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Arﬁc{e history: Field-based plant phenomics requires robust crop sensing platforms and data analysis tools to success-
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efforts will lead to genetic improvements that maintain high crop yield with concomitant tolerance to
Accepted 6 September 2015

environmental stresses. The objectives of this study were to investigate proximal hyperspectral sensing
with a field spectroradiometer and to compare data analysis approaches for estimating four cotton phe-
notypes: leaf water content (C,,), specific leaf mass (Cy,), leaf chlorophyll a + b content (Cg), and leaf area

Ié?t' ::)onrds. index (LAI). Field studies tested 25 Pima cotton cultivars grown under well-watered and water-limited
High performance computing conditions in ce.ntrél Arizona from 2010 to 2912. Sfeveral vegetatlo.n indices, including the norr.nallz.ecl dif-
Inverse modeling ference vegetation index (NDVI), the normalized difference water index (NDWI), and the physiological (or
Phenotyping photochemical) reflectance index (PRI) were compared with partial least squares regression (PLSR)
PROSAIL approaches to estimate the four phenotypes. Additionally, inversion of the PROSAIL plant canopy reflec-
Remote sensing tance model was investigated to estimate phenotypes based on 3.68 billion PROSAIL simulations on a

supercomputer. Phenotypic estimates from each approach were compared with field measurements,
and hierarchical linear mixed modeling was used to identify differences in the estimates among the cul-
tivars and water levels. The PLSR approach performed best and estimated C,,, C,, Csp, and LAI with root
mean squared errors (RMSEs) between measured and modeled values of 6.8%, 10.9%, 13.1%, and 18.5%,
respectively. Using linear regression with the vegetation indices, no index estimated C,,Cp, Cg, and
LAI with RMSEs better than 9.6%, 16.9%, 14.2%, and 28.8%, respectively. PROSAIL model inversion could
estimate C, and LAI with RMSEs of about 16% and 29%, depending on the objective function.
However, the RMSEs for C,, and C,, from PROSAIL model inversion were greater than 30%. Compared
to PLSR, advantages to the physically-based PROSAIL model include its ability to simulate the canopy’s
bidirectional reflectance distribution function (BRDF) and to estimate phenotypes from canopy spectral
reflectance without a training data set. All proximal hyperspectral approaches were able to identify dif-
ferences in phenotypic estimates among the cultivars and irrigation regimes tested during the field stud-
ies. Improvements to these proximal hyperspectral sensing approaches could be realized with a high-
throughput phenotyping platform able to rapidly collect canopy spectral reflectance data from multiple
view angles.

Published by Elsevier B.V.

1. Introduction dented advances in DNA sequencing have unlocked the genetic
code for many important food crops, including rice (Oryza sativa

To improve food security, adapt to climate change, and reduce L.), sorghum (Sorghum bicolor L.), and maize (Zea mays L.) (Bolger
resource requirements for crop production, scientists must better et al., 2014). However, understanding how genes control complex
understand the connection between a plant’s observable character- plant traits, such as drought tolerance, time to anthesis, and har-
istics (phenotype) and its genetic makeup (genotype). Unprece- vestable yield, remains challenging. Field-based plant phenomics
seeks to implement information technologies, including sensing
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genetically diverse plant populations in the field and relate these
responses to individual genes (Araus and Cairns, 2014; Furbank
and Tester, 2011; Houle et al., 2010; Montes et al., 2007; White
et al., 2012). When validated, crop improvement strategies based
on targeted quantitative trait loci and genomic selection can be
used for efficient development of crop cultivars that are both high
yielding and resilient to environmental stresses.

A variety of electronic sensors have been deployed for field-
based plant phenomics, mainly on ground-based vehicles.
Andrade-Sanchez et al. (2014) developed a sensing platform on a
high-clearance tractor that collected data over four Pima cotton
(Gossypium barbadense L.) rows simultaneously. Ultrasonic sensors,
infrared radiometers, and active multispectral radiometers were
used to measure canopy height, temperature, and reflectance,
respectively. Scotford and Miller (2004) mounted passive two-
band radiometers and ultrasonic sensors on a tractor boom and
used the system to estimate tiller density and leaf area index
(LAI) of winter wheat (Triticum aestivum L.). Other sensing systems
have incorporated passive hyperspectral radiometers (spectrora-
diometers) for measuring crop canopy spectral reflectance contin-
uously over a range of wavelengths, typically within the visible and
near-infrared spectrum. For example, the phenotyping platform of
Comar et al. (2012) incorporated four spectroradiometers sensitive
between 400 and 1000 nm at 3 nm spectral resolution and two
RGB digital cameras. Also, Montes et al. (2011) developed a system
with light curtains for canopy profiling and spectroradiometers
sensitive between 320 and 1140 nm at 10 nm spectral resolution.
Rundquist et al. (2004) compared machine-based versus hand-
held deployment of a spectroradiometer and found reduced vari-
ability and higher reproducibility of sensor measurements when
the instrument was positioned by a machine.

Following sensor platforms, the next challenge for field-based
plant phenomics is the development of methodologies to extract
meaningful information from the sensor data, with the ultimate
goal to quantify specific crop phenotypes. However, the fundamen-
tal measurements of many sensors have little utility for crop phe-
notyping without additional post-processing and analysis. For
simple, empirical processing of canopy spectral reflectance data,
a multitude of vegetation indices have been developed (Bannari
et al.,, 1995) and used to estimate several crop characteristics,
including canopy cover, LAI, and biomass (Wanjura and Hatfield,
1987). The popular normalized difference vegetation index (NDVI)
is traditionally calculated as

NDVI = P2 =P 1)
P2+ Py

where p, is the spectral reflectance in the near-infrared waveband
and p, is the spectral reflectance in the red waveband. However,
with the advent of hyperspectral sensors, other narrow-band
indices have been developed using the NDVI equation with reflec-
tance data in different wavebands. For example, Gamon et al.
(1992) developed the physiological (or photochemical) reflectance
index (PRI), a narrow-band index using reflectance at 531 nm to
track xanthophyll cycle pigments and estimate photosynthetic effi-
ciency. Likewise, Gao (1996) developed the normalized difference
water index (NDWI) to estimate vegetation water content. Many
other studies have identified optimum wavebands for a given appli-
cation by calculating narrow-band NDVI for all possible waveband
combinations for a given hyperspectral sensor (Fu et al., 2014;
Hansen and Schjoerring, 2003; Thenkabail et al., 2000; Thorp
et al., 2004). Babar et al. (2006) demonstrated several narrow-
band spectral reflectance indices that explained genetic variability
in wheat biomass. Mistele and Schmidhalter (2008) measured spec-
tral reflectance of maize canopies from four view angles and found

the spectral reflectance indices were strongly correlated
(0.57 <r* <0.91) with total nitrogen uptake and dry biomass
weight. In a study by Gutierrez et al. (2012), spectral reflectance
indices explained over 87% and 93% of the variability in biomass
and LAI, respectively, for three upland cotton varieties. Seelig
et al. (2008) correlated shortwave infrared spectral reflectance
indices with relative water content and thickness of peace lily
(Spathiphyllum lynise) leaves (> > 0.94).

Other spectral data analysis approaches consider all the visible,
near-infrared, and shortwave infrared wavebands collectively. Sta-
tistical procedures such as principal component regression (PCR)
and partial least squares regression (PLSR) reduce dimensionality
by decomposing the hyperspectral data into a set of independent fac-
tors, against which crop biophysical traits are regressed. For exam-
ple, Thorp et al. (2008) used PCR to estimate maize stand density
from aerial hyperspectral imagery (> = 0.79). Also, Thorp et al.
(2011) used proximal spectral reflectance data with PLSR to estimate
dry biomass weight, flower counts, and silique counts of lesquerella
(Lesquerella fendleri) with root mean squared errors of prediction
equal to 2.1 Mg ha™!, 251 flowers, and 1018 siliques, respectively.
In another study, PLSR models developed from spectral reflectance
of rice canopies explained up to 71% of the variability in plant nitro-
gen (Bajwa, 2006). Hansen and Schjoerring (2003) compared esti-
mates of wheat biophysical variables using (1) linear regression on
narrow-band NDVI with optimal wavebands and (2) PLSR with all
wavebands from 400 to 900 nm. The NDVI approach better esti-
mated LAI and chlorophyll concentration, while the PLSR approach
better estimated green biomass weight and nitrogen concentration.

Another potential solution for quantifying crop phenotypes
involves combining measured spectral reflectance data with phys-
ical models of radiative transfer in the plant canopy. Input param-
eters for such models describe attributes (i.e., phenotypes) of the
crop canopy, which are used to simulate canopy spectral reflec-
tance. For example, with 14 input parameters that describe plant
characteristics and illumination conditions, the PROSAIL model
(Jacquemoud et al., 2009) can simulate plant canopy spectral
reflectance from 400 to 2500 nm in 1 nm wavebands. Using model
inversion techniques, spectral reflectance measurements from
spectroradiometers can be used to estimate PROSAIL input param-
eters. These estimates represent additional crop phenotypes that
could be useful in subsequent genetic analyses. By linking crop
phenotypes to sensor data through the theoretical knowledge con-
tained in the simulation model, the approach is less empirical than
the vegetation index and PLSR approaches.

Literature provides examples of PROSAIL model inversion for
vegetation characterization in diverse environments, but field-
based plant phenomics is a novel application. Jacquemoud (1993)
first investigated the practical limitations of PROSAIL model inver-
sion using synthetic spectra. A subsequent study tested field spec-
troradiometer data with PROSAIL model inversion to retrieve sugar
beet (Beta vulgaris) canopy characteristics, such as chlorophyll
a + b concentration, leaf water thickness, LAI, and leaf inclination
angle (Jacquemoud et al., 1995). At coarser spatial and spectral
scales, Zarco-Tejada et al. (2003) used data from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) satellite to invert
PROSAIL for estimation of chaparral vegetation water content in
a central California shrub land. Yang and Ling (2004) estimated leaf
water thickness of New Guinea impatiens (Impatiens hawkeri) in a
controlled environment using PROSAIL model inversion from
1300 nm to 2500 nm, but spectral artifacts between 400 and
1300 nm due to artificial lighting prevented the estimation of other
plant characteristics. PROSAIL model inversion also provided esti-
mates of LAl and chlorophyll a + b concentration for potato (Sola-
num tuberosum L.) and wheat managed with variable nitrogen
fertilization rates (Botha et al., 2007, 2010). Others have linked
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PROSAIL with dynamic models of crop growth and development
for wheat (Thorp et al., 2012) and maize (Koetz et al., 2005), which
permitted model inversion using time-series spectral reflectance
measurements of the crop canopy.

In many previous studies, iterative optimization was used to
solve the PROSAIL model inversion problem (Botha et al., 2007,
2010; Jacquemoud et al., 1995; Thorp et al., 2012; Yang and Ling,
2004; Zarco-Tejada et al., 2003). Optimization aims to find solu-
tions in a computationally efficient manner, but convergence to
local minimums is a risk. Others have used lookup tables to solve
the inversion problem (Combal et al., 2003; Darvishzadeh et al.,
2012; Koetz et al., 2005). Lookup tables are a relatively simple
way to characterize model responses, but the computational
expense can be great if many simulations are required to ade-
quately characterize the parameter space. High-performance com-
puters increase the practicality of the lookup table approach.

The goal of this study was to assess the utility of proximal
hyperspectral data and related data analysis techniques for esti-
mating crop phenotypes among Pima cotton cultivars grown in
Arizona field studies. Specific objectives were (1) to compare NDVI,
NDWI, PRI, PLSR, and PROSAIL model inversion methods to esti-
mate leaf water thickness, specific leaf mass, chlorophyll a + b con-
centration, and LAI in cotton and (2) to assess differences between
phenotypic estimates among irrigation and cultivar treatments
imposed during the field studies.

2. Materials and methods
2.1. Field experiments

As described in detail by Andrade-Sanchez et al. (2014), field
experiments were conducted during the summers of 2010, 2011,
and 2012 at the Maricopa Agricultural Center (33.068°N,
111.971°W, 360 m above mean sea level) near Maricopa, Arizona.
Twenty-five Pima cotton cultivars were grown under well-
watered (WW) and water-limited (WL) conditions using a 5 x 5
lattice design with four replications per treatment. Experimental
units were one row with length of 8.8 m and row spacing of
1.02 m. A subset of four cotton cultivars in 2010 (Monseratt Sea
Island, Pima 32, Pima S-6, and Pima S-7) and five cotton cultivars
in 2011 and 2012 (89590, Monseratt Sea Island, P62, PSI425, and
Pima S-6) were selected for intensive field measurements and
proximal hyperspectral data collection. These cultivars were cho-
sen based on their different release dates to increase the range of
expected responses to heat and water deficit (Carmo-Silva et al.,
2012). Subsurface drip irrigation methods were used with irriga-
tion schedules determined from a daily soil water balance model
based on FAO-56 methods (Allen et al., 1998). When 50% of treat-
ment plots had one visible flower, the WL treatment received one-
half the irrigation rate of the WW treatment.

2.2. Field data collection

Intensive field data collection to characterize leaf water con-
tent and canopy spectral reflectance for the selected Pima culti-
vars occurred on five occasions during the three field
experiments (Table 1). Measurements were collected in August
during the cotton boll filling period. Collection times in 2011
and 2012 were focused in the morning hours after the 2010 data
analysis revealed larger differences in relative leaf water content
between WW and WL treatments earlier in the day (Carmo-Silva
et al.,, 2012).

During each data collection outing, ground-based radiometric
measurements were collected over the selected Pima cultivars
using a hand-held field spectroradiometer (Fieldspec 3, Analytical
Spectral Devices, Inc., Boulder, CO, USA). Radiometric information
was reported in 2151 narrow wavebands from 350 to 2500 nm in
1 nm intervals. The instrument was equipped with a 25° field-of-
view fiber optic. To avoid soil background effects, a wand con-
structed from PVC tubing was used to position the fiber optic at a
nadir view angle approximately 0.25 m above the canopy. Because
of the proximity of the sensor to the target, the methods are termed
“proximal sensing” as opposed to “remote sensing.” Frequent radio-
metric observations of a calibrated, 0.6 m?, 99% Spectralon panel
(Labsphere, Inc., North Sutton, New Hampshire) were used to char-
acterize incoming solar radiation throughout the data collection
period. Because atmospheric absorption led to insufficient light in
some wavebands, subsequent analyses of all spectral data used
1703 wavebands from 400 to 1350 nm, 1450 to 1770 nm, and
1970 to 2400 nm. Canopy reflectance factors in each waveband
were computed as the ratio of the canopy radiance over the corre-
sponding time-interpolated value for Spectralon panel radiance.
Reflectance factors from six to twelve radiometric measurements
over each experimental plot were averaged to estimate the overall
canopy spectral reflectance response. Variability in the number of
scans per plot was dependent on manual triggering of the spectro-
radiometer while slowly walking through the field.

Simultaneously with canopy spectral reflectance measure-
ments, two leaf tissue samples were collected from two leaves in
each plot with a 2 cm? punch. Two leaf disks were collected per
sample from one leaf at the top of the canopy, sealed in a
3 x 4 cm? pre-weighed ziplock bag, and stored on ice in an insu-
lated cooler. In the laboratory, the fresh weight of leaf samples
(my) was measured on an electronic balance (AE 160, Mettler-
Toledo, LLC, Columbus, OH, USA). Leaf disks were then removed
from the bags and oven dried prior to dry weight (my) measure-
ments. The leaf water thickness (C,,) was calculated as the depth
of water per unit leaf area (cm):

Cw = (my —ma)/(py, x A) )

Table 1
Field measurement schedule for five cotton phenomics data sets: 2010A, 2010B, 2011, 2012A, and 2012B.*
Measurement 2010A 2010B 2011 2012A 2012B
Leaf punches for C,, and Cy, 04 August 2010 04 August 2010 18 August 2011 03 August 2012 31 August 2012
09:00-10:30 13:30-16:30 09:00-10:30 08:45-10:30 09:00-11:00
Leaf punches for Cy, 30 July 2010 30 July 2010 10 August 2011 09 August 2012 16 August 2012
morning morning morning 08:30-10:45 7:45-11:00
Fieldspec canopy spectral reflectance 04 August 2010 04 August 2010 18 August 2011 03 August 2012 31 August 2012
08:00-09:45 14:00-15:30 09:00-10:30 08:45-10:30 09:00-11:00
Crop Circle canopy reflectance 05 August 2010 05 August 2010 18 August 2011 02 August 2012 31 August 2012
14:00-15:15 14:00-15:15 15:00-15:45 07:00-08:30 10:00-11:30
Manual canopy height 08 August 2010 08 August 2010 19 August 2011 02 August 2012 30 August 2012
morning morning morning morning morning

2 Leaf chlorophyll a + b content, C,; leaf water thickness, C,; specific leaf mass, Cp,.
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where p,, is the density of water (1.0 g cm~3) and Ay is the total area
of the leaf sample. The specific leaf mass (Cy,, gcm™2) was also
calculated:

Cin = my /A 3)

Within two weeks of proximal hyperspectral measurements
(Table 1), additional leaf samples were collected for measurements
of chlorophyll a+ b concentration (Cg). Two 0.3 cm? leaf disks
were obtained from each experimental plot and stored at —80 °C.
Using the method of Porra et al. (1989), 100% methanol (1 mL)
was added to each sample for pigment extraction in the dark at
4°C for 48 h with mixing. A 200 pL sample of the supernatant
was collected for absorbance measurements at 652 nm (Agsz) and
665 nm (Agss), which were used to estimate Cy, (Lg cm™2):

Cab = (22.]2/\652 + 2.7]A665)/A15 (4)

Within one day of proximal hyperspectral measurements
(Table 1), the field-based high-throughput phenotyping system of
Andrade-Sanchez et al. (2014) was used to measure canopy reflec-
tance, height, and temperature in each experimental plot. Sensors
were deployed on an open rider sprayer (LeeAgro 3434 DL, LeeA-
gra, Lubbock, TX, USA) capable of sensing four cotton rows simul-
taneously. Canopy reflectance was measured in 10 nm wavebands
centered at 670, 720, and 820 nm using active multispectral
radiometers (Crop Circle ACS-470, Holland Scientific, Lincoln, NE,
USA). Eq. (1) was used to calculate NDVI from these data with p,
and p, equal to reflectance values at 670 and 820 nm, respectively.
Although canopy height was measured by the phenotyping plat-
form using sonar proximity sensors (Pulsar dB3, Pulsar Process
Measurement Ltd, Malvern, UK), this study used canopy height
data measured manually using an electronic bar code scanner with
a coded measurement stick. Using the approach of Scotford and
Miller (2004), the NDVI from active radiometers and manual
canopy height data were used to calculate a compound canopy
index (CCI), from which LAI was estimated:

LAl = f x CCl = ﬂ(c;x> (&) (5)

where B is a constant, ¢ and h are respectively the instantaneous
canopy cover and canopy height measurements, and Cpg and hygx
are respectively the maximum cover and height expected during
the growing season. Co-located data to parameterize this calcula-
tion were collected during other upland cotton experiments con-
ducted at MAC from 2009 to 2013. Analysis of these data led to
values of 5.5, 87.9%, and 110.5 cm for B, Cigx, and hpax, respectively.
The NDVI data from the active radiometers were used as a direct
estimate of c in Eq. (5). Compared with 75 measurements from a
LAI meter (LAI-2200 Plant Canopy Analyzer, Li-Cor Biosciences, Lin-
coln, NE, USA) and with LAI calculated using 75 measurements of
leaf area from biomass samples on an area meter (LAI-3100, Li-
Cor Biosciences, Lincoln, NE, USA), the index estimated LAI with a
root mean squared error of 0.48 (15.9%).

2.3. Vegetation indices

Eq. (1) was used to calculate three vegetation indices from the
proximal hyperspectral data. The indices were selected based on
their relevance to monitor physiological stress in vegetation. A tra-
ditional broad-band NDVI was calculated with p; and p, equal to
the average spectral reflectance in wavebands corresponding to
the red (665-675nm) and NIR (815-825 nm) filters used with
the Crop Circle reflectance sensors onboard the phenotyping vehi-
cle. The NDWI (Gao, 1996) was calculated with p, and p, equal to
the average spectral reflectance in wavebands corresponding to
MODIS Band 5 (1230-1250 nm) and Band 2 (841-876 nm), respec-

tively. Finally, the PRI (Gamon et al., 1992) was calculated with p,
and p, equal to spectral reflectance at 531 nm and 570 nm, respec-
tively. Linear regression models were developed to estimate
Cw,Cm,Cap, and LAI using each of these spectral indices. While
these three indices were specifically highlighted, Eq. (1) was also
used to calculate NDVI for all possible combinations of the 1703
proximal hyperspectral wavebands.

2.4. PLSR modeling

PLSR was used to assess the relationships between each of the
four biophysical variables and canopy spectral reflectance in
1703 wavebands. Thorp et al. (2011) provided the details on the
PLSR methodology used in the present study. Briefly, if Y is an
n x 1 vector of responses (measured crop phenotypes) and X is
an n-observation by p-variable matrix of predictors (hyperspectral
reflectance measurements in p wavebands), PLSR aims to decom-
pose X into a set of A orthogonal scores such that the covariance
with corresponding Y scores is maximized. The X-weight and Y-
loading vectors that result from the decomposition are used to esti-
mate the vector of regression coefficients, Bp.s, such that

where € is an n x 1 vector of error terms.

The “pls” package (Mevik and Wehrens, 2007) within the R Pro-
ject for Statistical Computing (http://www.r-project.org) was used
for PLSR in this study. Four models were developed: one each for
estimating C,, Ci,, Cap, and LAI from the canopy spectral reflectance
data. To choose the appropriate number of factors for each model
(A from above), leave-one-out cross validation was used to test
model predictions for independent data, and scree plots (not
shown) provided the number of factors for which the root mean
squared error of cross validation (RMSECV) was minimized. The
PLSR models for Cy, Cp, Cqp, and LAI were developed from the first
five, eight, eight, and ten factors, respectively.

2.5. PROSAIL simulations

The PROSAIL canopy reflectance model was developed by link-
ing the PROSPECT leaf optical properties model and the SAIL
canopy bidirectional reflectance model (Jacquemoud et al., 2009).
PROSAIL uses 14 input parameters to define leaf pigment content,
leaf water content, canopy architecture, soil background reflec-
tance, and illumination characteristics. Four of the PROSAIL input
parameters are the four biophysical variables measured in this
study: Cy,Cn, Ce, and LAL In addition to Cg, other leaf pigment
parameters include the carotenoid content (ugcm™2) and the
brown pigment content (unitless fraction from 0.0 to 1.0). Another
leaf-scale parameter is the leaf structural coefficient (N; unitless),
defined as the number of leaf mesophyll layers. In addition to
LAI, canopy architecture is defined by the average leaf inclination
angle (0;; degrees). The background soil reflectance parameter
ranges from 0.0 for wet soils to 1.0 for dry soils. Specular properties
of the canopy surface are characterized by the hot spot size param-
eter (s; unitless fraction from 0.0 to 1.0). The skylight parameter (%)
defines the percentage of diffuse solar radiation. Illumination and
viewer geometries are characterized by the solar zenith angle
(degrees), viewer zenith angle (degrees), and relative solar and
viewer azimuth angle (degrees). Based on these inputs, the model
calculates canopy bidirectional reflectance from 400 to 2500 nm in
1 nm increments.

PROSAIL has been developed in several programming lan-
guages. Initial simulations were conducted using the Fortran ver-
sion, which was compiled using the “g95” Fortran compiler
(http://www.g95.0rg) on a Linux operating system. Later, PROSAIL
for Python was deemed better for the simulation analysis, because
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it encapsulated the Fortran code as an extension for the Python
programming language (http://www.python.org). This permitted
the model to be called from the Python command line and elimi-
nated hard disk access requirements for model input and output.

PROSAIL simulations were conducted on the “Stampede” super-
computer at the Texas Advanced Computing Center (TACC), located
at the University of Texas in Austin. A single job submission was
used to conduct 3.68 billion PROSAIL simulations to test the effects
of multiple parameter combinations on simulated canopy spectral
reflectance. Because proximal hyperspectral measurements were
collected in a total of 184 plots over all the field experiments,
184 processing cores were requested such that the simulation
analysis could be explicitly conducted for the conditions of each
experimental unit. The maximum run time for a job submission
on Stampede is 48 h. Thus, the design objective was to conduct
as many PROSAIL evaluations as possible within the time limit.

Seven parameters were adjusted during the PROSAIL simulation
exercise (Table 2). A Sobol quasirandom sequence algorithm for
Python was used to sample the parameter space. Although “less
random” than a pseudorandom number sequence, the approach
tends to sample the parameter space “more uniformly.” Another
advantage is that the sequence is repeatable, so identical parame-
ter combinations could be tested for each experimental unit. For
Cw,Cm, Cap, and LAI, the lower and upper bounds were specified
using the range of measured values. Ranges for N, 0, and s were
specified using published values (Combal et al, 2003;
Jacquemoud et al., 1995). Leaf carotenoid content and brown pig-
ment content were less sensitive parameters and were fixed at
10.0 pg cm—2 and 0.0 (unitless), respectively. Because subsurface
drip irrigation was used, the soil surface was normally dry. Thus,
the soil reflectance parameter was fixed at 1.0 for all simulations.
The fraction of diffuse skylight was fixed at 10% based on observa-
tions of a shaded versus sunlit Spectralon panel during the field
study. By implementing the solar position algorithm of Reda and
Andreas (2004), solar zenith angles were calculated from the
timestamps of radiometric observations in the field. Observer
zenith and relative azimuth angles were both fixed at 0°. This
approach provided an evaluation of 20 million combinations of
seven PROSAIL parameters for each of the 184 experimental units
monitored during the field studies.

2.6. PROSAIL model inversion

Available storage allocation on Stampede became the limiting
factor when PROSAIL simulation results were initially written to
the hard drive (i.e., 1703 simulated reflectance values for 3.68 bil-
lion simulations would have exceeded the available storage alloca-
tion on Stampede). Thus, objective function evaluations were

Table 2

Parameterization of the PROSAIL model.
Parameter Unit State Lower bound Upper bound
Leaf water thickness (Cy) cm Free 0.01 0.02
Specific leaf mass (C) gcm 2 Free 0.003 0.008
Chlorophyll a + b (Cgp) pgem=2 Free 25.0 60.0
Leaf area index (LAI) unitless Free 1.25 8.75
Leaf structure parameter (N) unitless Free 1.4 24
Average leaf angle (0;) degrees Free 10.0 70.0
Hot spot size (s) unitless Free 0.001 1.0
Leaf carotenoid content pgem 2 Fixed 10.0 10.0
Brown pigment content unitless Fixed 0.0 0.0
Soil reflectance parameter unitless Fixed 1.0 1.0
Diffuse radiation fraction % Fixed 10.0 10.0
Solar zenith angle degrees Fixed 27.3 60.3
Viewer zenith angle degrees Fixed 0.0 0.0
Relative azimuth angle degrees Fixed 0.0 0.0

incorporated into the simulation exercise to reduce storage
requirements. Tested parameter sets were stored in a lookup table
with their corresponding objective function evaluations, including
the root mean squared error (RMSE) and the spectral angle (o)
(Kruse et al., 1993) between measured and simulated reflectance
over all spectral wavebands (n = 1703):

RMSE = /3" (S, - PROSAIL(P, )’ @)
and

n ) )
S X1, x PROSAILP.C) @)

(=0, s?)o's (X1, PROSAIL(P, C)})

where S is the vector of measured canopy spectral reflectance and
PROSAIL(P, C) is the vector of simulated canopy spectral reflectance
as a function of adjusted parameters, P, and constant parameters, C.
The main advantage of « is its insensitivity to illumination, because
Eq. (8) incorporates only vector direction and not vector length. This
was considered advantageous because proximal canopy spectral
reflectance measurements were largely affected by the fraction of
sunlit versus shaded leaves in the instrument’s field of view. Inver-
sion of the PROSAIL model involved the identification of P that min-
imized each of these objective functions for each experimental unit.

2.7. Statistics

For proximal hyperspectral sensing to be useful in field-based
plant phenomics, metrics obtained from the data must demon-
strate differences among the treatments imposed and be repeat-
able (i.e., heritable). Different cultivars can then be identified and
selected as parents of breeding populations for development of
improved cultivars. Hierarchical linear mixed modeling was used
to assess differences among all data and metrics evaluated in this
study: field measurements, measured spectra, vegetation indices,
PLSR results, and estimates from PROSAIL model inversion. Culti-
var, water level, and their interaction were modeled as fixed
effects. Measurement date (Table 1) and its interaction with both
cultivar and water level were modeled as random effects. Replicate
plot, nested within measurement date and water level, was also
included as a random effect in the model. Hierarchical tests
required fitting random effects with (1) cultivar fixed effects alone,
(2) water level fixed effects alone, (3) both cultivar and water level
fixed effects, and (4) cultivar and water level fixed effects and their
interaction. Likelihood ratio tests were used to compare these hier-
archical models, which showed whether a given data set was dif-
ferent among cultivars, water levels, or their interaction. Tukey’s
multiple comparisons tests were also conducted to identify specific
cultivars that were different for a given measurement. Statistics
were computed using the “lme4” package within the R Project
for Statistical Computing software.

3. Results
3.1. Field measurements

Measured values for C,,Cp, Cg, and LAI ranged from 0.01 to
0.02 cm, 0.003 to 0.009 g cm 2, 26.0 to 59.0 pg cm 2, and 1.7 to
8.3, respectively, over all measurements collected (Fig. 1). Hierar-
chical linear mixed modeling revealed differences in all four mea-
sured plant traits among cultivars (p < 0.01, Table 3). Differences
in measured C,, and LAI were found among the water levels
(p < 0.05). The interaction of cultivar and water level was signifi-
cant for C,, and Cy, (p < 0.05). Results for measured C,, and C,, cor-
roborate the results of Carmo-Silva et al. (2012), who conducted an
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Fig. 1. Box plots for (a) leaf water content (C,,), (b) specific leaf mass (C,), (c) leaf chlorophyll a + b content (C,), and (d) leaf area index (LAI) for all measurements collected
for the 2010A, 2010B, 2011, 2012A, and 2012B data sets. Measurements were collected under well-watered (WW) and water-limited (WL) conditions for seven Pima cotton
cultivars: (A) Monseratt Sea Island, (B) P62, (C) 89590, (D) Pima32, (E) PSI425, (F) Pima S-6, and (G) Pima S-7.

independent analysis using data from the 2010 season only. Typi-
cally, the lowest and highest C,, were found for the Monseratt Sea
Island and P62 cultivars, respectively (Fig. 1a), and Tukey tests con-
firmed C, differences between P62 and both Monseratt Sea Island
and Pima S-6 for both WW and WL treatments (p < 0.05). For WL
conditions, C,, for Monseratt Sea Island was less than four other
cultivars: P62, 89590, PSI425, and Pima S-6 (p < 0.05). For WW
conditions, C, was lower for Monseratt Sea Island as compared
to P62 (p < 0.01, Fig. 1b). The C,, for P62 was greater than both
Monseratt Sea Island and 89590 (p < 0.05) for WW conditions,
but no C, differences were found among cultivars for the WL
treatment (Fig. 1c). With WW conditions, LAI for P62 was less than
that for five other cultivars: Monseratt Sea Island, Pima32, PSI425,
Pima S-6, and Pima S-7 (p < 0.10, Fig. 1d). Also, LAI for 89590 was
less than that for Monseratt Sea Island, Pima32, Pima S-6, and Pima
S-7 (p < 0.05). With WL conditions, LAI for P62 was less than that
for Monseratt Sea Island, Pima 32, and Pima S-6. Based on mea-
surements from five data sets, these results highlight the main dif-
ferences for measured traits among cultivars.

Proximal hyperspectral measurements of the cotton canopy fol-
lowed typical patterns for spectral reflectance of vegetation
(Fig. 2). Generally, scattering of near-infrared radiation led to
greater variability in reflectance from 760 to 1350 nm as compared
to the visible (400 to 700 nm) and shortwave infrared (1450 to
2400 nm) wavebands where chlorophyll and water, respectively,
absorb radiation. Results from hierarchical linear mixed modeling
demonstrated the wavebands with different reflectance values
among water levels and cultivars (p < 0.05, Fig. 3). Among culti-

vars, spectral reflectance differences were found in wavebands
from 400 to 725 nm, 1470 to 1800 nm, and 2000 to 2400 nm. Thus,
reflectance in the entire visible portion of the spectrum was differ-
ent among cultivars, likely due to effects of radiation absorption by
chlorophyll. Also, reflectance differences in two regions of the
shortwave infrared suggest effects of C,, or total plant water status.
A fewer number of wavebands demonstrated reflectance differ-
ences among water levels, and four main regions were identified:
528-569 nm, 667-736 nm, 1681-1785 nm, and 2153-2353 nm.
Wavebands around 550 nm suggested that water level affected
greenness of the canopy, while reflectance in the far red and red
edge bands were also affected. Reflectance differences in the short-
wave infrared bands again suggest effects of water level on plant
water status, as expected. Neither cultivar nor water level led to
differences in near-infrared reflectance, suggesting that other fac-
tors contributed to the variability in those wavebands. There were
also no significant cultivar by water level interaction effects on
reflectance.

3.2. Vegetation indices

Differences in broad-band NDVI from the spectroradiometer
were found for both the cultivar and water level treatments
(Table 3), demonstrating its robustness for proximal and remote
sensing applications in agriculture. Differences in broad-band
NDWI were also found among cultivar and water level treatments.
Thus, the NDVI and NDWI could collectively provide estimates of
both crop growth and water status. No differences in PRI were
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Table 3
Results of hierarchical linear mixed modeling for measured plant traits, vegetation
indices, and plant trait estimates from PLSR models and PROSAIL model inversion.*

Trait Cultivar Water level Interaction
P ©» P P

Measured Cy, 21.5 0.0015* 1.5 0.2176 152 0.0185°
Measured Cr, 27.2  0.0001" 4.7  0.0298 20.0 0.0028*
Measured Cg, 172 0.0085 2.3 0.1269 12.0 0.0625
Measured LAI 222 0.0011" 6.7 0.0097" 7.1 03131
Fieldspec NDVI 21.0 0.0019° 63 00118 44  0.6287
Fieldspec NDWI 22,5 0.0010"* 4.2  0.0410 8.5 0.2011
Fieldspec PRI 109 0.0930 0.6 04343 3.9 0.6959
Crop Circle NDVI  12.0 0.0613 44  0.0350" 55 04782
PLSR Cy 339 0.0000°" 55 0.0190 6.5 0.3729
PLSR Cp, 27.3  0.0001* 7.1  0.0078° 6.3 0.3871
PLSR Cgp 122 0.0575 132 0.0003* 20 09167
PLSR LAI 114 0.0779 6.6 0.0103" 11.8 0.0661
PS RMSE C,, 3.8 0.6978 1.1 0.2996 6.1 04154
PS RMSE Cp, 24.7  0.0004* 0.8 03664 11.1  0.0846
PS RMSE Cgp 10.9 0.0902 7.3 0.0067 7.9 02487
PS RMSE LAI 103 0.1118 2.2 0.1385 7.5 02739
PS RMSE N 33.9 0.0000" 36 0.0576 24 0.8786
PS RMSE 6, 103 0.1145 03 05744 6.3  0.3869
PS RMSE s 8.0 02410 34 0.0666 1.7 0.9457
PS o Cy 115 0.0746 0.6 04240 53 05013
PS o Cip 54 04925 6.9 0.0086" 6.8 0.3439
PS o Cyp 14.7 0.0226° 4.0 0.0460" 11.8 0.0669
PS o LAI 151 0.0191" 4.0 0.0451" 6.8  0.3415
PSa N 16.6 0.0111 0.0 09072 129 0.0444
PS o 0, 22,5 0.0010* 03 06145 50 05386
PSas 22.3  0.0011" 7.3 0.0070*" 4.6 0.5909

2 Chi square statistic, y?; hot spot size, s; leaf area index, LAI; leaf chlorophyll
a+ b content, Cyp; leaf inclination angle, 0;; leaf structural coefficient, N; leaf water
thickness, C,,; normalized difference vegetation index, NDVI; normalized difference
water index, NDWI; partial least squares regression, PLSR; physiological (or pho-
tochemical) reflectance index, PRI; probability value, P; PROSAIL canopy reflectance
model, PS; root mean squared error, RMSE; specific leaf mass, Ci;; spectral angle, o.
* p <0.05.

** p<0.01.
*** p < 0.001.
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Fig. 2. Cotton canopy spectral reflectance measurements for the 2010A, 2010B,
2011, 2012A, and 2012B data sets.

found among cultivars or water levels. Also, unlike NDVI from the
spectroradiometer, no differences in NDVI from the Crop Circle
sensors were found among cultivars. With a coefficient of determi-
nation (r?) of only 0.26 (not shown), the relationship between
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Fig. 3. Results of hierarchical linear mixed modeling for canopy spectral reflectance
from 400 to 2400 nm in 1 nm wavebands. Dark bands indicate different reflectance
values among cultivars or water levels (p < 0.05). There were no significant
interaction effects.

Fieldspec NDVI and Crop Circle NDVI was weak. This was likely
related to different fields-of-view, measurement heights, and light
sources among the two sensors. Effects of soil background in the
instrument field-of-view was likely more of an issue for the
tractor-mounted Crop Circle than for the hand-held
spectroradiometer.

Many of the narrow-band NDVI calculations were different
among cultivars (p < 0.05, Fig. 4). When NDVI was computed using
a waveband from 400 to 1350 nm and any other waveband, the
values often varied among cultivars (p < 0.05). An exception was
apparent when a red edge band was used with any band greater
than 1450 nm. Also, as shown in Table 3, the wavebands used for
PRI (i.e., 531 and 570 nm), which is itself a narrow-band NDVI,
did not lead to differences. Fewer differences among cultivars were
noted when NDVI was calculated using two wavebands greater
than 1970 nm. Fewer waveband combinations led to narrow-
band NDVI differences among water levels (Fig. 4). Notably, wave-
bands used for NDWI calculation (i.e., approximately 1240 and
858 nm) led to different narrow-band NDVI among water levels
(p < 0.05). Narrow-band NDVIs often did not demonstrate signifi-
cant cultivar by water level interactions, although significant inter-
action effects were more common when two wavebands in either
the near-infrared (i.e., 730-1000 nm) or shortwave infrared (i.e.,
1450-1770 nm) were used.

Linear regression models to estimate the measured crop pheno-
types from the vegetation indices were unfavorable compared to
PLSR models, discussed in the next section. None of the indices
could estimate C,,, C;y, Ca, and LAI with root mean squared errors
better than 9.6%, 16.9%, 14.2%, and 28.8%, respectively. Cross-
validated estimates from PLSR were better than the estimates from
linear relationships with vegetation indices. For LAI and Cg, this
result differed from that of Hansen and Schjoerring (2003), but
they compared narrow-band NDVI with PLSR and did not have
spectral reflectance measurements beyond 900 nm. Due to the lin-
ear nature of the regression models, another concern is that the
statistical results for traits estimated in this way (not shown) were
identical to that for the vegetation index itself (Table 3). Thus,
using linear regression to estimate traits from vegetation indices
did not provide any new information for hierarchical linear mixed
modeling.

3.3. PLSR modeling

The PLSR models developed from 1703 wavebands of canopy
spectral reflectance estimated C,,,Cp, Cg, and LAl with RMSECV
of 6.8%, 10.9%, 13.1%, and 18.5%, respectively (Fig. 5). Full spectrum
data reduced root mean squared errors between measured and
modeled phenotypes as compared to vegetation indices using
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Fig. 5. Modeled versus measured (a) leaf water content (Cy), (b) specific leaf mass (Cp), (c) leaf chlorophyll a + b content (Cg,), and (d) leaf area index (LAI). Modeled
estimates are from partial least squares regression (PLSR) models developed from measured canopy spectral reflectance data collected for the 2010A, 2010B, 2011, 2012A, and
2012B data sets. The root mean squared errors of cross validation (RMSECV) between measured and modeled values are provided.

reflectance in select wavebands. Additionally, the PLSR results
were cross-validated, so the PLSR models have been properly
tested with independent data.

Although the PLSR models provided better trait estimates than
other techniques, hierarchical linear mixed modeling results for
PLSR estimates were somewhat different than that for the field
measurements (Table 3). Whereas field-measured C,,, Ci,, Cg, and
LAI were all different among cultivars, the PLSR estimates were dif-
ferent only for C,, and C,, (p < 0.01). Also, whereas field measure-
ments were different among water levels only for C,, and LAI, the
PLSR estimates for all four traits were different among water levels
(p < 0.05). Thus, the PLSR technique led to different trait estimates
among cultivars and water levels, but the results did not always
corroborate results for the field-measured traits.

3.4. PROSAIL simulations

Most biophysical models like PROSAIL were not originally
designed with high-performance computing in mind. Thus, efforts
to use such models on supercomputers demonstrate what is pos-
sible with modern computing resources. Using the Fortran-
compiled PROSAIL model, which required hard disk access for
model input and output, 40 million simulations were completed
in 40.4 h for an average of 275 simulations per second. However,
when using the PROSAIL model compiled as a Python extension,
3.68 billion simulations were completed in 37.3 h for an average
of 27,395 simulations per second. Simulations could be multiplied
100 times by using a model that did not require hard drive
access.
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Storage requirements were also a concern for the PROSAIL sim-
ulation exercises. For trials with the Fortran-based PROSAIL model,
the overall job size was small enough to write simulated reflec-
tance data in 1703 wavebands to the hard disk. Using binary files
to write reflectance data as 4-digit integers, simulated data for
40 million PROSAIL runs required 136.4 GB of storage. Increasing
the job size to 3.68 billion would thus increase storage require-
ments to several TB, which exceeded allocation limits on Stam-
pede. Therefore, only the RMSE (Eq. (7)) and « (Eq. (8)) metrics
were stored for the larger job, which required only 36 GB. Deci-
sions like these are central to the design of supercomputing jobs
for models like PROSAIL.

3.5. PROSAIL model inversion

For the PROSAIL model inversion with the objective to minimize
RMSE between measured and simulated canopy spectral reflec-
tance in 1703 wavebands (Eq. (7)), Cy, Ci, Cap, and LAI were esti-
mated with RMSE of 37.6%, 31.1%, 16.6%, and 29.5%, respectively
(Fig. 6). When the objective was to minimize o between measured
and simulated canopy spectral reflectance (Eq. (8)), Cy, Cin, Cap, and
LAI were estimated with RMSE of 38.1%, 36.1%, 15.9%, and 28.2%,
respectively. Clearly, results from both objective functions were
inferior to that from PLSR models (Fig. 5). Discrepancies between
measured and simulated C,, suggested problems in how PROSAIL
simulated effects of leaf-level water content on canopy-level spec-
tral reflectance (Fig. 6a). Inversions with both objective functions
resulted in higher C,, than measured, and many optimum C,, esti-
mates were near the imposed upper bound of 0.02 cm (Table 2).
This effect did not occur when reflectance in 501 wavebands from
400 nm to 900 nm were used for PROSAIL model inversion. In this
case, RMSE between measured and simulated values dropped from
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38% to 23% (not shown). Thus, discrepancies in the near-infrared
wavebands above 900 nm and the shortwave infrared wavebands
(discussed below) likely drove the high error between simulated
and measured C,. This result highlights the potential for model
inversion outcomes to be affected by methodological choices. Esti-
mates of C,, based on minimum RMSE were often underestimated,
while C,,, based on minimum « were overestimated for all but a few
cases (Fig. 6b). With high RMSE and low correlation between mea-
sured and simulated values, C, and C, were the most difficult
parameters to estimate using PROSAIL model inversion.

Estimates of C,, from PROSAIL model inversion were more rea-
sonable (Fig. 6¢), although the RMSEs between measured and sim-
ulated C,, were still approximately 3% higher than that for the PLSR
model. Estimates of LAl were most problematic for values greater
than 6.0 (Fig. 6d). Measurement error is likely partially responsible
for this result, because LAl measurements were based on Crop Cir-
cle NDVI and canopy height according to Eq. (5). Some cultivars
reached over 1.5 m in height, but Eq. (5) was parameterized using
data from cotton with height less than 1.1 m. Thus, the higher LAI
“measurements” suffered from extrapolation issues. When remov-
ing the LAI values above 6.0 from the calculation, the RMSE
between measured and simulated LAI was still above 22% which
was 4% higher than that for the PLSR model with all data included.

When the objective was to minimize RMSE between measured
and simulated canopy spectral reflectance, the resulting deviation
between PROSAIL-simulated and measured spectral reflectance
was not greater than 0.05 at any wavelength (Fig. 7a). In fact, sim-
ulated reflectance could often be optimized to within 0.02 of mea-
sured reflectance for most wavelengths. This showed that the
inversion approach worked appropriately to find parameter values
that achieved the best fit between PROSAIL-simulated and mea-
sured canopy spectral reflectance. When measured values for
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Fig. 6. PROSAIL-simulated versus measured (a) leaf water content (C,), (b) specific leaf mass (Cp), (c) leaf chlorophyll a + b content (Cg), and (d) leaf area index (LAI).
Simulated estimates minimized the root mean squared error (O) or the spectral angle (X) between measured and PROSAIL-simulated canopy spectral reflectance for the
2010A, 2010B, 2011, 2012A, and 2012B data sets. Root mean squared errors between simulated and measured values are provided for both objective functions (RMSE-O and

RMSE-X).
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Cw, Cm, Cap, and LAI were then substituted for the values obtained
through PROSAIL model inversion, the resulting deviations
between PROSAIL-simulated and measured canopy spectral reflec-
tance (Fig. 7b) explain why PROSAIL model inversion had problems
producing accurate values for these parameters. Foremost, there
were greater positive deviations in reflectance from 1100 to
2400 nm. Thus, the model overestimated reflectance in these
wavebands when measured parameters were used. Also, there
were greater deviations, up to 0.13, in the near-infrared wavebands
from 750 to 1350 nm. These results could indicate errors in both
measurement and modeling, and improvements could focus in
the mentioned waveband intervals.

Plotting the ranked RMSE and o statistics for the top 1%
(200,000) of PROSAIL evaluations provided insights on equifinality
effects (Fig. 8). Results showed rapid departure from the minimum
function evaluation within the top 0.1% (20,000) of total model
evaluations. Deviations from the minimum function evaluation
were less variable for evaluations ranked greater than 20,000, indi-
cating greater equifinality effects with increasing evaluation rank.
The results suggest that model inversion identified a relatively
small fraction of parameter combinations with low RMSE and «
statistics and that equifinality was more problematic for parameter
combinations other than these. Parameter estimates for C,,, C,, Cap,
and LAI that better agree with measured values might be found
within the top 20,000 evaluations. However, equifinality renders
the model inversion less useful above 20,000 evaluations. Results
also showed that the o statistic offered better separation from
the minimum function evaluation as compared to the RMSE statis-
tic. Thus, equifinality was less problematic for « than RMSE, but
both statistics were able to identify 0.1% of evaluated parameter
combinations as top candidates. Remaining issues include (1)
understanding equifinality issues among these top candidates
and (2) addressing measurement and modeling errors to insure
estimated parameters are more accurate (Fig. 6).

Although PROSAIL model inversion estimated phenotypes with
less accuracy than other methods, many of the estimates differed
among the water level and cultivar treatments imposed during
the field studies (Table 3). Results were often inconsistent between
the objective functions used for model inversion, which further
highlighted the sensitivity of the inversion approach to method-
ological choices. Generally, more traits were different when the
objective was to minimize o rather than RMSE (p < 0.05). Overall
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Fig. 8. Deviation from the minimum value for ranked objective function evalua-
tions of root mean squared error (RMSE) and spectral angle (o) between measured
and PROSAIL-simulated canopy spectral reflectance. Results are shown for the
median value among model inversion exercises for 184 experimental units (all plots
for all five data sets).

results from PROSAIL model inversion were less accurate than that
for PLSR models, but differences were nonetheless noted in param-
eter values estimated by PROSAIL.

4. Discussion

While the differences among the C,, Ciy, Cgp, and LAl measure-
ments were apparent and biologically meaningful (Table 3), the
manual procedures used to quantify these crop phenotypes were
labor intensive and time consuming. Though practical here for 4
replications of 5 or even 25 cultivars, obtaining these measure-
ments for 1000 or 10,000 cultivars would amplify labor require-
ments greatly. Major bottlenecks include labor requirements for
collecting and processing leaf samples as well as time required
for chemical extraction of C, and oven drying to obtain C,, and



K.R. Thorp et al./Computers and Electronics in Agriculture 118 (2015) 225-236 235

Cn. Thus, proximal or remote sensing metrics that are able to dis-
criminate these crop phenotypes are essential for practical scaling
of field-based plant phenomics experiments.

High-throughput approaches are needed for collection of field-
based proximal hyperspectral data. Time was the main limiting
factor for the manual approaches used in the present study. Six
to twelve scans were collected in each of 40 experimental plots
in roughly 1.75 h. This provided data for only one-fifth of the cot-
ton cultivars grown in this relatively small study of 25 Pima lines.
For larger studies with thousands of lines, high-throughput capa-
bility is a necessity. The averaged spectra for each experimental
plot were also highly variable in the near-infrared wavebands
(Fig. 2), indicating perhaps that more scans per plot were needed
to ensure that spectral reflectance of both sunlit and shaded por-
tions of the canopy were adequately characterized. This is impor-
tant because of the bidirectional reflectance distribution function
(BRDF) of the crop canopy, which defines how canopy reflectance
properties change with solar and viewer geometry. Because pas-
sive spectroradiometers use solar irradiance as the light source, a
high-throughput platform for such sensors must also collect data
rapidly. This ensures that BRDF effects on canopy spectral reflec-
tance among experimental units are minimal for a given data set.
Use of an active field spectroradiometer with its own light source
could be another strategy for minimizing BRDF effects, but the
authors know of no such instrument for field-based proximal sens-
ing at this time. Finally, a high-throughput platform should enable
canopy spectral reflectance measurements from multiple view
angles. This would permit better characterization of BRDF effects
and would provide more data to constrain PROSAIL model inver-
sion. A high-throughput sensing platform capable of collecting
much more than 12 spectral scans from a 8.8 m cotton row at mul-
tiple view angles in a few seconds would be ideal for field-based
plant phenomics applications. To multiply efforts, sensing units
with these characteristics could be distributed along a tractor
boom or gantry system or perhaps mounted on a fleet of
unmanned aerial systems.

To minimize BRDF impacts on canopy reflectance measure-
ments, passive reflectance sensing is often restricted to times near
solar noon. In central Arizona in August, this strategy provides two
hours from 11:30 to 13:30 when the solar zenith angle does not
change by more than 5°. Another strategy is to maintain constant
BRDF effects for spectral data collected over an entire growing sea-
son. For cotton in Arizona, spectral measurements around the time
of a 45° solar zenith angle permits data collection with similar
BRDF characteristics from April to September. In the present study,
the goal was to collect spectral measurements concurrently with
measurements of C,. Because prior studies demonstrated the
dynamic diurnal response of C, and greater C,, variability among
experimental treatments in the morning (Carmo-Silva et al,
2012), canopy spectral reflectance measurements were primarily
collected in the hours before and after solar noon (Table 1). Con-
current spectral measurements with dynamic C, was deemed
more important than strict adherence to data collection at solar
noon, although the average solar zenith during spectral measure-
ments was 42°, similar to the 45° angle required for constant BRDF
effects over a cotton season. Crop phenotypes that undergo
dynamic diurnal changes could require a departure from tradi-
tional passive reflectance sensing techniques that restrict data col-
lection to solar noon. If the optimum time for monitoring a given
phenotype occurs while canopy spectral reflectance changes more
rapidly due to BRDF effects, efforts must focus on understanding
these BRDF effects and on designing sensors and sensing protocols
that either characterize or minimize them. For example, multiple
view angles assist with BRDF characterization while rapid spectral
data collection minimizes illumination changes among experimen-
tal units.

The PROSAIL model offers several advantages for field-based
plant phenomics, including its ability (1) to simulate BRDF effects
on canopy spectral reflectance and (2) to estimate phenotypes
from canopy spectral reflectance data alone. This study was limited
to spectral reflectance measurements from a nadir view angle,
which likely limited efforts to estimate phenotypes using PROSAIL
model inversion. Data from multiple view angles should provide
more information to constrain PROSAIL, leading to better esti-
mates. There were also many methodological choices that
impacted the PROSAIL model inversion results, including the
selected wavebands and the objective function. Future efforts
should explore these issues in greater detail. For example, with
high-performance computing capabilities, a large database of PRO-
SAIL simulations could be generated and permanently stored. Mul-
tiple measurement sets of a large mapping population over
multiple years and locations could then be inverted using the same
database. Also, the data could be used to develop confidence
regions within the parameter space, which would assist with
parameter identification and equifinality issues.

As compared to PROSAIL model inversion, methods involving
linear regression on vegetation indices and PLSR on canopy spec-
tral reflectance were able to better quantify crop phenotypes. At
this time, these methods remain the most practical approach for
crop phenotyping based on canopy spectral reflectance. A main
drawback of the regression approaches is that field measurements
of each phenotype are required for model fitting. A practical
approach for field phenomics may be to directly measure pheno-
types for selected experimental plots and to measure canopy spec-
tral reflectance over all plots using a high-throughput sensing
platform. Data from plots with both types of measurements could
be used for building regression models, which would subsequently
be applied to estimate phenotypes for all experimental units.

5. Conclusions

Proximal hyperspectral sensing offers a wealth of information
for characterizing reflectance from crop canopies and should be a
fundamental component of field-based plant phenomics programs.
This study showed that PLSR modeling was the most robust
method for estimating C,,, C;y, Cap, and LAI from canopy spectral
reflectance data. Vegetation indices computed from selected wave-
bands, including NDVI, NDWI, and PRI, were informative but could
not estimate phenotypes as well as PLSR. With improvements to
the PROSAIL model and ability to rapidly collect spectral reflec-
tance data from multiple view angles, model inversion for crop
phenotyping may become more practical. In the meantime, further
investigations are needed to improve PROSAIL model inversion
strategies and to address related equifinality issues. High-
performance computing offers much potential for these efforts
and for overall advancements in the use of biophysical models
for agricultural applications.
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