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USDA-ARS Biochar and Pyrolysis Initiative

GRACEnet Project (30 locations): Greenhouse Gas Reduction and Carbon Enhancement Network

REAP Project (24 locations): Renewable Energy Assessment Project

Biochar and Pyrolysis Initiative (15 locations)

Ongoing field plot trial (6 locations)

Multi-location USDA-ARS research efforts:



Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered a “undesirable side product” 
(Titirici et al., 2007)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Charcoal production

(15th century)



Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered an “undesirable side product” 
(Titirici et al., 2007)

What is new

The use (or purpose) for the creation of 
charred biomass:

Atmospheric C sequestration

Dates to 1980’s and early 2000’s 
(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Climate Change Mitigation

(1980’s)

Charcoal production

(15th century)

Biochar: New purpose not a new material



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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Problem  Lack of nomenclature uniformity (Jones et al., 1997)

Adapted from Hedges et al., 2000; Elmquist et al., 2006



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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Complete new structure Retains relic forms of parent material
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Biochar – Spans across multiple divisions in the Black C Continuum

However, biochar is NOT a new division…

Adapted from Hedges et al., 2000; Elmquist et al., 2006

Biochar



Biochar Stability: C-Sequestration ?

Over a 100 year history of research

Potter (1908) – Initial observation of 
fungi/microbial degradation of lignite (low grade coal/charcoal)

Biochar Degradation Study Residence Time (yr)

Baldock and Smernik (2002) 100-500

Bird et al. (1999) 50-100

Cheng et al. (2008) 1000

Forbes et al. (2006) Millennia based on C-dating

Hamer et al. (2004) 40 (charred straw residue)

80 (charred wood)

Hammes et al. (2008) 200-600 

Harden et al. (2000) 1000-2000 

Liang et al. (2008) several centuries to millennia

Lehmann et al. (2006) 100’s 

Middelburg et al. (1999) 10,000 to 20,000

Steinbeiss et al. (2009) <30  

Swift (2001) 1,000-10,000

Zimmerman (2010) 100’s to >10,000



Possible Stability Explanation O:C Ratio

Summary of existing literature studies (n=35) on half-life estimation of biochar  [Figure from Spokas (2010)]
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Proposed Biochar Mechanisms

1. Alteration of soil physical-chemical properties

 pH, CEC, decreased bulk density, increased water 
holding capacity

2. Biochar provides improved microbial habitat

3. Sorption/desorption of soil GHG and nutrients

4. Indirect effects on mycorrhizae fungi through 
effects on other soil microbes

 Mycorrhization helper bacteria  produce 
furan/flavoids beneficial to germination of fungal 
spores

Warnock et al (2007) 



Laboratory Incubations

• We know when we are sick….

Fever, aches, pains..…

• How about for soil microbes:

• Look at their “products” – e.g. CO2, CH4, N2O 

• Implications on the rates of reaction 

and amount of gases produced

•Provide clues into the mechanisms



Biochar impacts on Soil Microbes & N Cycling

 44 different biochars evaluated

 11 different biomass parent materials

 Hardwood, softwood, corn stover, corn cob, 

macadamia nut, peanut shell, sawdust, algae, 

coconut shell, turkey manure, distillers grain 

 Represents a cross-sectional sampling of 
available “biochars”

 C content 1  to 84   %

 N content 0.1 to 2.7  %

 Production Temperatures 350 to 850 oC

 Variety of pyrolysis processes

 Fast, slow, hydrothermal, gasification



Laboratory Biochar Incubations

Soil incubations:

Serum bottle (soil + biochar)

5 g soil mixed with 0.5 g biochar 

(10% w/w) [GHG production]

Field capacity and saturated 

Oxygen & soil sterilization effects

Mason Jar (soil + biochar/isolated)

Looking at impact of biochar 

without mixing with soil



Ethylene
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Oxygen and Soil Sterilization Impacts

Macadamia nut biochar presented above



Biochar isolated or mixed with soil
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Ethylene Impacts

Soil Microbial Impacts

Induces fungal spore germination

Inhibits/reduces rates of nitrification/denitrification

Inhibits CH4 oxidation (methanotrophs)

Involved in the flooded soil feedback 

Both microbial and plant (adventitious root growth)
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Closer 
look at N-

cycling
(hardwood sawdust biochar)
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Brief Overview of N-cycle
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Putting the pieces together: Not quite a full picture yet…
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Ethylene Production

•Ethylene could provide a mechanism behind reduced 

nitrification/denitrification activity

•Clough et al. (2010) also hypothesized that -pinene 

could be involved as a nitrification inhibitor

 -pinene observed as volatile from vegetation 

 involved in insects’ chemical communication 

system

•Despite the different chemicals – Same hypothesis: 

Chemical inhibitors behind the suppression of N2O 

production
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Impact of Biochar Volatiles in Soils

• Volatile organic compounds can interfere with microbial processes

• Terpenoids – interfere with nitrification [Amaral et al., 1998; White 1994]

• Furfural + derivatives – inhibits microbial fermentation & nitrification (Couallier et al., 

2006; Datta et al. 2001)

• Benzene, Esters – Also inhibit microbial reactions

• Still ongoing and developing research area in the plant/microbe research area

• Alterations in VOC content could be sensitive indicators of soil 
conditions (Leff and Fierer, 2008).

• Sorbed BC volatiles could interfere with microbial signaling 
(communication): Releasing or sorb signaling compounds



Conclusions

• Another piece to the puzzle: Ethylene + sorbed VOC’s

– Sorbed volatiles and degradation products (ethylene) should be included in 
the potential biochar mechanisms

– Microbial inhibitors – Could also explain plant effects

 Reduction in N2O production : Consequence of sorbed volatiles impacting the 

nitrification process 
 Accumulation of NH+

4 and decreased NO-
3 production

 Length of impact ? 

 No absolute “Biochar” consistent trends: Highly variable and different responses 

to biochar as a function of soil ecosystem (microbial linkage) & position on black 

carbon continuum:
Typically:

 Reduced basal CO2 respiration

 Reduced CH4 oxidation activity

 Reduced N2O production activity

 Reduced NO3 production (availability) 

 Increased extractable NH4 concentrations

 Exceptions DO EXIST
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“The Nation that destroys its soil destroys itself”

Franklin D. Roosevelt


