
tabaci have been surveyed in a number of affected
cropping systems. One of the earliest reports was
provided by Berger (1921) who described various
parasitoids, predators and fungi associated with Bemisia
spp., other whiteflies, and scale insects in Florida.
Overall, surveys for natural enemies of B. tabaci,
primarily parasitoids and arthropod predators, have
been conducted in at least 26 countries over the past
eight decades. Much of this survey work has been
summarized in several reviews (Greathead and Bennett,
1981; Lopez-Avila, 1986; Cock, 1994; Nordlund and
Legaspi, 1996; Gerling et al., 2001; Faria and Wraight,
2001).

A large number of natural enemy species are found
associated with or attacking B. tabaci worldwide. Based
on published lists, Gerling et al. (2001) cataloged 114
arthropod predators of B. tabaci belonging to 9 orders
and 31 families. This list is likely to change as research
progresses. Many predators are generalist feeders, and
predation is extremely difficult to positively assess in the
field. Using immunologically based gut assays, Hagler
and Naranjo (1994a, b) definitively identified 9 preda-
tors feeding on B. tabaci in Arizona cotton and have
since positively identified another 9 species (unpub-
lished) not appearing on the Gerling et al. (2001) list.
Parasitoids attacking B. tabaci are much easier to assess,
but taxonomic problems make it difficult to positively
enumerate the species involved. Based on various
published sources, Gerling et al. (2001) estimates 34
species of Encarsia, 14 species of Eretmocerus, and
several species belonging to the genera Amitus and
Metaphycus attacking B. tabaci worldwide. This list,
too, is certain to change with further progress in the
systematics of these groups. Faria and Wraight (2001)
catalog 9 described and 2 undescribed species of fungi
that have been shown to occur naturally in Bemisia
populations worldwide. Although the exact numbers
of species attacking B. tabaci may never be known
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completely, these faunal lists suggest a significant
potential for biological control in many affected
cropping systems.

This potential is exemplified by recent findings in the
Arizona cotton system. Field-based life table studies in
unsprayed cotton demonstrate that the immature stages
of B. tabaci are subject to high levels of mortality from
a number of different sources (Fig. 4) (Naranjo and
Ellsworth, unpublished). Based on 14 cohorts examined
over a three year period, median survivorship to
adulthood was 6.4% (range 0–27.1%). Predation by
sucking predators (primarily Heteroptera) was respon-
sible for nearly 36% of all immature mortality and
about 31% of mortality was attributed to dislodgement,
a portion of which probably represents mortality from
predators with chewing mouthparts (primarily beetles).
Parasitism by Eretmocerus eremicus and two species of
Encarsia contributed another 4%. Although these levels
of immature mortality are generally insufficient to
suppress populations of B. tabaci below economic levels
in this system, these mortality sources contribute
significant irreplaceable mortality that permit efficient
management of this pest in Arizona cotton with selective
insecticides (see Section 2.4.2).

Despite the large number of natural enemy species
that may attack B. tabaci and the high levels of
mortality that can sometimes be attributed to natural
enemy activity, there are few definitive examples of
successful biological control (Gerling, 1996). The best
examples of the putative suppressive role of extant
natural enemies in the field come from studies demon-
strating pest resurgence. Abdelrahman and Munir
(1989) showed in commercial-scale, paired studies that
applications of broad-spectrum insecticides for control

of B. tabaci, Heliothis armigera, Aphis gossypii, and
Empoasca lybica in Sudan cotton caused reductions in
parasitism and predator populations, and precipitated
economic populations of B. tabaci in two of three field
sites. Devine et al. (1998) demonstrated resurgence of B.
tabaci in cotton treated with the pyrethroid cyperme-
thrin in Israel. Similar comparative studies in Arizona
cotton provided inconsistent results (Ellsworth and
Naranjo, unpublished). Populations of B. tabaci were
elevated on certain sampling dates in fields receiving
applications of broad-spectrum insecticides for control
of Lygus hesperus in one year, but differences were not
significant in the second and third years. Although other
factors, such as hormoligosis cannot be ruled out, these
results generally suggest that natural enemies may play
an important, but variable, role in pest suppression.
Various studies have reported high levels of parasitism
in B. tabaci nymphs (e.g. Gerling, 1966; Bellows and
Arakawa, 1988; Kajita et al., 1992; McAuslane et al.,
1993; Stansly et al., 1997), but these results have never
been definitively associated with economic suppression
of pest populations.

2.2. Manipulation: can disruption to biological control be
minimized?

A number of factors may cause agricultural environ-
ments to be unsuitable for natural enemies, and thus,
interfere with their ability to contribute to pest suppres-
sion. Such factors include adverse climate and micro-
climate, scarcity of water and supplemental foods like
nectar and pollen, competition, intraguild predation,
physical and chemical attributes of the crop plant, lack
of sufficient shelter, adverse cultural practices, and use
of insecticides (DeBach and Hagen, 1964; van den Bosch
and Telford, 1964). These problems are further exacer-
bated in annually disturbed cropping systems (Ehler and
Miller, 1978; Wiedenmann and Smith, 1997) where
infestations of B. tabaci are typically most severe.

2.2.1. Insecticides
Clearly, the most significant factor disrupting biolo-

gical control of arthropod pests in most cropping
systems is the use of insecticides (Stern et al., 1959;
Croft, 1990). This topic area has received considerable
attention in the Bemisia literature with 51 citations
reporting on effects of insecticides on natural enemies
from field and laboratory studies, the majority published
since 1990 (see Table 1). Results from both laboratory
toxicology studies and field application studies of
conventional, broad-spectrum insecticides are predict-
able; use of such materials typically leads to direct
natural enemy mortality in the laboratory and reduced
population densities and activity in the field (e.g.,
Natarajan, 1990; Stam and Elmosa, 1990; Jones et al.,
1995; Attique and Ghaffar, 1996; Abou-Elhagag, 1998;
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Schuster and Stansly, 2000; Simmons and Jackson,
2000).

Because insecticides are likely to remain a major
component of pest suppression for B. tabaci, minimizing
the effects of these insecticides on natural enemies in
cropping systems will require more selective approaches
for use of broad-spectrum insecticide and/or more
selective materials. Strategies that focus on the former,
termed ecological selectivity, have been successful in
other pest systems (Newsom et al., 1976; Johnson and
Tabashnik, 1999). These approaches include reduced
rates of application, use of less persistent materials,
temporal and spatial changes in application methods,
and changes in formulation and delivery (Croft, 1990).
Ecologically selective approaches have received only
minor attention in the management of B. tabaci (Ahmed
and Muzaffar, 1977; El-Ghany et al., 1992). One notable
exception may be use of systemic formulations of
imidacloprid and other related compounds (see Palum-
bo et al., 2001) which appear to achieve selectivity by
avoiding contamination of the plant surface (see Tables
2 and 3). In contrast, much research has been conducted
to examine the effects of putatively selective and
biorational materials which have both become more
readily available worldwide in the last decade (Palumbo
et al., 2001).

Laboratory evaluations of toxicity of two commonly
used insect growth regulators, buprofezin and pyriproxy-

fen, along with imidacloprid and bifenthrin, a represen-
tative fourth generation synthetic pyrethroid, to aphe-
linid parasitoids attacking B. tabaci are summarized in
Table 2. Research to date indicates that the effects of
both the chitin-inhibitor buprofezin, and the juvenile-
hormone analog pyriproxyfen are stage- and species-
specific. Buprofezin has been shown to be moderately to
highly toxic to early developmental stages of two species
of Eretmocerus and one species of Encarsia, but
generally benign to pupal and adult stages of the
Eretmocerus species examined (Table 2). Effects on
younger stages are likely manifested through effects on
the host itself rather than the parasitoid directly
(Gerling and Sinai, 1994). Pyriproxyfen has been
evaluated on fewer species and results are less consistent
(Table 2). This insecticide was found highly toxic to
early immature stages of Eretmocerus eremicus, but
benign to young stages of three species of Encarsia.
Effects on pupal stage parasitoids were equally mixed,
even for the same species. For example, Hoddle et al.
(2001) found pyriproxyfen harmless to Eretmocerus
eremicus, but Koppert’s (1998) side-effects database
rated this material moderately harmful to the same
species. Pyriproxyfen was also found more harmful to
Encarsia formosa compared with Encarsia pergandiella
or Encarsia transvena (Table 2). This insecticide was
found relatively benign to adult stages of either genus.
Sublethal effects, summarized for the two insect growth

Table 2

Summary of laboratory evaluations of the toxicity of selected insecticides to aphelinid parasitoids attacking B. tabacia

Stage tested

Egg/larva Pupa Adult Sublethal effects

Bup Pyr Bif Bup Pyr Imid Bif Bup Pyr Imid Bif Bup Pyr References

Eretmocerus

eremicus 4 F F 1 F F F F F F F 0 F Gerling and Sinai (1994)

F F F 1 3 1 4 1 2 1 4 F F Koppert (1998)

4 4 F 1 1 F F 1 1 F F 0 � Hoddle et al. (2001)

mundus F F 4 1 F F 4 1 F F 4 0 F Jones et al. (1995, 1998)

F F F 1 F 4b 2 F F F F F F Gonzalez-Zamora et al. (1997)

orientalis F F F F F F F 2 F 4b 4 F F Tzeng and Kao (1999)

tejanus 3 F 4 1 F F 4 1 F F 4 � F Jones et al. (1995, 1998)

Encarsia

formosa F F F F F F F 1 F F 4 F F Jones et al. (1995)

F 1 F F 3 F F F 1 F F F � Liu and Stansly (1997)

F F F 2 4 1, 4b 4 1 1 1, 4b 4 F F Koppert (1998)

luteola 3 F F 4 F F F F F F F 0 F Gerling and Sinai (1994)

pergandiella F F F F F F F 1 F F 4 F F Jones et al. (1995)

F 1 F F 1 F F F F F F F � Liu and Stansly (1997)

transvena F 1 F F 1 F F F 1 F F F � Liu and Stansly (1997)

aBup=buprofezin, Pyr=pyriproxyfen, Bif=bifenthrin, Imid=imidacloprid (systemic). Values denote IOBC ratings (Hassan, 1992) based on

control-corrected mortalities: 1=o25% mortality; 2=26–50% mortality; 3=51–75% mortality; 4=>75% mortality. Bioassays included both

topical and contact exposure, depending on stage.

Sublethal effects evaluated include repellency from treated hosts, adult longevity, progeny production, and development time and emergence rates

of progeny; 0 denotes no effect; Fdenotes a measurable negative effect in one or more attribute.
b Imidacloprid applied as a foliar spray.
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regulators only, indicate that buprofezin is generally
benign, but that pyriproxyfen had negative effects on
several species (Table 2). Imidacloprid has been
examined for few species of B. tabaci parasitoids.
Results suggest that while systemic applications are
generally harmless, foliar applications can be highly
toxic. Bifenthrin, a broad-spectrum pyrethroid, was
highly toxic to all stages of all species examined. Thus,
from a comparative perspective, it appears that several
of the more widely used insecticides are relatively
selective and that selectivity could be further enhanced
by better timing of applications relative to parasitoid
development.

With one minor exception, buprofezin has been found
benign to immature and/or adult stages of seven
predator species that attack B. tabaci (Table 3). Liu
and Chen (2000) reported moderate toxicity to 1st instar
Chrysoperla rufilabris, but no toxicity to any other
developmental stage. Pyriproxyfen was likewise re-
ported to be relatively benign to a number of predator
species. Naranjo and Prabhaker (unpublished) found
some wing deformities in Geocoris punctipes adults

treated as final-stage nymphs, and Koppert (1998)
reported high levels of mortality to the adults of the
coccinellid Hippodamia convergens. Pyriproxyfen has
been reported as toxic to other species of Coleoptera in
laboratory bioassays (Hattingh and Tate, 1995; Smith
et al., 1999). The few studies examining sublethal effects
from these two insect growth regulators show no or only
minor effects (Table 3). Reports of toxicity from
imidacloprid to several species are mixed due to different
avenues of exposure (systemic or foliar), predator
feeding behaviors, and susceptibility. Systemic exposure
was found moderately to highly toxic for several
heteropteran species including Orius insidiosus, Dicyphus
tamaninii, andMacrolophus caliginosus (Table 3). Foliar
formulations of imidacloprid were reported to be
harmful to O. insidiosus and M. caliginosus by Koppert
(1998), but Elzen et al. (1998) found that foliar
applications were harmless to O. insidiosus and G.
punctipes. Sensitivities to systemic modes of exposure
are not unexpected as many predaceous Heteroptera are
facultative herbivores (Naranjo and Gibson, 1996) and
would be affected if underlying susceptibilities exist.

Table 3

Summary of laboratory evaluations of the toxicity of selected insecticides to predators known to attack B. tabacia

Stage tested

Nymph/larva Adult Sublethal effects

Bup Pyr Imid Pyret Bup Pyr Imid Pyret Bup Pyr References

Geocoris punctipes F F F F F F 1c 3 F F Boyd and Boethel (1998)

F F F F F F 1c 1 F F Elzen et al. (1998)

1 2 F F 1 1 F F 0 0 Naranjo and Prabhaker, unpublished

Orius insidiosusb F F F F F F 1c 3 F F Elzen et al. (1998)

1 1 4, 4c 4 1 1 4, 4c 4 F F Koppert (1998)

1 1 F F 1 1 F F 0 0 Naranjo and Prabhaker, unpublished

Dicyphus tamaninii 1 1 2c 3 F F F F F F Castane et al. (1996)

F F 2 F F F F F F F Figuls et al. (1999)

Macrolophus caliginosus 1 1 4, 4c 4 1 1 3, 4c 4 F F Koppert (1998)

F F 1c F F F F F F F Figuls et al. (1999)

Collops vittatus F F F F 1 1 F F 0 � Naranjo and Prabhaker, unpublished

Delphastus pusillus F F F F 1 1 4c 4 F F Koppert (1998)

Hippodamia convergens F F F F F F 2c 4 F F Elzen et al. (1998)

F F F F F 4 F F F F Koppert (1998)

Chrysoperla carnea 1d F F F F F F F 0 F Balasubramani and Regupathy (1994)

1 F F F F F F F F F Bigler and Waldburger (1994)

F F F F F F 4c 2 F F Elzen et al. (1998)

F F F 3 F F F F F F Kapadia and Puri (1991)

F 1 1, 4c 4 F 1 1 4 F F Koppert (1998)

Chrysoperla rufilabris 3e F F F F F F F � F Liu and Chen (2000)

F F F 4 F F F 4 F F Schuster and Stansly (2000)

aBup=buprofezin, Pyr=pyriproxyfen, Imid=imidacloprid (soil drench), Pyret=pyrethroids (bifenthrin, fenpropathrin, permethrin or

cyfluthrin). Values denote IOBC ratings (Hassan, 1992) based on control-corrected mortalities: 1=o25% mortality; 2=26–50% mortality;

3=51–75% mortality; 4=>75% mortality. Bioassays tested contact exposure.

Sublethal effects evaluated include, progeny production and developmental time; 0 denotes no effect; Fdenotes a measurable negative effect in

one or more attribute.
b similar results for O. laevigatus and O. majusculus reported by Koppert, 1998; Delbeke et al., 1997; van de Veire et al., 1996.
c Imidacloprid applied as a foliar spray.
dTopical bioassays
eResults from treatment of 1st instars, all other immature stages tested had a rating of 1.
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Foliar applications were moderately to highly toxic to
adult stages of several beetles and C. carnea. Larval
stages of C. carnea showed differential susceptibility
depending on the mode of exposure (Table 3). Ex-
posures to third and fourth generation pyrethroids were
largely detrimental, although it appears that some
populations of G. punctipes and C. carnea may have
reduced susceptibility to cyfluthrin. Similar to the
parasitoids, it appears that several commonly used
insecticides, especially the insect growth regulators, are
relatively selective based on laboratory bioassays.

Some research has been conducted to evaluate the
effects of various biorational insecticides many of which
are considered potentially selective. In laboratory
bioassays, Stansly and Liu (1997) found that a neem-
extract, an insecticidal soap, and two sugar esters
derived from Nicotiana gossei had little or no effect on
E. pergandiella. Use of an emulsified mineral oil caused
high mortality to immature parasitoids and reduced
parasitization by adults. Bentz and Neal (1995) tested
similar materials and found that all caused some
mortality of pupal and adult E. formosa, and reduced
parasitism of greenhouse whitefly. The N. gossei extract
was the least toxic and they concluded that it could
be compatible with biological control in greenhouse
systems. These sugar esters were also reported to be
benign to all stages of Nephaspis oculatus, a coccinellid
predator of B. tabaci (Liu and Stansly, 1996a). Although
these biorationals and others are still experimental, or
have seen limited usage, they could represent important
insecticidal tools that would minimize disruption of
natural enemies in some systems.

Laboratory bioassays provide valuable information
regarding the potential for non-target effects of insecti-
cides under ideal conditions of exposure. Although it is
generally assumed that effects will be less severe in the
field, the realized effects of these compounds can only
be accurately assessed under more realistic conditions
(Croft, 1990; Hassan, 1992; Wright and Verkerk, 1995;
Johnson and Tabashnik, 1999). Field studies integrate a
number of both direct and indirect factors, including
weathering and persistence of residues, behavioral
attributes of natural enemies that may increase or
decrease exposure to residues, reductions in host and
prey populations, and sublethal effects on development
and reproduction. Evaluating these many factors and
their interactions is a daunting challenge (Stark and
Wennergren, 1995).

Very few studies have addressed the selectivity of the
compounds discussed above in the field, and without
exception, all have been limited to assessing effects on
overall natural enemy abundance and/or activity.
Devine et al. (1998) showed no effects on levels of para-
sitism of B. tabaci or populations densities of generalist
predator with use of buprofezin alone or synergized
with piperonyl butoxide. Compared to untreated

controls, Gerling and Naranjo (1998) found elevated
levels of parasitism, but reduced densities of para-
sitoids on several dates in Israeli cotton fields treated
with buprofezin. Darwish and Farghal (1990) re-
ported that generalist predator populations were re-
duced more than 50% two days following application of
buprofezin in Egyptian cotton after which populations
rebounded. By comparison, use of broad-spectrum
materials caused initial reductions of over 90% in this
same study. Recent studies in Arizona cotton have
examined the comparative effects of buprofezin, pyr-
iproxyfen, and conventional, broad-spectrum insecti-
cides on population dynamics of B. tabaci and
associated parasitoids and generalist predators (Naranjo
and Hagler, 1997; Naranjo et al., unpublished). Use of
conventional insecticides, regardless of the number of
applications, significantly reduced seasonal densities of
all predator groups. Spiders, beetles and heteropteran
predators were generally unchanged from the untreated
control when fields were sprayed with either buprofezin
or pyriproxyfen. In one year, both insect growth
regulators caused reductions in population densities of
Drapetis spp., a predatory fly. In the other two years,
reductions in this species were found only for fields
treated with pyriproxyfen. Overall, these results suggest
that the insect growth regulators are much more
selective than conventional insecticides and that bupro-
fezin is more selective than pyriproxyfen. Field testing of
non-target effects for other selective and biorational
insecticides relative to B. tabaci has been very limited
(Natarajan, 1990; Surulivelu, 1991; Simmons and
Jackson, 2000).

Even with the availability of selective insecticides for
management of B. tabaci, disruption of natural enemies
through use of broad-spectrum materials is still likely in
some agricultural systems. For example, cotton in most
parts of the world is affected by multiple key pests for
which selective options for control are unavailable. In
Arizona cotton, the insect growth regulators buprofezin
and pyriproxyfen are used for selective suppression of B.
tabaci, and transgenic cotton is widely used for selective
control of lepidopteran pests. However, fruit-feeding
Lygus hesperus can be a severe pest, and their control
requires the use of broad-spectrum insecticides. Eco-
nomic considerations also are important. For example,
the high cost of insect growth regulators in some areas
may force growers to opt for cheaper, but more
disruptive insecticides. These factors emphasize the
challenges we face in integrating biological control into
economically viable pest management strategies for
multiple pest systems.

2.2.2. Other disruptive factors
A number of other factors may contribute to

disruption of biological control; however, aside from
insecticides, these factors have received comparatively
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little attention in systems affected by B. tabaci.
Intraguild predation, defined as trophic interaction
(predation, parasitism) between natural enemies sharing
a common prey or host, is well known in many crop
systems (Rosenheim et al., 1995). Chrysoperla carnea
larvae readily fed upon immature E. transvena within
4th instar B. tabaci in laboratory assays (Kapadia and
Puri, 1990). Adult Delphastus pusillus did not differ-
entiate between unparasitized B. tabaci and those
parasitized with young E. transvena, but both adults
and larvae avoided older larval and pupal stages in
laboratory studies (Hoelmer et al., 1994). The impact of
these examples of intraguild predation on biological
control of B. tabaci in the field are largely unknown.

Perhaps the best known instances of intraguild
predation are found in the aphelinid heteronomous
hyperparasitoids attacking B. tabaci (Hunter and Kelly,
1998). These parasitoids produce females as primary
parasitoids, but produce males as hyperparasitoids of
their own or other primary parasitoids. Theory and
models argue that such behaviors may be disruptive to
biological control (Mills and Gutierrez, 1996). However,
limited empirical data suggest that while interactions
among B. tabaci parasitoids may occur, they do not
necessarily interfere with suppression of pest popula-
tions in semi-field or greenhouse systems (Heinz and
Nelson, 1996; Hunter et al., 2002). With the large
diversity of natural enemies attacking B. tabaci in any
given system (see Section 2.1), intraguild predation is
probably common and may play an integral part in
determining the role and impact of specific natural
enemy species in affected crops.

Characteristics of the host plant also may affect the
biology and behavior of natural enemies. Degree of
host plant hairiness is often considered an important
characteristic influencing colonization and subsequent
infestation by B. tabaci. Preference is generally asso-
ciated with more hirsute plants (Wilson and George,
1986). Similar, but generally opposite patterns have been
shown with regard to parasitoid searching behaviors
and parasitism on various host plants (Heinz and
Parrella, 1994; Kapadia and Puri, 1994; McAuslane
et al., 1995; Headrick et al., 1996, 1997; Gruenhagen and
Perring, 1999). Additional factors such as degree of leaf
glossiness or levels of nitrogen fertilization may also
affect the abundance and biology of parasitoids (Bentz
et al., 1996; Jackson et al. 2000). Very few studies have
examined the effects of plant or plant-mediated char-
acteristics on predators attacking B. tabaci. Delphastus
pusillus performed better on poinsettia with fewer
trichomes (Heinz and Parrella, 1994), but greater
trichome density on tomato, although altering some
searching behaviors, did not affect overall levels of
biological control by this predator (Heinz and Zalom,
1996). Guershon and Gerling (1999) showed that the
interaction between plant hirsuteness in cotton, and

plant-mediated differences in nymphal B. tabaci setosity,
altered certain searching and handling behaviors, but
not levels of predation by D. pusillus. Overall, the
influence of host plant characteristics, and ultimately
their impact on biological control of B. tabaci, are
poorly understood.

2.3. Manipulation: can biological control be enhanced?

As shown, various factors may cause agricultural
environments to be unsuitable for natural enemies,
and manipulations that reduce or eliminate disruptive
factors are critical. Equally important are manipulations
that enhance the environment, making it more suitable
for natural enemies, and thus, improving the probability
of successful biological control (Rabb et al., 1976).
Recent efforts have expanded research and utilization of
habitat management techniques for conservation biolo-
gical control of arthropods in various systems (Pickett
and Bugg, 1998; Landis et al., 2000). However, efforts
related to habitat management for conservation biolo-
gical control of B. tabaci have been very limited.

Long-term studies to develop, evaluate, and imple-
ment annual and perennial plant refuge systems have
been on-going in the Imperial Valley of California
(Roltsch and Pickett, unpublished). This diverse agri-
cultural region has suffered severe outbreaks of B. tabaci
since the early 1990s. This region also is typical of the
semi-arid areas of the world where infestations have
been most problematic, and is characterized by spatially
and temporally discontinuous habitat for support of
natural enemy populations. Roltsch and colleagues are
attempting to provide more continuous habitat for
natural enemies adjacent to cultivated fields. These
efforts include planting annual or perennial hosts that
are tolerant of desert soils and climate, easy to maintain,
host moderate populations of B. tabaci, and are
attractive to natural enemies. The focus of their
investigations is to provide suitable habitat for the
establishment of exotic aphelinid parasitoids. However,
the refuges have also been shown to harbor populations
of generalist predators such as Geocoris spp. and Orius
spp. The perennial chuparosa (Justicia californica) is
considered promising because it hosts whiteflies over an
extended period of the year and may facilitate over-
wintering of parasitoids. Annual refuge plants, including
many cultivated species, have been found to be more
practical for implementation into annual cropping
systems. Elemental marking studies with collard and
sunflower refuges bordering cotton and melon crops
demonstrated that Eretmocerus spp. readily move from
these refuge areas into the crops (Roltsch et al.,
unpublished). However, these refuge planting also are
a significant source of B. tabaci. Overall, these studies
demonstrate some promise for enhancing natural
enemies of B. tabaci in agricultural systems. Consider-
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able work remains in identifying plants that will provide
a beneficial ratio of natural enemies to pest and that are
cost-effective to cultivate within existing cropping
systems. Further information on the extent and timing
of natural enemy dispersal from the refuge to the crop
also is needed.

2.4. Evaluation: how can efficacy and impact be
measured?

The final component of conservation biological
control to be considered is evaluation of efficacy and
impact. A number of excellent reviews have addressed
the general area of natural enemy evaluation for all
approaches to biological control (Kiritani and Demp-
ster, 1973; DeBach et al., 1976; Luck et al., 1988;
Sunderland, 1988; Kidd and Jervis, 1996). Briefly,
methods can be categorized as (1) addition of natural
enemies to an area from which they are absent, (2)
population census and correlation (3) exclusion or
inclusion of natural enemies, usually using some sort
of cage, (4) interference or removal of natural enemies
by trapping, hand-picking, or more typically, use of
insecticides, (5) a variety of methods that measure
natural enemy feeding activity such as gut content
analyses, and (6) life tables and other direct observation
techniques that attempt to measure sources and rates of
mortality. As emphasized by DeBach et al. (1976), most
of these methods are most robust when employed in a
comparative manner. Of all these methods, only the
first, addition, is generally not useful in assessing natural
enemies for conservation biological control.

In general, these methodologies have been vastly
underutilized in assessing the impact of extant natural
enemies of B. tabaci in the field. As a consequence, our
understanding of the role of natural enemies in
suppression of B. tabaci, and more importantly, our
ability to exploit these effects have been very limited.
Population census and correlation of pest and natural
enemy densities is one of the most frequently used
methods to evaluate impact (e.g. Kajita et al., 1992;
McAuslane et al., 1995; Gerling et al. 1997; Stansly et al.,
1997). This method is descriptive only and does not
directly measure any cause and effect relationship. Thus,
population census and correlation is very limited as a
tool for generalizing and extrapolating results. Bogran
et al. (1998) attempted to use exclusion and partial
exclusion to measure the effects of parasitoids and
predators on B. tabaci infesting beans in Honduras.
Exclusion did not appear to affect rates of predation by
sucking predators (o5%), rates of parasitism (E30%)
or densities of B. tabaci nymphs, pointing to methodo-
logical problems. Interference or disruption of natural
enemies by insecticides was used in several studies as a
means of demonstrating the overall potential of the
entire natural enemy complex (see Section 2.1). Such

studies have not examined the effects of specific species
or groups, or attempted to estimate quantitative rates of
mortality by natural enemies. Based on gut-content
results and predator population density, Naranjo and
Hagler (1998) identified O. tristicolor, L. hesperus, and
G. punctipes as the most prevalent predators of B. tabaci
eggs. Unfortunately, because of limitations of the
technique, it is not possible to estimate quantitative
rates of predation by these species (Sunderland, 1988;
Hagler and Naranjo, 1996). Life table analyses provide a
detailed description of the mortality forces affecting a
population and allow direct estimation of the prob-
ability of dying and the causes of death. Life tables
and their associated analysis are a potentially robust
methodology for assessing natural enemy effects (Bel-
lows et al., 1992). They have not been widely applied to
evaluation of biological control of B. tabaci in the field.
Horowitz et al. (1984) constructed partial life tables for
B. tabaci in Israeli cotton and used k-factor analysis to
determine that mortality of eggs and first instar crawlers
was most closely related to generational mortality. They
did not attempt to estimate rates of mortality by specific
causes, but did note that predation was probably
responsible for some mortality to early stages. They
also noted that parasitoids were a relatively minor
source of mortality. Recently, life table studies con-
ducted in Arizona cotton estimated sources and rates of
mortality for immature stages of B. tabaci (see Section
2.1).

Many methodological and technical problems hamper
our ability to accurately assess the population level
effects of predators and parasitoids on B. tabaci. As
noted, predation is notoriously difficult to study in the
field, primarily because many predators are difficult to
observe and often leave no evidence of attack. Such
problems are obvious. Advances in understanding the
role of predators in suppression of B. tabaci populations
will require innovative application of existing methods
and development of new techniques (Hagler and
Naranjo, 1996). By comparison, assessing the activity
of parasitoids is relatively simple, because they can be
readily seen within the host and exuviae are distinctive.
However, problems and limitations in extending these
simple measurements of activity (i.e. percentage para-
sitism) to estimates of mortality and pest suppression
are not sufficiently recognized by many researchers.
Because of the prevalent use of percentage parasitism in
the B. tabaci literature, it is worth examining this
method in more detail.

2.4.1. Problems in estimating and interpreting parasitism
The general problems associated with measuring and

interpreting percentage parasitism in insect population
dynamic studies have been outlined and discussed in
some detail (see Van Driesche, 1983; Van Driesche et al.,
1991). The most common approach to estimating
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parasitism of B. tabaci is to determine the percentage
of obviously parasitized nymphs from leaf samples. The
location of these leaves varies among host plants, but
the leaves harboring the greatest number of 3rd and 4th
instar nymphs are most often chosen. Even this simple
methodology is problematic as pointed out by Hoelmer
(1996, p. 456). Based on the same set of leaf samples
from okra, he demonstrated that percentage parasitism
varied from 16 to 81% depending on what stages of the
parasitoid and host were used to calculate the percen-
tage. Thus, it is important to maintain a consistent
technique within a study and to clearly articulate the
methodology so that different studies can be compared.
Examination of the literature indicates that a clear
description of methodology is frequently not provided.
Percentage parasitism is useful for faunal surveys, where
the goal is simply to determine species composition and
relative abundance. Such estimates are also considered
useful for comparing experimental treatments, but not
for assessing the impact of parasitoids on host popula-
tion dynamics (Van Driesche, 1983). I will argue below
that use of percentage parasitism is also problematic in
some experimental comparisons.

There are at least four factors, aside from basic
sampling error, that affect the validity and accuracy of
estimates of percentage parasitism. The most obvious
problem is that B. tabaci is multivoltine which leads to
overlapping generations. Second, the development of
parasitized and unparasitized B. tabaci is asynchronous,
because the bulk of parasitoid development occurs, and
is only apparent, in the final host stadium (Gerling,
1990). As a result, it takes longer for a 4th instar host
to produce a parasitoid adult than a whitefly adult.
The combination of these factors makes it difficult to
estimate parasitism on a generational basis from the
ratio of parasitized to unparasitized nymphs on the
same leaf. The magnitude and direction of the bias
depends in part on the pattern of growth of the host
population. This is illustrated (Fig. 5) by comparing
estimates of percentage parasitism based on leaf samples
(ratio of obviously parasitized to unparasitized 4th
instar host) and cohort-based life table studies that
measured apparent parasitism of fourth stage B. tabaci
directly (Naranjo and Ellsworth, unpublished). Percen-
tage parasitism is underestimated with leaf samples
when host populations are increasing and overestimated
when host populations are declining (Fig. 5, insets). This
occurs because the denominator term of percentage
parasitism from leaf sample estimates is inflated or
deflated, respectively. Both leaf sample and life table
estimates conducted in this way yield only apparent (and
irreplaceable) rates of mortality by parasitism, because
the parasitoid must be sufficiently developed to be seen
through the host cuticle. Earlier stages of parasitism
(eggs, young larvae) may be obliterated by predation or
other mortality events. The estimation of marginal rates

of mortality can overcome this problem in life table
analyses (Royama, 1981; Elkinton et al., 1992), but this
method cannot be readily applied to leaf census data.

This leads to a third factor involving problems in
detecting early stages of parasitism. Parasitoids may
oviposit in, and even prefer, early nymphal stages (Liu
and Stansly, 1996b; Jones and Greenberg, 1998), even
though the bulk of development occurs in the final host
stadium. In the Hoelmer (1996) example above, the
highest level of parasitism was found when all 4th instar
hosts were dissected to determine the presence or
absence of parasitoid eggs and early instar larvae. This
approach probably yields a more accurate estimate of
parasitism, because it reduces the developmental asyn-
chrony problem leading to a more realistic estimate of
available hosts within the same generational cohort.
Dissection also assesses some parasitoid-induced mor-
tality before other factors such as predation can act.
The approach is more costly, because of the extra time
required for dissections. The recruitment method
advocated by Van Driesche et al. (1991) in which the
recruitment of both parasitoids and susceptible hosts are
estimated over time, also could lead to more accurate
estimates of generational parasitism, especially if early
parasitoid stages are monitored.

A fourth factor, and one that is rarely acknowledged,
involves the measurement of other sources of immature
mortality acting on B. tabaci populations. As noted
above, this factor may be important in estimating
marginal rates of mortality associated with parasitism.
It is also fundamental to interpreting the impact of
parasitism on pest population suppression and regula-
tion, and may even influence the validity of using simple
measures of apparent parasitism to compare experi-
mental treatments. A simple simulation model is
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presented to illustrate this problem (Fig. 6). Constant
levels of irreplaceable mortality were applied to a stage-
structured population model of B. tabaci over a
representative period of a cotton growing season in the
southwestern USA. Simulations were initialized with
one adult per unit density, used immature develop-
mental rates typical of summer populations in Arizona
cotton, and assumed that females laid 100 eggs (1 : 1 sex
ratio) over a lifetime of 20 days. The four population
trajectories in each panel display four outcomes based
on constant levels of parasitism with changing levels of
other immature mortality factors. Results clearly
demonstrate the difficulty of equating levels of parasit-
ism with potential pest suppression. Eighty percent
parasitism of 4th instar nymphs (Fig. 6A) could be
associated with exponentially increasing populations,
populations displaying damped oscillations leading to
regulation, or populations displaying exponential
growth but where densities exceed the economic thresh-
old at progressively later dates. These outcomes depend
simply on the levels of other sources of mortality. Thus,
high levels of parasitism, which are often reported in the
literature, are not necessarily associated with control.
Likewise, low levels of parasitism are not necessarily
associated with lack of control potential. When accom-
panied with 97.8% mortality from other factors, 10%
parasitism may supply a crucial level of irreplaceable
mortality leading to population suppression below
economic levels (Fig. 6B). The issue of density-depen-
dence was not explicitly examined here, but it would not
alter the fact that differential levels of other immature
mortality can significantly alter population trajectories
and confuse interpretation of parasitism levels.

These simulations also point out potential problems
in using percentage parasitism as a measure of treatment
effects in experimental studies. This is especially true if
these measurements are being used to infer differential

impact of parasitoids. The use of apparent parasitism to
compare experimental treatments relies on the impor-
tant assumption that all else is equal. However,
differential mortality from other sources among the
treatments may obscure real generational effects of
parasitoids that are not obvious from change, or lack of
change, in simple percentage parasitism. For example,
insect growth regulators such as buprofezin, and
especially pyriproxyfen, can cause elevated levels of
mortality in 1st instar nymphs and eggs compared with
conventional or no insecticides. Comparison of rates of
parasitism in 4th instar nymphs among these treatments
must account for these differential mortalities early in
the life cycle in order for the generational contribution
of parasitism to be correctly interpreted for each
experimental treatment. One can easily envision other
treatment regimes that may alter patterns of age-specific
mortality, and researchers need to be cognizant of these
factors.

Overall, the reporting of percentage parasitism should
be accompanied with information of host population
density and whether pest populations are increasing or
declining. This would provide some evidence of whether
parasitism is contributing to suppression and could be
used to design further, more definitive studies to test this
hypothesis. Better yet would be information on other
sources and rates of mortality. Such data could be
crucial in assessing the effects of experimental treat-
ments on parasitism as noted above, and in correctly
estimating and interpreting the effects of a given level of
parasitism on pest population dynamics.

2.4.2. Life table analyses
Because a large number of factors are likely to affect

populations of B. tabaci in agricultural systems (see
Section 2.1), life table studies are a potentially useful
approach for structuring, quantifying, analyzing, and
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interpreting mortality factors and interactions among
mortality sources in pest management systems. With
additional information on pest population densities and
reproductive output, life tables also can provide an
understanding of mechanisms underlying population
dynamics and the contribution of natural enemies to
these dynamics. To exemplify this approach, results from
recent life table studies in Arizona cotton are summar-
ized (also see Ellsworth and Martinez-Carrillo, 2001).
These studies have focused on identifying and quantify-
ing sources and rates of mortality affecting immature
B. tabaci, and on understanding the interaction and
contribution of natural enemy-induced mortality under
different pest management strategies. Manuscripts de-
tailing these studies are currently in preparation.

As discussed, immature stages of B. tabaci are subject
to high levels of mortality from various sources in
cotton (see Fig. 4). These levels of mortality are
insufficient in most years to suppress pest populations,
season-long, below economic levels. Thus, intervention
with insecticides is typically necessary. During the early
years of the whitefly outbreak in the southwestern USA,
broad-spectrum insecticides were widely used. This
practice largely precluded any biological control by
indigenous natural enemies and was problematic to
ongoing introductions of exotic parasitoids in the region
(e.g., Hoelmer, 1996). Beginning in 1996, the insect
growth regulators buprofezin and pyriproxyfen came
into widespread use in Arizona under an USA–EPA
emergency exemption. The selectivity of these materials
to various natural enemies has been demonstrated in
both laboratory and field evaluations (see Section 2.2.1),
but the overall value of these materials in preserving
natural enemy activity were unknown. To begin
answering this question, life table studies were con-
ducted in replicated cotton fields that received prescrip-
tive applications of buprofezin, pyriproxyfen, or
conventional insecticides. These treatments were con-
trasted with one another and with untreated fields over a
three year period. The approach involved the establish-
ment of natural cohorts of eggs and 1st instar nymphs
from field populations that were observed every 2–3
days until adult emergence or death. Representative
results from 1997 studies are highlighted below.

Partial results from two post-insecticide generations
indicated that insecticides contributed substantial mar-
ginal rates of mortality to cohorts established immedi-
ately before sprays were applied (54.9–68.9%). As
expected, this mortality component declined consider-
ably in cohorts established two weeks after spraying
(14.9–23.9%). Marginal rates of natural enemy mortal-
ity, especially that caused by sucking predators was
substantial in untreated fields (74.1%), but significantly
compromised in fields treated with conventional insecti-
cides (37.1%). Mortality from predation was intermedi-
ate in fields treated with the insect growth regulators in

the first post-spray cohort (48.9–60.1%), but these levels
rebounded and became indistinguishable from untreated
fields within two weeks after application (65.5–72.9%).
Marginal rates of parasitism were minor (0–8.1%) in all
instances, and patterns were generally unaffected by
insecticide treatment. Control of B. tabaci was achieved
in all fields receiving insecticides (Fig. 7), but the manner
in which control was attained differed among treat-
ments. Survivorship curves for the various treatments
(not shown) revealed that all insecticides functioned by
contributing only a small amount (E3–4%) of irreplace-
able mortality. However, while only a single spray of
either of the insect growth regulators was required to
maintain control, five applications of conventional
insecticides were needed to achieve the same result.
The insect growth regulators functioned by first repla-
cing some mortality from predation and parasitism,
and contributing an immediate, and essential, level of
irreplaceable mortality. However, because these materi-
als did not significantly disrupt the natural enemy
complex, biological control was able to contribute to
pest suppression for the remainder of the season. Thus,
it was not the residual activity of the insecticides
themselves that permitted long term control but the
preservation of biological control activity (‘‘bio-resi-
dual’’). In contrast, repeated applications of conven-
tional insecticides were required for control, because
natural enemy populations (especially predators) were
reduced and unable to contribute significant irreplace-
able mortality. These studies demonstrate the role of
multiple mortality factors in managing B. tabaci and
provide a mechanistic understanding of the important
contribution of conservation biological control.
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Fig. 7. Comparative population dynamics of B. tabaci under different

pest management regimes, Arizona, USA, 1997. The dotted horizontal

line denotes the current action threshold. Population trends in

untreated control field (closed circles), and trends and application

dates in fields receiving IGRs (closed squares) or a rotation of

conventional insecticides (open triangles) are shown. Continued pest

suppression in the IGR fields arises from the conservation of natural

enemies and their subsequent activity, and highlights the ‘‘bio-

residual’’ effect of these materials (Naranjo and Ellsworth, unpub-

lished).
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3. Conclusions and future research needs

The geographic expansion of B. tabaci over the last
several decades has resulted in an exponentially increas-
ing research effort into all aspects of pest biology,
ecology, host–plant interactions, virus–vector relation-
ships, biological control, and pest management.
Although research in the area of biological control has
assumed a relatively small proportion of the overall
research effort, this area has been expanding since the
mid 1980s. Large numbers of arthropod predator,
parasitoid and fungal species are known to attack B.
tabaci in a variety of agricultural systems worldwide.
Some studies suggest that there is potential for these
agents to exert biological control of this pest. However,
much work will be required before biological control
assumes a larger and more dominant role in pest
management systems for B. tabaci in most affected
crops. Conservation of natural enemies is a fundamental
element in all biological control approaches and has
probably been the most active area of research in
biological control of B. tabaci. Unfortunately, progress
in fully developing, evaluating and implementing
conservation biological control has been slow. Most
research to date is still descriptive with considerably less
research addressing factors that may minimize disrup-
tion or enhance the abundance and activity of existing
natural enemies. Even less research is devoted
to determining the overall impact of conserved natural
enemies on pest suppression. The following are
suggested avenues of research that may advance our
understanding and use of conservation biological con-
trol in pest management systems for B. tabaci.

1. Survey work should continue to refine the region-
and crop-specific natural enemies of B. tabaci.
Emphasis should be placed on definitive pest-natural
enemy associations determined in the field, especially
for predators. Many predators may simply be
opportunists that feed only infrequently on B. tabaci.
These species would be poor candidates for further
study.

2. Criteria should be developed to help narrow these
refined lists to only the most promising species. Such
criteria are useful in defining target natural enemies
for augmentation programs in protected agricultural
systems (e.g., Drost et al., 1996; Heinz and Parrella,
1998). Obvious criteria might include consistent
presence of the natural enemy in the affected crop,
preference for B. tabaci, tolerance to commonly used
insecticides, and ability to locate prey at low
densities.

3. Because insecticides are likely to remain a major
component of most systems, especially those with
multiple pest species, the overall effects of both
broad-spectrum and selective materials need to be

defined in the field. Laboratory studies provide
valuable data on potential risk, but both lethal and
sublethal effects need to be determined in the field.
These effects need to be integrated to determine
overall impacts on population dynamics and feeding
activity. Ecological selectivity of insecticides should
be more fully explored.

4. The effects of other potentially disruptive factors
need to be better defined and studied. Intraguild
predation is likely to be pervasive in many systems
affected by B. tabaci. The population level effects of
this and other species interactions, such as competi-
tion, require further study. The importance of the
host plant in mediating predator-prey and host-
parasitoid interactions has been demonstrated for
some systems. Further investigation of these tri-
trophic interactions could lead to strategies for
minimizing disruption and well as enhancing the
habitat for more effective biological control.

5. The development and use of refuges for habitat
enhancement is in its infancy. Promising results from
the southwestern USA suggest that such approaches
should be pursued more vigorously. One of the major
problems in most semi-arid regions is spatially and
temporally discontinuous habitat for support of
natural enemy populations.

6. Whitefly researchers have largely failed to take
advantage of a number of well-defined experimental
methods for determining the impact of natural
enemies on pest population dynamics and control.
These tools should be more widely utilized during all
phases of the development of conservation biological
control programs. I advocate the use of life tables as
an underlying methodology for understanding and
interpreting the contribution of natural enemies
within the context of other mortality factors simulta-
neously affecting populations of B. tabaci.
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