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RESEARCH

Stem rust, caused by the fungus Puccinia graminis Pers. f. sp. 
tritici Ericks (Pgt), is one of the most damaging diseases of 

wheat (Triticum aestivum L.), dating back at least 3300 yr (Kislev, 
1982; Chaves et al., 2013), and can cause disease epidemics in all 
wheat growing regions of the world (Roelfs, 1985; McIntosh and 
Brown, 1997). Rust pathogens have the ability to evolve within a 
short period of time to overcome plant resistance. A recent exam-
ple is the emergence of the highly virulent Pgt race TTKSK (also 
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ABSTRACT
Stem rust, caused by the fungus Puccinia 
graminis Pers. f. sp. tritici Ericks, is one of the 
most damaging diseases of wheat (Triticum 
aestivum L.). The recent emergence of the stem 
rust Ug99 race group poses a serious threat to 
world wheat production. Utilization of genetic 
resistance in cultivar development is the optimal 
way to control stem rust. Here, we report asso-
ciation mapping of stem rust resistance in a 
global spring wheat germplasm collection (2152 
accessions) genotyped with the wheat iSelect 
9K single-nucleotide polymorphism array. Using 
a unified mixed model method (or QK method), 
we identified a total of 47 loci that were sig-
nificantly associated with various stem rust 
resistance traits including field disease resis-
tance and seedling resistance against multiple 
stem rust pathogen races including BCCBC, 
TRTTF, TTKSK (Ug99), and TTTTF. The 47 loci 
could be further condensed into 11 quantita-
tive trait locus (QTL) regions according to link-
age disequilibrium information among adjacent 
markers. We postulate that these QTLs repre-
sent known stem rust resistance genes includ-
ing Sr2, Sr6, Sr7a, Sr8a, Sr9h, Sr13, Sr28, and 
Sr36. We further employed a multilocus mixed 
model to explore marker-trait associations and 
identified two additional QTLs (one potentially 
represents Sr31) that were significantly associ-
ated with stem rust resistance against various 
races. Combinations of the most significant 
loci for each trait explained up to 38.6% of the 
phenotypic variance. Markers identified through 
this study could be used to track the genes or 
QTLs. Accessions with high numbers of resis-
tance-associated alleles may serve as impor-
tant breeding materials for stem rust resistance.
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known as Ug99) and related races in East Africa ( Jin et 
al., 2008; Newcomb et al., 2016). The Ug99 race group 
can infect ~90% of the world’s currently grown wheat 
acres and poses a serious threat to world wheat production 
(Singh et al., 2011; Singh et al., 2015). The most economi-
cal and environmentally sustainable way to control stem 
rust is through the development of resistant wheat variet-
ies. So far, >60 genes conferring resistance to stem rust 
have been characterized and named (McIntosh et al., 1995; 
McIntosh et al., 2013; Yu et al., 2014). Many of these genes 
are race specific, meaning that the resistance they confer 
could become ineffective within a short period of time as 
a result of the frequent emergence of more virulent races 
of the pathogen. Gene pyramiding of multiple resistance 
genes might prove to be more durable (Mago et al., 2010).

In recent years, quantitative trait locus (QTL) map-
ping and tagging major genes with DNA markers have 
resulted in new tools for rust resistance breeding. Single-
nucleotide polymorphisms (SNPs) have become a reliable 
choice for enriching genetic maps and developing mark-
ers for marker assisted selection (MAS) (Semagn et al., 
2014). The use of high-density SNP markers to charac-
terize resistance alleles in breeding populations provides 
breeders with a set of tools to conduct MAS and enhance 
the development of resistant varieties. One way to effi-
ciently characterize resistance alleles in diverse germplasm 
is through association mapping (AM), also known as link-
age disequilibrium (LD) mapping (Zhu et al., 2008). The 
rapid advancement of high-density marker platforms as 
well as AM model improvements have made genomewide 
association studies (GWAS) a powerful tool for character-
izing marker-trait relationships. The resulting SNPs from 
GWAS analysis could potentially be used to develop mark-
ers with diagnostic haplotypes for target genes. Accessions 
with a high number of favorable alleles could be directly 
used as potential sources of disease resistance in breeding 
programs. Moreover, with recent advances in molecular 
breeding, the SNPs discovered with GWAS could poten-
tially be incorporated into genomic selection models to 
accelerate crop trait prediction and selection (Rutkoski et 
al., 2011, 2012; Spindel et al., 2015, 2016).

Various successful GWAS analyses on wheat rust 
resistance have been conducted (Bajgain et al., 2015b; 
Maccaferri et al., 2015; Bulli et al., 2016; Gao et al., 
2016; Turner et al., 2016b). Multiple GWAS studies have 
assessed stem rust resistance in the International Maize 
and Wheat Improvement Center germplasm (Crossa et al., 
2007; Yu et al., 2011, 2012). Zhang et al. (2014) employed 
mostly simple sequence repeat markers to detect stem rust 
resistance alleles in a collection of US winter wheat and 
identified loci potentially representing stem rust resistance 
genes Sr6, Sr24, Sr31, Sr36, Sr38, and Sr1RSAmigo. Bajgain 
et al. (2015b) employed the recently available wheat 90K 
SNP chip to identify resistance loci in a collection of North 

American spring wheat breeding lines and cultivars and 
detected genes Sr2, Sr7a, Sr8a, and Sr11, as well as other 
potentially novel loci. Similarly, GWAS of wheat stem 
rust resistance has been completed for Canadian wheat 
germplasm (Singh et al., 2013). However, to the best of 
our knowledge, no GWAS study has been conducted for 
stem rust resistance in a global spring wheat germplasm 
collection with entries from all major wheat growing 
regions. In addition, most of the AM studies for rust resis-
tance primarily employed the QK method, a mixed model 
that accounts for both population structure (Q) and kin-
ship (K) within populations (Zhang et al., 2014; Bajgain 
et al., 2015b; Maccaferri et al., 2015). All associations 
in QK analysis are based on single marker tests. Segura 
et al. (2012) suggest that the multilocus mixed model 
(MLMM) could outperform the QK method, especially 
for traits controlled by several large effect loci. Compared 
with single marker analysis, MLMM analysis could lead 
to higher power and lower false discovery rates by factor-
ing (causative) genomewide loci into stepwise regression 
analysis (Segura et al., 2012).

The current study includes an approximately 10-fold 
greater number of breeding lines than previous stem rust 
AM studies (Yu et al., 2011, 2012; Zhang et al., 2014; 
Bajgain et al., 2015b). This larger population studied 
could potentially boost our power to detect rare resis-
tance alleles. The goals of this study were to characterize 
the stem rust resistance alleles present in a global spring 
wheat collection, and to identify novel stem rust resistance 
loci that could potentially be used in molecular breed-
ing efforts. We also explored the use of the more recent 
MLMM model for detecting marker-trait associations. 
This study is expected to broaden our understanding of 
stem rust resistance and assist breeders in developing wheat 
cultivars with effective and durable stem rust resistance.

MATERIALS AND METHODS
Plant Materials
As part of the Triticeae Coordinated Agricultural Project, 3042 
spring wheat accessions were assembled by the USDA-ARS 
Small Grains and Germplasm Research Unit. Of these acces-
sions, 2188 were genotyped using the wheat iSelect 9K SNP 
array (Cavanagh et al., 2013). After quality filtering on the basis 
of 9K genotyping results (see genotyping section for details), 
a total of 2152 accessions were retained for subsequent analy-
sis. The 2152 accessions represented a worldwide collection of 
spring wheat from 108 countries located in four continents: 
Europe (22.1%), Asia (33.5%), Africa (20.1%), and the Americas 
(21.8%). The GWAS panel was composed of 489 breeding lines, 
422 cultivars, 383 cultivated materials, 9 genetic stocks, and 
849 landraces (Supplemental Table S1).

Stem Rust Phenotyping
The 3042 accessions were grown under greenhouse conditions 
and inoculated after full emergence of the primary leaf 7 to 10 d 
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3D2, and 3D3), 5D (5D1cult [reversed], 5D2cult, and 5D3cult) 
and 6D (6D1 and 6D2 [reversed]). A final version of the modi-
fied 9K consensus map used in this study, as well as comparisons 
with the wheat 90K map and IWGSC contigs based on BLAST 
hits, are listed in Supplemental Table S2.

We also genotyped our GWAS panel using known markers 
linked to Sr2, Sr36, and Sr28. Two Kompetitive allele specific 
polymerase chain reaction (KASP) assays wMAS000005 (Sr2) 
(Mago et al., 2011) and wMAS000015 (Sr36) (MAS Wheat, 
2016), along with an agarose gel based marker WSUSr28 for 
Sr28 (forward: ACCCCATTTGGCAGGTGAAA, reverse: 
TTCGACGAATCCACAAGGCA, with resistant allele prod-
uct of 500 bp and susceptible allele product of 400 bp; Bajgain 
et al., 2015b), were used in the genotyping. The approximate 
positions of Sr36 and Sr28 were estimated at 70 and 240 cM on 
chromosome 2B based on published studies (Tsilo et al., 2008; 
Babiker et al., 2017). To illustrate, IWB55504, a 90K SNP 
marker (not included in 9K consensus map) associated with Sr28 
(Babiker et al., 2017), is located at 134.5 cM on the 90K map 
(Wang et al., 2014). We can estimate the equivalent 9K position 
to be around 240 cM based on the collinear 9K and 90K rela-
tionships established in Supplemental Table S2. The differences 
of 9K and 90K positions are due to scaling differences. This 
study adopted the modified 9K consensus map positions (Sup-
plemental Table S2; Cavanagh et al., 2013) instead of the 90K 
map positions, since the published 90K map (Wang et al., 2014) 
did not incorporate all of the 9K loci into consensus order. The 
recently developed KASP assay for Sr28 (Babiker et al., 2017) 
was not available at the time when our experiments were per-
formed. Gene Sr2 is located at ~15 cM on 3B in the 9K map. 
The markers wMAS000005, wMAS000015, and WSUSr28 
were used as positive controls in our GWAS analysis and were 
not subject to minor allele frequency filtering steps.

Population Structure, Kinship, and Linkage 
Disequilibrium Analysis
To obtain highly informative and nonredundant SNPs for pop-
ulation structure analysis, the SNP marker data were pruned 
using PLINK software v1.9 (Purcell et al., 2007). The com-
mand line option for pruning was “–indep-pairwise 100 5 
0.2.” A total of 1532 markers were retained after pruning. The 
pruned set of SNPs were used for population structure (Q) anal-
ysis using a model-based clustering method in STRUCTURE 
v2.3.4 (Pritchard et al., 2000) and a principal component anal-
ysis (PCA) method in R. The PCA plots were color coded 
according to STRUCTURE results of membership assign-
ments. For the model-based structure analysis, a total of 10 
independent runs were conducted for each specified K (number 
of subpopulations), with 25,000 burn-in length and 50,000 
Markov chain Monte Carlo iterations. The most likely number 
of clusters (K) was chosen based on the DK method (Evanno 
et al., 2005), implemented in a web-based informatics tool 
“Structure Harvester” (Earl and vonHoldt, 2012). CLUMPP 
( Jakobsson and Rosenberg, 2007) software v1.1 was used to 
consolidate STRUCTURE runs to derive the Q matrix used 
in AM. A kinship matrix (K) for line relatedness was calculated 
in TASSEL (Bradbury et al., 2007) according to the scaled (or 
centered) identity-by-state method using the whole set of SNP 
markers that passed quality filtering. Pairwise marker LD was 

after, planting according to Rouse et al. (2011), in five indepen-
dent tests of Pgt races BCCBC (isolate 09CA115-2), TRTTF 
(06YEM34-1), TTKSK (Ug99, 04KEN156/04), TTTTF 
(01MN84A-1-2), and a race mixture using six US Pgt races 
also used in field inoculations: MCCFC (59KS19), QFCSC 
(06ND76C), QTHJC (75ND717C), RCRSC (77ND82A), 
RKQQC (99KS76A), and TPMKC (74MN1409). Readers 
are referred to a list of publications discussing the virulence 
and avirulence formulae of these isolates, including recently 
emerged Pgt races and their variants (Rouse et al., 2011; Olivera 
et al., 2012; Singh et al., 2015; Bhattacharya 2017).

Seedling infection types (IT) were scored 12 to 14 d after 
inoculation according to the 0-to-4 scale developed by Stakman 
et al. (1962). The phenotype data were converted to a linearized 
0-to-9 scale using a custom Perl script (Gao et al., 2016).

For the field studies, the accessions were planted in single 
rows in the field and inoculated with the Pgt race mixture (see 
above) ~1 mo after planting when the entries started to tiller 
(Feekes Growth Stage 2–3) (Large 1954). Phenotyping was 
conducted ~1 mo after inoculation. Disease severity and infec-
tion response were recorded according to Rouse et al. (2011) 
in four different years (2011–2014) at one location (St Paul, 
MN). For the first and fourth year, only about half of the 2152 
accessions (982 for Year 1 and 1170 for Year 4) were evalu-
ated, since the Triticeae Coordinated Agriculture Project panel 
was expanded in 2012. The phenotypic data were converted to 
three measures (severity, infection response, and coefficient of 
infection [COI]) using a separate custom Perl script designed 
for field data conversion (Gao et al., 2016). The field phenotypic 
values were further adjusted based on a mixed linear model, 
with environments as random effects, and genotypes as having 
fixed effects. Best linear unbiased estimates (BLUEs), calculated 
using the “lme4” package of the open source statistical language 
or software environment R (R Core Team 2015) were used to 
represent genotype performance across different environments. 
Estimated stem rust disease phenotypes for 2152 accessions are 
listed in Supplemental Table S1.

DNA Extraction, Genotyping Platform,  
and Reference Linkage Maps
Genomic DNA was extracted from seedling plants using 
the cetyl trimethylammonium bromide (CTAB) method as 
described in Maccaferri et al. (2015) and genotyped with the 
Illumina’s iSelect 9K SNP array at the USDA-ARS Biosciences 
Research Laboratory in Fargo, ND. Out of the 2188 accessions, 
2152 were retained for GWAS after removing accessions with 
>10% missing data. A total of 6223 SNP markers were retained 
for GWAS after filtering based on minor allele frequency 
(³0.05) and missing data percentage (£10%). For map positions 
of the filtered SNPs, we used the published consensus map for 
the wheat 9K SNP array (Cavanagh et al., 2013) with reversed 
orientations of chromosomes 4A, 5A, and 5B, as reported in 
Maccaferri et al. (2015). Additionally, based on comparative 
alignment to the published wheat 90K SNP map (Wang et 
al., 2014) and Basic Local Alignment Search Tool (BLAST+ 
command line version 2.2.28) hit information on International 
Wheat Genome Sequencing Consortium (IWGSC) reference 
genome contigs (Consortium 2014), we joined fragmented link-
age groups with a spacing of 20 cM for linkage groups 3D (3D1, 
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also calculated using TASSEL v4.3.13. The LD decay curves 
were fitted for each subgenome (A, B, or D) separately using 
a locally weighted polynomial regression (LOESS) function in 
R. Similar to previous studies (Pasam et al., 2012, Gao et al., 
2016), here we used a LD r2 value of 0.2 as a critical level for 
defining LD decay.

Marker-Trait Association Analysis Based on 
Mixed Linear Mmodels, Generalized Linear 
Mmodels with Population Structure as a 
Covariate, and a Multilocus Mixed Model 
Approach
To examine the genetic basis of stem rust resistance in this panel, 
a QK-based unified mixed linear model was first applied with 
population structure estimates (Q) included as fixed effects and 
kinship (K) as random effects (Yu et al., 2006). Additionally, the 
use of a generalized linear model was investigated with a popu-
lation structure adjustment (QGLM) method using TASSEL 
v4.3.13 (Bradbury et al., 2007). The model components for QK 
analysis were previously described (Bernardo, 2010; Gao et al., 
2016). The MLMM (Segura et al., 2012) was then applied using 
a set of R functions (MLMM software, 2012) open sourced by 
Segura et al. (2012). This method applies a stepwise MLMM 
regression in structured populations (kinship and population 
structure can be accounted simultaneously). The maximum 
number of steps of MLMM analysis was set at 10. Optimal results 
of MLMM were determined based on Bonferroni corrections.

Marker-trait association test p-values, R2, and marker 
effects were extracted from TASSEL runs or MLMM analysis. 
For multiple test correction of QK results, we first explored the 
use of simpleM method (SimpleM software, 2008) (Gao et al., 
2008, 2010, 2016; Hirsch et al., 2014) to denote significance of 
marker-trait associations. Stepwise regressions (Cantor et al., 
2010; Gao et al., 2016) were performed on loci detected based 
on the simpleM threshold. However, to be consistent in mul-
tiple test correction methods between different models (QK vs. 
MLMM), we later adopted the Bonferroni method (0.05/6226 
= 8.03 ´ 10−6) to denote significance of marker-trait associa-
tions. The R2 values from LD analysis were used in conjunction 
with genetic distances to assign cosegregating or adjacent sig-
nificant markers into a unique QTL block.

QTL-Tagging SNPs, Multiple Regressions, 
and Gene Postulations
The most significant marker for each LD block or QTL region 
was selected to represent each QTL. Resistance-associated 
allele frequencies in the GWAS population or subpopulations 
were counted for the most significant markers of each QTL 
region. The multiple regression method was further employed 
to calculate combined effects (or the percentage of variation 
explained) of multiple markers (QTLs). Loci postulations were 
conducted primarily based on marker positions (including 
BLAST hit contig arm assignments) and existing knowledge of 
IT patterns for different Pgt races.

RESULTS
Population Structure Analysis
The 2152 accessions used for GWAS analysis in this study 
were composed of breeding lines, cultivars, cultivated 
lines, genetic stocks, and landraces from 108 countries 
(Fig. 1). The model-based structure analysis revealed that 
the panel can be divided into two subpopulations based on 
the Evanno DK method. Whereas most of European and 
American accessions were grouped into Subpopulation 1, 
Subpopulation 2 consisted of accessions predominantly 
from Iran and India, with few accessions from other Asian 
and African countries. (Fig. 1 and 2). The presence of two 
subpopulation groups in the panel was also confirmed by 
PCA, suggesting that the use of a QK model with either 
PCA or Q as a covariate is expected to produce consistent 
results, as previously revealed in a similar study (Gao et 
al., 2016). In this study we used the Q2 matrix from the 
model-based population structure analysis for correcting 
population structure in GWAS analysis.

Seedling and Field Stem Rust Disease 
Phenotypes
The responses of seedling plants to single Pgt races were 
generally skewed toward susceptible types (Fig. 3). A 
higher frequency of resistant or immune accessions (>300) 
were observed for response to race BCCBC (Fig. 3). The 
field response of adult plants to the Pgt race mixture (as 
measured by percentage severity and COI) showed near-
normal distributions (Fig. 3). The phenotypic correlations 
among various field and seedling phenotypes are sig-
nificant, with race TTKSK as the exception (Table  1). 
Seedling responses to race TTKSK had lower correla-
tions with responses to other races (Table 1). Among the 
three field traits (BLUEs for infection response [it.BLUE], 
stem rust field severity [sev.BLUE], and COI [coi.BLUE]), 
the field infection response type (it.BLUE) has the high-
est correlations to seedling ITs (R = 0.59 for race.mix-it.
BLUE [linearized seedling rust scores in response to race 
mixture inoculations and adult plant response type in 
the field] and R = 0.6 for BCCBC-it.BLUE [linearized 
seedling rust scores in response to race BCCBC and adult 
plant response type in the field] (Table 1).

Correlation and heritability analysis for field stem rust 
disease phenotypes revealed that the year-to-year correla-
tions for adult plant stem rust traits were highly significant 
(p < 2.2 ´ 10−16) and the heritability values for these traits 
were fairly high. The Pearson’s correlations are 0.61, 0.68, 
and 0.71, and the heritability values are 0.82, 0.84, and 
0.89 for the three traits (severity, COI, and IT), respec-
tively. These values are comparable with those for stripe 
rust (caused by Puccinia striiformis Westend.) GWAS studies 
on global spring or winter wheat germplasm collections 
(Maccaferri et al., 2015; Bulli et al., 2016).
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Genomewide Marker Coverage and Linkage 
Disequilibrium
After quality filtering, a total of 6226 markers were 
retained for GWAS analysis. These markers spanned a 
genetic distance of 3603 cM based on the modified 9K 
consensus map (Supplemental Table S2). The average 
number of markers per centimorgan was 1.99 and 2.12 for 
the A and B genomes, respectively. In contrast, the aver-
age number of markers for the D genome was 0.42 cM−1 
(or one marker every 2.4 cM). Though the D genome 

Analysis of variance and multiple test comparison 
analysis of sev.BLUE revealed that the breeding lines and 
genetic stocks displayed the highest rust resistance levels 
(26.4 on a 0–100 scale), followed by cultivars (35.4), 
landraces (38.6), and cultivated materials (41.4). Within 
each subpopulation, however, the differences between 
cultivars and landraces were not statistically significant 
based on Tukey’s honest significant difference test. Con-
sistent results were also observed for it.BLUE and coi.
BLUE traits.

Fig. 1. Country-specific distributions of population structure subgroups of the worldwide panel of 2152 spring wheat accessions. Pie 
charts show the percentage subpopulation (sub.pop) compositions for given countries.

Fig. 2. (a) Four major continental origins of accessions used in this study, visualized in red (Africa), blue (America), green (Asia), and 
yellow(Europe) colors for each subpopulation (sub.pop). Most of European and American accessions belong to Subpopulation1, whereas 
more than half of Subpopulation 2 consists of accessions collected from Asia with some from Africa. (b) Two subpopulations derived from 
Structure v2.3.4 analysis, visualized (red and blue) on principal component (PC) analysis plot.
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Fig. 3. Disease distributions for field and seedling traits. (a–c) Field disease distributions measured by percentage severity, coefficient of 
infection, and linearized (0–1) infection response type (see Gao et al. 2016 for details on conversions). (d) Seedling disease distributions for 
the race mixture. (e–h) Seedling response distributions for single races: BCCBC, TRTTF, TTTTF, and TTKSK. The phenotype distributions 
in response to single races are skewed toward susceptibility (with BCCBC as a possible exception, with additional frequencies for 
immune types). sev.BLUE, best linear unbiased estimate of stem rust field severity; coi.BLUE, best linear unbiased estimate of stem rust 
field coefficient of infection trait; it.BLUE, best linear unbiased estimate of stem rust field infection response trait.

Table 1. Correlations among field and seedling stem rust phenotypes. Diagonal lower left side shows Pearson’s correlation R 
values. Diagonal upper right side denotes the p-values for each correlation.

Traits† sev.BLUE coi.BLUE it.BLUE Race.mix BCCBC TRTTF TTTTF TTKSK

sev.BLUE 1 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 6.11 ´ 10−6

coi.BLUE 0.98 1 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 4.35 ´ 10−5

it.BLUE 0.77 0.85 1 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 3.10´ 10−4

Race.mix 0.46 0.50 0.59 1 <2.2 ´ 10−16 <2.2 ´ 10−16 <2.2 ´ 10−16 2.44´ 10−2

BCCBC 0.55 0.59 0.60 0.43 1 <2.2 ´ 10−16 <2.2 ´ 10−16 1.43´ 10−9

TRTTF 0.34 0.36 0.40 0.39 0.41 1 <2.2 ´ 10−16 1.88´ 10−2

TTTTF 0.37 0.40 0.46 0.37 0.39 0.39 1 3.55´ 10−2

TTKSK 0.10 0.09 0.08 0.05 0.13 0.05 0.05 1

† sev.BLUE, best linear unbiased estimate of stem rust field severity; coi.BLUE, best linear unbiased estimate of stem rust field coefficient of infection trait; it.BLUE, best linear 
unbiased estimate of stem rust field infection response trait; Race.mix, linearized seedling rust scores in response to race mixture inoculations.-
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had the lowest density coverage, this was expected and con-
sistent with previous reports (Cavanagh et al., 2013; Wang 
et al., 2014; Maccaferri et al., 2015; Gao et al., 2016). Link-
age disequilibrium decayed at 7.4 and 4.3 cM for the A and 
B genomes, respectively, and at 10 cM for the D genome 
(Fig. 4). The high LD in the D genome practically reduces 
the number of markers required for association tests. We also 
observed a moderate to high LD among SNP markers mapped 
to the paracentromeric or even distal regions of chromosome 
2B. For example, Markers IWA2739 and IWA1114, located 
at 146.6 and 94.01 cM on 2B, respectively, were in high LD 
(r2 = 0.4), and the two markers wMAS000015 (Sr36) and 
WSUSr28 (Sr28) were in LD (r2 > 0.1) despite being located 
on different chromosome arms.

Marker-Trait Associations Based on QK, 
QGLM, and MLMM Analysis
Inclusion of both Q and K into the GWAS analysis in this 
study significantly reduced the chance for false marker-
trait associations. For QK results, the expected −log10(p) 
values and observed −log10(p) values are close to the 
diagonal reference (X = Y ) line on the quantile-quan-
tile (QQ) plot for larger p-values (lower left on QQ plot) 
(Supplemental Fig. S1). The distribution of p-values from 
QGLM analysis skewed upwards in the QQ plot (results 
not shown), suggesting the presence of more false positives 
(Type I error). The QK model is generally favored when 
compared with the QGLM model; therefore, we adopted 
the p-values from QK to determine significance of loci in 
single marker tests.

For QK analysis, a total of 47 markers were sig-
nificantly associated with stem rust resistance (p-values 
passing the Bonferroni corrected threshold) (Supplemental 

Fig. S2). The p-values for the 47 marker associations with 
various traits are listed in Supplemental Table S3. The 47 
loci can be further condensed into 11 regions based on LD 
values of adjacent markers. The 11 regions with signifi-
cant marker-trait association p-values for various traits are 
listed in Table 2.

For MLMM analysis, a total of 13 QTLs were sig-
nificantly associated with stem rust resistance to various 
Pgt races and under seedling or adult plant developmental 
stages (Fig. 5, Table 3). The MLMM results and QK results 
often agreed with each other. For example, all of the 11 QK 
loci were detected in MLMM analysis (Table 3). For spe-
cific traits, the exact loci compositions for QK and MLMM 
models might be different. For example, for the sev.BLUE 
trait, the QK model detected two genes, Sr2 and Sr36, 
whereas the MLMM model also detected these two genes 
but with an additional QTL 2B.3. For the TTTTF trait, 
the QK model detected 4A.1 and 4A.2 (Sr7a), whereas the 
MLMM model detected an additional QTL 1B.1A (likely 
Sr31). For TTKSK trait, the QK model detected Sr36, Sr28, 
Sr9h, and Sr13, whereas the MLMM model detected Sr28, 
Sr9h, and potentially novel loci (2B.2, 2B.3).

Gene Postulations for Field and Seedling 
Resistance Loci
Overall, significant loci were detected for seven traits (sev.
BLUE, coi.BLUE, it.BLUE, BCCBC, TRTTF, TTKSK, 
and TTTTF) based on QK analysis. The percentage vari-
ation explained by each locus (R2 values) varied between 
0.5 and 14.8% (Table 2). Gene names for these loci were 
postulated (Table 2) based on the 9K consensus map 
position information (chromosome arms and previously 
published map locations) and race specificity.

Based on previously published map locations and race 
specificity, the QTLs identified in this study—4A.1, 6A.1, 
2B.4, 2B.5, 2D.1, and 6A.2—likely correspond to the seed-
ling resistance genes Sr7a (Bajgain et al., 2015b; Turner et 
al., 2016a), Sr8a (Bajgain et al., 2015b; Dunckel et al., 2015; 
Guerrero-Chavez et al., 2015), Sr9h (Rouse et al., 2014; 
Babiker et al., 2016), Sr28 (Rouse et al., 2012; Babiker et al., 
2017), Sr6 (Tsilo et al., 2010), and Sr13 (Simons et al., 2011), 
respectively. The QTLs 4A.1, and 6A.1 explained 6.0 and 
7.5% of the observed phenotypic variance in response to the 
races TTTTF and TRTTF, respectively. QTLs 2B.4 and 
2B.5 accounted for 3.8 and 14.8% of the genetic variance, 
respectively, in response to TTKSK (Ug99); and 2B.2 and 
2D.1 accounted for 3.4 and 2.5% of the observed variations, 
respectively, in response to BCCBC.

For field resistance, two loci (likely Sr2 and Sr36) were 
consistently detected for different traits (sev.BLUE, coi.
BLUE, and it.BLUE) (Table 2). The presumed Sr2 and Sr36 
loci explained 7.6 and 3% of the variation for the sev.BLUE 
trait, respectively (Table 2). The percentage of the variation 
explained was fairly similar for coi.BLUE (7.1 and 2.2%). 

Fig. 4. Genome wide linkage disequilibrium (LD) decays based 
on 9K genotyping results. The LD decayed rapidly for the A and 
B genomes, but slower for D genomes. The orange bar indicates 
LD decay level, r2 = 0.2.



2582 www.crops.org crop science, vol. 57, september–october 2017

The variation explained by Sr2 was 
12.6% for infection response (it.BLUE) 
(Table 2). The resistant (or favorable) 
allele frequencies for Sr2 and Sr36 were 
5.2 and 1.4% respectively (Table 2).

The results from MLMM analy-
sis revealed QTLs that were mostly in 
similar locations to QTLs derived from 
the QK analysis. The MLMM loci 
detected likely represent genes Sr2, Sr6, 
Sr7a, Sr8a, Sr9h, Sr13, Sr28, and Sr36 
(Table 3). The p-values from MLMM 
analysis were highly significant (ranged 
from 6.4 ´ 10−6 to 2.3 ´ 10−61) (Table 
3). Significant associations involving 
the loci IWA2057 and IWA5702 on 
chromosome 1AS were also identified. 
However, IWA2057 and IWA5702 were 
correlated with other loci on chromo-
some 1BS. Molecular analysis using the 
microsatellite marker SCM9 (Weng et 
al., 2007), diagnostic for the 1BL.1RS 
translocation, suggests that these markers 
represent Sr31 (Mihalyov et al., 2017).

Cumulative Effects of Most 
Significant Loci
Under multiple regression models, 
the most significant markers alto-
gether (Table 2) explained 12.1, 11.5, 
18.5, 16.4, 24.6, 19.2, and 27.4% of 
the phenotypic variation for the seven 
traits (sev.BLUE, it.BLUE, coi.BLUE, 
BCCBC, TRTTF, TTTTF, and 
TTKSK, respectively), after correcting 
for population structure.

The number of resistance-associ-
ated marker alleles and disease resistance 
levels were correlated for each trait, 
with accessions having higher numbers 
of resistance-associated alleles observed 
as generally more resistant. For exam-
ple, the correlation between the number 
of resistance-associated alleles and sev.
BLUE, coi.BLUE, and it.BLUE phe-
notypic values are r = 0.41, 0.40, and 
0.36, respectively. The p-values for 
these correlation tests are all highly 
significant (p < 0.001). Accessions with 
multiple resistance-associated alleles 
could serve as important breeding 
material. For example, we identified 
lines with both of the resistance-asso-
ciated alleles for TRTTF resistance 
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(Supplemental Table S4). We also identified 49 and 34 
lines that have three or more of the resistance-associated 
alleles for BCCBC and TTKSK resistance (Supplemental 
Table S4). Considering the 13 QTLs together (regardless 
of traits), we were able to identify >100 accessions with six 
to eight resistance-associated alleles (Supplemental Table 
S5). These accessions could be used as valuable sources 
of resistance to stem rust, including the TTKSK race, in 
breeding and/or genetic studies.

For MLMM analysis, loci were identified for each 
of the traits sev.BLUE, it.BLUE, coi.BLUE, Race.
mix(linearized seedling rust scores in response to race 
mixture inoculations), BCCBC, TRTTF, TTTTF, and 
TTKSK. These loci explained 18.5, 25.9, 17.4, 4.5, 13.8, 
34.8, 29.5, and 38.6% of phenotypic variation for each 
trait, respectively. The cumulative R2 values were gener-
ally higher than the cumulative effects of the loci detected 
by QK analysis (see above).

DISCUSSION
Population Structure and Its Impact  
on Stem Rust Resistance
Here, we classified two primary subpopulations among 
the global spring wheat diversity panel: Asia and the West. 
These results coincide with several other studies that 

document the population genetics of worldwide wheat 
collections (Maccaferri et al., 2015; Bulli et al., 2016; 
Mihalyov et al., 2017). The STRUCTURE results pos-
sibly reflect the domestication and distribution history of 
modern wheat. Domestication started in West Asia, fol-
lowed by spread to Europe, Africa, and the Americas. 
Extensive selections, mutations, and enrichment of favor-
able alleles followed the spread. New adapted varieties and 
breeding lines formed distinct population groups that dif-
fered from the Asian group.

The two subpopulations were associated with differ-
ent stem rust resistance levels (p < 0.001). The phenotypic 
variances explained by population structure ranged from 
0.8 to 26.2% for various traits, with TTKSK being the 
lowest and BCCBC being the highest. The average stem 
rust ratings for Subpopulation 1 (Europe and America) 
were lower than those for Subpopulation 2 (Asia), by 10.8 
on a 0-to-100 scale for sev.BLUE, and by 1.36 on a 0-to-9 
scale for seedling plants against Race.mix. It can be specu-
lated that the higher resistance of Subpopulation 1 might 
be related with the fact that the races used in the race mix-
ture in this study are North American races, and breeding 
lines in Subpopulation 2 (Asia and Africa) have not been 
selected for resistance to these races. Interestingly, for 
resistance to race TTKSK (Ug99), the Subpopulation 2 

Fig. 5. Manhattan plots based on the multilocus mixed model for (a) race mix traits (including best linear unbiased estimated field severity 
[sev.BLUE], coefficient of infection [coi.BLUE], and response type [it.BLUE]) and (b) single races BCCBC, TRTTF, TTKSK, and TTTTF.
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(Asia) group showed an increased level of resistance (by 
0.34 on a 0-to-9 scale, p = 5.09 ´ 10−5).

Stem Rust Phenotypes and Correlations
The high frequency of susceptible seedling plants (Fig. 3) 
to races TRTTF, TTTTF, and TTKSK was expected, 
as these selected races have previously been shown to be 
broadly virulent, and the majority of the accessions in this 
panel likely do not possess major resistance loci effective 
against these races. The relative high number of immune 
types (>300) for resistance to BCCBC was also expected, 
as BCCBC is the least virulent race examined in this 
study. The fact that field response phenotypes showed 
near-normal distributions could possibly suggest that, 
unlike seedling response to single races, field resistance is 
more quantitative in nature and likely controlled by many 
loci with small effects. The observation that infection 
response type shows the highest correlations to seedling 
ITs (0.59, 0.60) (Table 1) likely reflects the biology that 
both field infection response (it.BLUE) and seedling ITs 
were measured by rust pustule size, shape, and the degree 
of chlorosis in the surrounding area.

Extent of Linkage Disequilibrium  
and QTL Block Delineation
This study fitted LD decay curves using the LOESS func-
tion in R. The LOESS function returns fitted r2 values 
and ranged from 0 to 0.32 for the A genome, 0 to 0.26 for 
the B genome, and 0 to 0.43 for the D genome. The selec-
tion of r2 of 0.2 as the critical decay level was employed in 
various studies (Pasam et al., 2012; Gao et al., 2016) and 
deemed appropriate in the current study.

Interestingly, a cluster of QTLs or genes on chromo-
some 2B (2B.1 on Sr36; 2B.2, 2B.3, and 2B.4 on Sr9h; 
and 2B.5 on Sr28) were detected that confer resistance to 
various traits including sev.BLUE, coi.BLUE, BCCBC, 
and TTKSK (Table 2 and 3). Huang et al. (2012) discov-
ered that the introgression of Sr36 generates segregation 
distortion throughout the chromosome. This could be the 
cause of long range LD observed for QTL 2B.3 (94.01-
146.6 cM) (Table 2 and 3). Quantitative trait loci on wheat 
chromosomes other than 2B generally comprised compact 
or sharply delineated LD blocks.

Table 3. Quantitative trait loci (QTL) detected under multi-locus mixed model (MLMM).

Trait† QTL Marker Chromosome Position p-value Gene Reference
sev.BLUE 2B.1 wMAS000015 2B 70.00 2.25 ´ 10−6 Sr36 Tsilo et al., 2008
sev.BLUE 2B.3‡ IWA2739 2B 146.60 6.04 ´ 10−6 ‡ –

sev.BLUE 3B.1 wMAS000005 3B 15.00 1.17 ´ 10−36 Sr2 Mago et al., 2011

it.BLUE 2B.3‡ IWA3210 2B 147.63 2.19 ´ 10−6 ‡ –

it.BLUE 3B.1 wMAS000005 3B 15.00 9.54 ´ 10−64 Sr2 Mago et al., 2011

coi.BLUE 2B.3‡ IWA2739 2B 146.60 4.67 ´ 10−8 ‡ –

coi.BLUE 3B.1 wMAS000005 3B 15.00 1.58 ´ 10−34 Sr2 Mago et al., 2011

BCCBC 2B.2‡ IWA8599 2B 70.19 6.40 ´ 10−17 ‡ –

BCCBC 2B.5 WSUSr28 2B 240.00 9.47 ´ 10−15 Sr28 Bajgain et al., 2015b

BCCBC 2D.1‡ IWA2415 2D 83.84 6.39 ´ 10−6 Sr6 Tsilo et al., 2010

BCCBC 6A.1 IWA7913 6A 9.54 5.97 ´ 10−10 Sr8a Guerrero-Chavez et al., 2015

TTTTF 1B.1A IWA2057 1A 57.95 6.57 ´ 10−17 Sr31 Weng et al., 2007

TTTTF 1B.1A IWA5702 1A 57.95 2.33 ´ 10−30 Sr31 Weng et al., 2007

TTTTF 4A.1 IWA6696 4A 183.69 6.23 ´ 10−34 Sr7a Turner et al., 2016a

TTTTF 4A.1 IWA4651 4A 193.19 1.10 ´ 10−13 Sr7a Turner et al., 2016a

TTTTF 4A.2 IWA4083 4A 207.06 8.49 ´ 10−8 Sr7a Turner et al., 2016a

TTKSK 2B.2‡ IWA4531 2B 80.41 7.62 ´ 10−54 ‡ –

TTKSK 2B.3‡ IWA1114 2B 94.01 2.33 ´ 10−61 ‡ –

TTKSK 2B.4 IWA4294 2B 192.19 1.67 ´ 10−7 Sr9h Babiker et al., 2017

TTKSK 2B.4 IWA2676 2B 200.11 2.78 ´ 10−8 Sr9h Babiker et al., 2017

TTKSK 2B.4 IWA2677 2B 200.11 3.41 ´ 10−15 Sr9h Babiker et al., 2017

TTKSK 2B.5 WSUSr28 2B 240.00 5.54 ´ 10−58 Sr28 Bajgain et al., 2015b

TRTTF 1B.1A IWA2057 1A 57.95 5.26 ´ 10−12 Sr31 Mihalyov et al., 2017

TRTTF 1B.1A IWA5702 1A 57.95 3.71 ´ 10−19 Sr31 Mihalyov et al., 2017

TRTTF 6A.1 IWA5781 6A 2.21 7.84 ´ 10−25 Sr8a Guerrero-Chavez et al., 2015

TRTTF 6A.1 IWA7006 6A 8.69 3.58 ´ 10−13 Sr8a Guerrero-Chavez et al., 2015

TRTTF 6A.1 IWA7913 6A 9.54 3.97 ´ 10−22 Sr8a Guerrero-Chavez et al., 2015

TRTTF 6A.2 IWA7495 6A 216.09 6.06 ´ 10−10 Sr13 Simons et al., 2011
Race.mix 4A.m1‡ IWA8495 4A 63.29 2.70 ´ 10−6 ‡ –

† sev.BLUE, best linear unbiased estimate of stem rust field severity; coi.BLUE, best linear unbiased estimate of stem rust field coefficient of infection trait; it.BLUE, best linear 
unbiased estimate of stem rust field infection response trait; Race.mix, linearized seedling rust scores in response to race mixture inoculations.

‡ Potentially novel stem rust resistance loci.
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Genomewide Marker Trait Association 
Analysis
In this study, the wheat 9K SNP array and 2152 spring 
wheat accessions were used for GWAS analysis of stem 
rust resistance. First, we employed single marker tests 
using the QGLM and QK models, then we applied mul-
tiple regressions to examine cumulative effects of loci. 
We identified a total of 47 markers that were significantly 
(passing Bonferroni multiple-test correction threshold) 
associated with stem rust resistance to various races at the 
seedling stage and to a mixture of races in the field at the 
adult stage. The 47 markers can be collapsed into 11 QTL 
regions (Table 2) located on five chromosomes including 
2B, 2D, 3B, 4A, and 6A. Interestingly, we were not able 
to detect loci effective for seedling response to a combina-
tion of six mixed races. This could be due to the p-value 
threshold being too stringent, or the race specificities of 
the races included in the mixture did not overlap.

Researchers have argued that correcting for marker 
effects based on both population structure and kinship 
could be overly conservative and might result in a need 
for relaxed p-values such as 0.001 or alternative ways to 
correct for background variations (Pasam et al., 2012; 
Bernardo, 2013; Zegeye et al., 2014). As an exploratory 
analysis, we lowered our significance threshold to the 
level determined by the simpleM method (Gao et al., 2008, 
2010, 2016; Hirsch et al., 2014). This resulted in the detec-
tion of 24 QTLs in 12 chromosomes, with potentially 
novel loci on eight chromosomes. The QTLs were for all 
eight traits including the mixed-race seedling resistance, 
which was previously undetected using the more stringent 
Bonferroni threshold. The majority of the QTL regions 
associated with the field race mixture traits (sev.BLUE, 
coi.BLUE, it.BLUE, and Race.mix) are overlapping, 
whereas resistance loci associated with individual races are 
mostly nonoverlapping (Supplemental Fig. S3).

Using the Bonferroni correction threshold, the 
MLMM method generally agreed with the QK method 
for all the traits. All 11 QTLs identified through QK 
analysis were also identified in MLMM analysis. In gen-
eral, the MLMM method identified a higher number of 
significant loci, including two new QTL regions (1B.1A 
and 4A.m1) (Table 2 and 3) that were not detected by the 
QK method. The cumulative effects of these significant 
loci for each trait were higher than those detected by the 
QK method. Gene Sr2 appeared to be the most significant 
locus for field resistance both in QK and MLMM analy-
ses. The differences in exact QTL compositions between 
QK and MLMM models could reflect the key differences 
between single marker analysis and stepwise regression as 
implemented in MLMM, where genomewide loci could 
serve as conditionals to remove false positives.

Comparison of Pgt Resistance QTLs  
with Known Sr Genes
In the current study, three genes—Sr2, Sr28, and Sr36—
were tagged by markers wMAS000005, WSUSr28, and 
wMAS000015. Worldwide, gene Sr2 has provided adult 
plant resistance to Pgt races for >60 yr (Ellis et al., 2014). 
Our study reveals that Sr2 was present in ~5% of the world-
wide diversity panel accessions. Importantly, our study 
also reveals that the majority of the Sr2 accessions (108 of 
them) possess at least one other resistance-associated allele 
detected in this study (Supplemental Table S5). The joint 
use of Sr2 together with other R genes or QTLs could 
potentially provide high levels of field rust resistance that 
would be useful for agriculture. Babiker et al. (2017) used 
the wheat 90K SNP platform to identify markers linked to 
Sr28. The majority of the markers identified were specific 
to the 90K platform, thus not directly comparable with the 
loci identified through this study. Nonetheless, based on 
approximate collinear relationships between 9K and 90K 
markers (Supplemental Table S2), we were able to project 
the position of Sr28 (as well as WSUSr28) to be ~240 cM 
on the 9K consensus map. Most of the Sr28 positive acces-
sions postulated by Babiker et al. (2017) were not included 
in this panel except CITR7611, PI268468, PI572693, of 
which two (CITR7611 and PI572693) were also positive for 
Sr28 based on WSUSr28 (QTL 2B.5, Supplemental Table 
S5). Gene Sr36 confers resistance to predominant US wheat 
stem rust fungus races (Tsilo et al., 2008). The current study 
reveals that Sr36 is present at low frequency (1.4%) (Table 2) 
in the worldwide diversity accessions.

Zurn et al. (2014) positioned the TTKSK resistance gene 
SrWLR with several SNP markers including IWA6121. The 
9K position for those markers is 205 to 206 cM (Supple-
mental Table S2), which corresponded to the QTL region 
of 2B.4 of this study (likely Sr9h, Supplemental Table S3, 
Table 2 and Table 3). Babiker et al. (2016) used the 90K 
SNP platform to identify a locus derived from CItr4311, 
and the map position of that locus and infection patterns 
suggest that it is Sr9h. One of the markers, IWA7850, 
identified by Babiker et al. (2016), is shared with the cur-
rent study, with resistance allele T and susceptible allele C, 
consistent with Babiker et al. (2016). Guerrero-Chavez et 
al. (2015) identified a TTKSK resistance locus from hard 
spring wheat line SD4279, which also corresponded to the 
QTL 2B.4 region of this study (Supplemental Table S3). 
Frequent detection of the Sr9 locus through various studies 
likely suggests its role as an important source for TTKSK 
resistance. Furthermore, Naruoka et al. (2016) mapped a 
stripe rust resistance gene, Yr5, using the wheat iSelect 9K 
assay to approximately the same region as the Sr9 locus, 
although the genetic relationships between Yr5 and the Sr9 
locus remain to be elucidated.

In addition to the TTKSK resistance locus, Guerrero-
Chavez et al. (2015) also identified a 6AS locus effective 
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against race TRTTF, with linked SNPs including the 
marker IWA7913, which was also identified in this study 
(Supplemental Table S3, Table 2 and 3). Consistent with 
previous reports, we postulate that this locus represents 
Sr8a. Postulations of the 6AS TRTTF resistance locus (as 
Sr8a) can also be found in an independent GWAS study 
of stem rust resistance in North American spring wheat 
breeding lines (Bajgain et al., 2015b). Approximately 17% 
(>300 lines) of the worldwide diversity accessions possess 
the resistance associated allele for Sr8a.

Turner et al. (2016a) used the wheat 9K chip to identify 
markers linked to Sr7a in the winter wheat cultivar Jagger. 
Two of the markers identified (IWA4084, IWA4858) were 
also detected in the current study for TTTTF resistance 
(Supplemental Table S3). The detection of Sr7a in not only 
biparental mapping populations, but also a large AM panel, 
suggests its effectiveness against TTTTF within a wide 
collection of germplasm. This study detected two adjacent 
loci for the Sr7a region (4A.1 and 4A.2). The detection of 
two loci instead of one locus could be related with the 
relatively high LD threshold (e.g., when compared with 
Zegeye et al., 2014) used to define QTL regions, or it 
could potentially indicate two adjacent loci that were 
jointly responsible for TTTTF resistance.

This study also identified loci that potentially repre-
sent genes Sr6 (2D.1) and Sr13 (6A.2). These postulations 
are based on projected position information based on pub-
lished studies (Tsilo et al., 2010; Simons et al., 2011) and 
IT patterns. The Sr6 and Sr13 alleles were present in ~13 
and 6% of the accessions studied (Table 2). The 2D.1 (Sr6) 
allele frequency in Subpopulation 1 is comparable with 
what was discovered in a previous AM study (Zhang et 
al., 2014). Two EST markers, CD926040 and BE471213, 
flanking Sr13 (Simons et al., 2011) were mapped to chro-
mosome 6A, between 613 and 616 Mb (IWGSC reference 
genome v1). Marker IWA7495 (6A.2, Sr13) was mapped 
to 615 Mb of chromosome 6A. These position results sup-
port our gene postulations. The current study could serve 
as a starting point to integrate various Sr genes into wheat 
consensus maps.

Some of the loci detected in this study, even when 
deemed independent by multiple or stepwise regression 
analysis, were mapped to the same or adjacent QTL inter-
vals. For example, multiple 2B.4 loci (Sr9h) were detected 
through MLMM analysis (Table 3) and were tentatively 
annotated as Sr9h. It is very common for resistance genes 
to have multiple alleles. For example, the barley (Hordeum 
vulgare L.) Mla gene encodes >30 different specificities 
(Seeholzer et al., 2010). The wheat Sr50 gene holds exten-
sive haplotype diversity (Mago et al., 2015). The wheat 
Sr9 locus encodes at least eight different alleles. Thus, even 
though loci deemed independent by multiple regression 
models were mapped to approximately the same position, 
they could be in LD with different Sr gene haplotypes.

In addition to known Sr genes, our study also revealed 
potentially novel loci on wheat chromosomes 2B and 4A 
(and more if using simpleM threshold). The QTL 2B.2 was 
located on the short arm of chromosome 2B (close to Sr36, 
but in different LD blocks) and was detected for it.BLUE 
and BCCBC traits (Tables 2 and 3). This locus is likely 
novel based on infection pattern and location informa-
tion. The QTL 2B.3 was located in the proximal region of 
2BS, (Supplemental Table S2, Table 2) and has a moderate 
effect (0.85 out of 1–9) on TTKSK resistance. This locus is 
>30 cM proximal (supplemental Table S1) from a recently 
detected 2B QTL effective against TTKSK (Bajgain et 
al., 2015a) and potentially represents a new gene. The 
QTL 4A.m1 was detected only when using the MLMM 
method (Table 3). This locus was significantly (p < 0.001) 
associated with resistance against race mixtures and likely 
represents a novel locus based on location information and 
IT pattern. As stem rust resistance in the field tended to 
be controlled by many loci with small effects, one way to 
employ these novel loci (and known Sr genes) is through 
inclusion of these QTL-tagging loci in genomic selection 
models to enable more accurate trait predictions (Rutkoski 
et al., 2011, 2012’ Spindel et al., 2013, 2016; Thavamani-
kumar et al., 2015).

This study employed the (most) strict Bonferroni 
correction (p = 8.03 ´ 10−6) method to control for 
family wise error rate and a modest number of loci were 
detected. Indeed, using a relaxed threshold (e.g., the sim-
pleM method) (Gao et al., 2008, 2016) reveals more loci 
(Supplemental Fig. S3). However, we preferred to use the 
stricter Bonferroni threshold to ensure that detected loci 
represent true loci. With the large germplasm collection 
and numerous potential historic recombination events 
present in this panel, the marker density provided by the 
9K assay is likely still not large enough to capture all resis-
tance loci. Higher-density genotyping assays such as the 
wheat 90K SNP chip, as well as genotyping by sequenc-
ing (Elshire et al., 2011) technologies could potentially fill 
this gap. The relatively few number of novel loci detected 
could be attributed to the limitation inherent in any AM 
study, namely the lack of capacity to detect rare alleles 
present in the population (Bernardo 2016).

This study was successful in detecting a number of 
known genes or QTLs (Sr2, Sr7a, Sr8a, Sr9h, Sr28, and 
Sr36 etc.). The total number of potentially known loci 
detected (nine) is greater than most previous stem rust 
GWAS studies (Yu et al., 201; Zhang et al., 2014; Bajgain 
et al., 2015b). Characterization of known loci within a 
large collection of germplasm could potentially provide 
breeders a rich selection of lines with desired combina-
tions of Sr genes to use in stem rust resistance breeding.
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CONCLUSIONS
Our GWAS analysis detected multiple stem rust resis-
tance genes, such as Sr2, Sr6, Sr7a, Sr8a, Sr9h, Sr13, Sr28, 
Sr31, and Sr36 in 2152 accessions of a global spring wheat 
panel. Potentially novel resistance loci on chromosomes 
2B and 4A were also identified. Most of the identi-
fied loci were effective against one or few, but not all, 
races or effective under one developmental stage (seed-
ling vs. field). The cumulative effects of significant loci 
explained 4.5 to 25.9% of the phenotypic variation for 
resistance against race mixtures, whereas the proportion 
of variation explained for resistance against single races 
ranged from 13.8 to 38.6%. Loci identified in this study 
could potentially be converted to uniplex KASP assays 
to assist high-throughput marker assisted breeding. The 
accessions with a high number of favorable alleles can 
be used as important sources of stem rust resistance in 
breeding programs.
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