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a  b  s  t  r  a  c  t

Savings  in  consumptive  use  through  limited  or deficit  irrigation  in  agriculture  has  become  an  increas-
ingly  viable  source  of  additional  water  for  places  with  high  population  growth  such  as  the Colorado  Front
Range, USA.  Crop  models  provide  a mechanism  to  evaluate  various  management  methods  without  per-
forming  costly  and  time-consuming  experiments,  e.g.,  field  studies  investigating  irrigation  scheduling
and  timing  effects  on crop  growth.  Few  studies  have  focused  on CERES-Maize  crop  model  parameteriza-
tion  with  respect  to  water-stressed  conditions,  and  the  model  has previously  been  shown  to  overestimate
evapotranspiration  (ET)  for limited  irrigation  treatments  (stress  during  vegetative  stage).  It is therefore
desirable  to quantify  the  effects  of  CERES-Maize  input  parameters  on  model  output  responses  typically
used  for  calibration  and/or  important  in limited  irrigation  management,  including  vegetative  growth,
crop  yield,  and  ET.  A sensitivity  analysis  (SA)  utilizing  the  Morris  one-at-a-time  screening  and  Sobol’
variance-based  methods  was  performed  on  CERES-Maize  v4.5 input  parameters  affecting  water  balance
and crop  growth  including  soil  hydraulic  properties,  phenological  growth  properties,  and  radiation  use
efficiency.  CERES-Maize  output  responses  of  interest  for the SA  included  anthesis  date,  maturity  date,  leaf
number  per  stem,  maximum  leaf  area  index,  yield,  and  cumulative  ET.  The  SA  study  utilized  five years  of
multi-replicate  field  management  data  (both  full and  limited  irrigation  treatments)  for  each  combination
of  random  input  parameters.  Results  comparing  the Morris  mean  and  the Sobol’  total  sensitivity  index
showed  very  high  correlation  between  the  two,  indicating  that  in  this  study  the computationally  cheaper
Morris method  could  have  been  used  as  an  effective  indicator  of  input  parameter  sensitivity.  For the  full
irrigation  treatment,  CERES-Maize  output  responses  were  mostly  sensitive  to crop  cultivar  parameters.
For  the  limited  irrigation  treatment,  CERES-Maize  leaf  area  index,  yield,  and  ET  output  responses  were
highly  influenced  by  soil  lower  limit  and  drained  upper  limit  input  parameters,  which  define  water  hold-
ing capacity.  There  was  also  a greater  amount  of  interaction  between  input  parameters  for  the  limited
irrigation  treatment  than for full irrigation.  An  uncertainty  analysis  was  also  conducted  using  model  out-

puts  from  the  Sobol’  SA  method.  In  some  cases,  cumulative  ET  had  higher  values  for  limited  irrigation
than  for  full  irrigation,  further  indicating  the  need  to  evaluate  model  processes  governing  ET  under  water
stress.  A  new  methodology  for systematic  calibration  of  CERES-Maize,  based  on  the  Morris  and  Sobol’
sensitivity  indices  for  the  two  irrigation  treatments,  is  proposed  for  future  model  evaluation  as  sensitiv-
ity differences  between  treatments  indicates  that  existing  CERES-Maize  calibration  procedures  (typically
based  on  non-stressed  crops)  may  need  to  be  reconsidered  in  cases  of  water  stress.
. Introduction
Water availability issues, combined with population growth
nd the uncertainty of climate change have created significant
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challenges for water resources scientists (Anderson-Wilk, 2008).
English et al. (2002) argue that a fundamental paradigm shift
in agroecosystem irrigation management is inevitable as water
supplies become more limited, as farmers will manage irrigation
to maximize net benefits instead of simply the biological objec-
tive of maximizing yields. Limited water resources and increasing

pumping costs have recently caused farmers in Colorado, USA to
consider limited irrigation as an alternative to full irrigation prac-
tices. Alternatively, farmers may  consider either a reduction in
planted area or schedule irrigation events so that plants do not

dx.doi.org/10.1016/j.ecolmodel.2012.01.024
http://www.sciencedirect.com/science/journal/03043800
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ncounter stress during sensitive growth stages. Thus, in many irri-
ated areas such as the Colorado Front Range, studies (e.g., DeJonge
t al., 2011) are increasingly exploring benefits of limited or deficit
rrigation of water-intensive crops such as corn (Zea mays L.).
imited irrigation practices incorporate water management under
estricted water application, and minimize water stress during crit-
cal crop growth stages in order to maximize yields (Schneekloth
t al., 2009).

Crop simulation models can play an important role in assessing
he costs and benefits of limited irrigation and the interactions of
iming and amount of irrigation water applications. The Decision
upport System for Agrotechnology Transfer (DSSAT) Cropping Sys-
em Model (CSM) includes several sub-models specific to individual
rops. For example, the DSSAT CERES-Maize model (Hoogenboom
t al., 2004; Jones and Kiniry, 1986; Jones et al., 2003; Ritchie et al.,
998) has been widely used to assess cropping and management
trategies for both rainfed and irrigated corn. For example, Xie et al.
2001) found that simulated vegetative growth and kernel weight
re extremely sensitive to drought stress. A group of researchers
ound that CERES-Maize overestimated the effects of water stress
n vegetative growth, and subsequently adjusted the stress func-
ions and improved simulation results (Mastrorilli et al., 2003;
ouna et al., 2000). Saseendran et al. (2008b) simulated various
ater allocations and irrigation amounts in northeastern Colorado
sing CERES-Maize, and found that split irrigation applications of
0% of the total water applied during vegetative growth stages
nd 80% of the total water applied during reproductive growth
tages obtained the highest yield for a given irrigation allocation
ranging from 100 to 700 mm of total irrigation). López-Cedrón
t al. (2008) evaluated CERES-Maize for rainfed and irrigated treat-
ents with the intent to improve the model’s ability to predict

iomass and yield under water-limited conditions (where the
odel had previously given good predictions under irrigated con-

itions). They found that the model adequately predicted irrigated
reatments but underpredicted rainfed treatments. Most recently,
eJonge et al. (2011) provided a detailed statistical comparison of
ERES-Maize with a field experiment consisting of full and limited

rrigation treatments in northern Colorado, finding that the model
erformed better in the non-stressed (full irrigation) treatment
han in the stressed (limited irrigation) treatment. Additionally,
hey found the model estimated yield adequately but overesti-

ated ET for full irrigation and underestimated ET for limited
rrigation.

The CERES-Maize crop model described above is a complex
onlinear dynamic system that simulates outputs such as crop
ield as a function of various inputs including plant cultivar, soil
ydraulic parameters, and irrigation timing/amount. It contains

 large number of input parameters which are commonly esti-
ated based on field experiments or determined through model

alibration and/or parameterization. Accurate estimation of values
or important CERES-Maize input parameters is imperative as the
ccuracy of model outputs is a direct outcome. Therefore, it is desir-
ble to conduct a sensitivity analysis (SA) and uncertainty analysis
UA) as components of further CERES-Maize evaluation to deter-

ine which model input parameters require the most certainty.
altelli et al. (2004) defined SA as “the study of how uncertainty
n the output of a model (numerical or otherwise) can be appor-
ioned to different sources of uncertainty in the model input.” The
im of SA is to determine how sensitive the output of a model is
ith respect to the elements of the model which are subject to
ncertainty or variability. SA methods are typically classified as

ocal (i.e., derivative-based) or global (Saltelli et al., 2008). When the

urpose of the SA is to study the effects of several input parameters
n the model output responses, local SA (e.g., one-factor-at-a-time
r OAT) is less useful than global sensitivity analysis (GSA) where
he output variability is evaluated while the input factors vary in
elling 231 (2012) 113– 125

their individual uncertainty domains (Monod et al., 2006). GSA
methods, such as Morris (1991),  Fourier Amplitude Sensitivity Test
(FAST, Saltelli et al., 1999), and Sobol’ (1993) can determine not
only sensitivity to individual factors, but sensitivity to interactions
between factors as well. The Morris (1991) method is a OAT “screen-
ing method” that is a computationally efficient means of identifying
sensitive parameters, but is ultimately considered global because
it attempts to explore the majority of the parameter space (Saltelli
et al., 2004). Variance-based methods such as FAST and Sobol’ are
commonly accepted methods of GSA that explore the entire param-
eter space but are more efficient than complete factorial design
(Saltelli et al., 2000a),  and outputs from variance-based simulations
can be used to derive cumulative distribution functions (CDFs) for
UA. Since they can be difficult to determine precisely due to the
intrinsic variability in natural processes, costly monitoring, or data
measurement error, input data and model parameters are rarely if
ever known with certainty for agroecosystem models like CERES-
Maize (Wang et al., 2005). Therefore, performing a UA  is desirable
in order to correctly estimate model parameters and generate accu-
rate model predictions (Makowski et al., 2002).

Very little SA literature exists for crop models that concen-
trates specifically on the methodology, particularly sensitivity
differences between treatments and/or GSA methods. Ma  et al.
(2000) performed a SA on the RZWQM for a manured corn field
in eastern Colorado. Four groups of model input parameters (satu-
rated hydraulic conductivity, organic matter/nitrogen (N) cycling,
plant growth, and irrigation water/manure application rates) were
selected with plant N uptake, silage yield, and nitrate leaching
as outputs evaluated. Latin Hypercube Sampling (LHS) was used
to randomly choose parameters from various probability distri-
butions and the resulting model parameter sets were analyzed
using linear regression analysis. Crop yield output response was
found to be most sensitive to plant growth input parameters and
manure application rates. Makowski et al. (2005) explored using SA
methods to reduce the number of field experiments performed for
estimating genetic parameters by determining key cultivar param-
eters whose uncertainty most affects AZODYN winter wheat model
outputs. They used a winding stairs method and an extended FAST
(eFAST) method, finding that only five genetic parameters out of
13 explored have a significant influence on simulated yield and
grain protein content. Pathak et al. (2007) evaluated the DSSAT-
CROPGRO cotton model in terms of the most sensitive crop growth
parameters for predicting development and yield under irrigated
and rainfed conditions. They used both local and global SA meth-
ods to evaluate the model and found that the factorial design GSA
method was  beneficial with regard to defining interactions among
parameters, but suggested the method was  more computationally
expensive than desired. Varella et al. (2010) used the eFAST GSA
method to evaluate the ability of the STICS model to accurately eval-
uate outputs based on varying soil input factors. The results showed
that a few soil parameters (e.g., clay content, organic N content,
and soil water content at field capacity) were accessible by inverse
parameter estimation using observations of yield at harvest, leaf
area index, and N absorbed by the plant at various dates. However,
the quality of parameter estimation largely depended on several
factors, in particular the climate of the observed year and the type
of soil at depth (Varella et al., 2010). Campolongo et al. (2007) sug-
gested that the Morris screening method is underutilized in the
context of SA and can be used to simplify more robust methods
such as Sobol’ (1993).  The rice model WARM (Water Accounting
Rice Model) was  recently evaluated to determine the effect of site
and climate on model sensitivity in Europe using the Morris and

Sobol’ SA methods, finding that radiation use efficiency, optimum
temperature, and leaf area index at emergence were the most
sensitive model input parameters (Confalonieri et al., 2010a) and
the Morris SA method produced results comparable to the more
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omputationally expensive Sobol’ method (Confalonieri et al.,
010b).  These studies are included in a limited number of direct
omparisons between the Morris and Sobol’ or other variance-
ased methods in recent literature (i.e., Chu-Agor et al., 2011; Fox
t al., 2010; Muñoz-Carpena et al., 2010, 2007). Assessment of these
pproaches in the context of this study should provide new insight
o crop modelers in regard to computational expense and results
or each approach.

Very few examples in the literature focus directly on SA for
ERES-Maize input parameters, especially in regard to irrigation
anagement in semi-arid regions. St’astná and Zalud (1999) per-

ormed a local SA on the CERES-Maize and MACROS (Modules for
n Annual CROp Simulation) models, adjusting wilting point, satu-
ated soil water content, and field capacity from −6 to 6% of their
ominal values to evaluate changes in yield and LAI. They found

 linear dependence of LAI on all three parameters, and negligi-
le influence on yield. Bert et al. (2007) studied the sensitivity of
aize yield predictions in Argentina to uncertainty in several soil-

elated parameters (e.g., soil N and water content at sowing, soil
rganic matter content, and soil infiltration curve number) as well
s solar radiation using a combination of mathematical (local) and
raphical SA approaches. They found that CERES-Maize showed
ore sensitivity to solar radiation than for soil parameters, and that

ome parameters (e.g., soil curve number and soil water content
t sowing) exhibited non-linear responses. He (2008) performed

 Morris SA on CERES-Maize cultivar and soil input parameters,
valuating corn yield and N leaching output responses. It was  deter-
ined that thermal time from emergence to end of juvenile phase,

hermal time from silking to physiological maturity, phyllochron
nterval, soil lower limit, soil drained upper limit, and soil fertil-
ty factor model input parameters all have a strong influence on
rop yield, and the soil lower limit, soil drained upper limit, soil
rainage rate, and runoff curve number have a strong influence on

 leaching. Although He (2008) evaluated sensitive soil and cultivar
arameters for the CERES-Maize model, the study was conducted

n Florida, USA with very sandy soils and high rainfall (average
320 mm annual).
The above CERES-Maize SA studies do not quantify higher-
rder interactions between variables, a likely issue in such a robust
odel. Additionally, most studies in any context of SA explore

verall sensitivity of the model in general, without quantifying

able 1
ERES-Maize sensitivity analysis input parameters and output responses.

Name Definition 

Input parameters
P1 Thermal time from emergence to end of juvenile 

P2  Development delay factor 

P5  Thermal time from silking to physiological maturity 

G2  Maximum possible kernels per plant 

G3  Kernel filling rate under optimum conditions 

PHINT Phylochron interval 

RUE  Radiation use efficiency 

SLPF  Soil fertility factor 

SLU1  Evaporation limit 

SLDR Drainage rate 

SLRO  Runoff curve number 

SLLL  Soil lower limit, or wilting point 

SDUL  Drained upper limit, or field capacity 

SSAT  Saturation 

SSKS Saturated hydraulic conductivity, macropore 

SBDM Bulk density 

Output responses
ADAY Anthesis day 

MDAY Maturity day after planting 

LNS Total leaf number per stem
LAIX Maximum leaf area index
YIELD Crop yield 

ETC Cumulative evapotranspiration 
elling 231 (2012) 113– 125 115

sensitivity differences between treatments as we would expect in
this case. Therefore, a detailed SA in regard to potential CERES-
Maize input parameter sensitivity differences between irrigation
treatments would be extremely beneficial to modelers who wish
to use the model in dryland, semi-arid, or other similar manage-
ment regimes with limited water resources. Improved knowledge
of model sensitivity to various inputs will assist new users of the
model with calibration based on these parameters, similar to meth-
ods described in Ma  et al. (2011).  Increased understanding in regard
to CERES-Maize input parameter sensitivity and response to water-
stressed treatments may  also be valuable to users of the new
RZWQM2, which has been coupled with the DSSAT plant growth
modules (Ma  et al., 2007, 2006).

Similar to SA for CERES-Maize input parameters, very few
CERES-Maize UA studies exist in the literature. A notable excep-
tion is the work of He et al. (2009, 2010).  He et al. (2009) used
the generalized likelihood uncertainty estimation (GLUE) method
to estimate CERES-Maize genotype and soil parameters for sweet
corn production in northern Florida. Genotype coefficients (P1, P5,
and PHINT) and soil parameters (SLDR, SLRO, SDUL, SLLL, and SSAT)
were generated using a multivariate normal distribution that pre-
served the parameter correlations (Table 1). The GLUE procedure
resulted in different prior and posterior distributions of selected
parameters (P1, P5, SLDR, SLRO, SLLL, and SDUL). In the posterior
distribution of estimated parameters, the uncertainties in param-
eters were substantially reduced, with coefficient of variation (CV)
values mostly lower than 10%. The average CV value of the parame-
ters was  reduced from 27.2% in the prior distribution to 4.6% in the
posterior distribution. In addition, the GLUE procedure accurately
estimated soil parameters (i.e., SLLL, SDUL, and SSAT) when com-
pared to independent measurements made in the laboratory, with
an average absolute relative error of about 8.5%. He et al. (2011)
used the He et al. (2009) parameter sets (i.e., sets generated from
parameter distributions derived with the GLUE method) to sim-
ulate dry matter yields under three N fertilizer levels (185, 247,
and 309 kg N ha−1) and two  irrigation levels (I1 and I2; I2 = 1.5 × I1,
where I1 is the irrigation demand calculated based on a daily

soil water balance). Due to the uncertainties in soil and genetic
parameters, the prediction standard deviation (SD) of simulated
dry yields ranged from 655 kg ha−1 at I1 to 960 kg ha−1at I2, while
the observation SD ranged from 220 to 463 kg ha−1 for measured

Unit Lower bound Upper bound

Degree-day 130 350
Day 0 0.8
Degree-day 600 950
Kernel 450 950
mg day−1 5.0 10.5
Degree-day 35 75
g MJ−1 2 5
– 0.7 1.0
cm 5 12
day−1 0 1
– 60 95
mm3 mm−3 0.11 0.20
mm3 mm−3 0.25 0.42
mm3 mm−3 0.43 0.51
cm h−1 0.3 2.0
g cm−3 1.24 1.50

day
day

kg ha−1

mm
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ry yields. The uncertainties in simulated dry yield were higher
han the uncertainties of measured values due to relatively high
ariations in estimated genetic coefficients. He et al. (2011) con-
luded that CERES-Maize model performance could be improved
urther if the variations in estimated genetic coefficients could be
educed. Previous attempts to simulate the difference in irriga-
ion treatments with the CERES-Maize crop growth model have
ndicated that the model responds more accurately in regard to
ield, ET, and vegetative growth under full irrigation with no water
tress, as compared to limited irrigation under water stress dur-
ng the vegetative growth stage (DeJonge et al., 2011). Therefore,
n this study focus is placed on evaluating model input proper-
ies that should have a large effect on both water availability and
rop response to water under full and limited irrigation (e.g., soil
ydraulic and phenological growth properties). The overall objec-
ives of this study were to determine and rank the global sensitivity
f CERES-Maize v4.5 physiological timing, growth, yield, and ET
utput responses to soil hydraulic and phenological growth model
nputs using both qualitative (Morris) and quantitative (Sobol’) SA
pproaches, and evaluate irrigation treatment differences in output
ncertainty. Specifically, this study aimed to identify and quantify a
ell-defined group of sensitive CERES-Maize input parameters for

ull and limited irrigation treatments in regard to output responses
ncluding anthesis date, maturity date, leaf number per stem,

aximum leaf area index, crop yield, and cumulative evapotran-
piration. The Morris screening and Sobol’ SA methods were used to
ompare between the full and limited irrigation treatments, using
he DeJonge et al. (2011) parameterized model setup as the base-
ine. Additionally, model outputs from the Sobol’ SA method were
sed to create CDFs for UA. It is hoped that the resulting SA will lead
o a justifiable increased focus on improved estimation of sensitive
nput parameters for CERES-Maize, as well as guidance to potential

odel improvements under water-stressed conditions.

. Materials and methods

.1. Site and experiment description

In a prior study, the CERES-Maize crop growth model was cal-
brated and validated based on a multi-replicate field research
xperiment near Fort Collins, CO (40◦39′19′′N, 104◦59′52′′W)
rom 2006 to 2008; details can be found in DeJonge et al.
2011). The soil at the study site is a Fort Collins Loam (fine-
oamy, mixed, superactive, mesic Aridic Haplustalf). Two  irrigation
reatments of continuous corn (the dominant irrigated crop in
ortheast Colorado) were studied during the 2006 through 2010
rowing seasons: full irrigation (ET requirement supplied through-
ut the season) and limited irrigation (no irrigation before the
12 reproductive stage unless necessary for emergence, then full

rrigation afterwards). In all years, less significant early irriga-
ions were required by all treatments to encourage germination
nd avoid total loss of crop. There were four replications of each
reatment, arranged in a randomized complete block design. Each
lot consisted of 12 rows spaced 76 cm apart, with a row length
f 26 m.  All data were taken from the middle four rows, with
he outer eight rows serving as buffers to minimize boundary
ffects from adjacent treatments. Both treatments were monitored
eekly for crop growth (total leaf number, LAI, crop height, and

iomass), crop development (phenology stages), soil water con-
ent (SWC), ET by water balance, and final grain yield. Irrigation
ater was applied by a linear move sprinkler system, generally
t a weekly interval. Irrigation amounts were determined
y water balance using crop ET estimates from the onsite
eather station (station FTC03; 40◦39′09′′N, 105◦00′00′′W;  ele-

ation 1557.5 m)  within the Colorado Agricultural Meteorological
elling 231 (2012) 113– 125

Network (CoAgMet, http://ccc.atmos.colostate.edu/∼coagmet/).
Daily precipitation, solar radiation, minimum and maximum tem-
perature, vapor pressure (which was converted to dew point
temperature), and wind run were continually recorded, and any
missing weather data were replaced by data from the Wellington,
CO station (station WLT01; 40◦40′34′′N, 104◦59′49′′W;  elevation
1567.9 m)  approximately two km to the north of the FTC03 station.

It was assumed that CERES-Maize sensitivity responses would
differ between the full and limited irrigation treatments. There-
fore, for each input parameter set, the model was evaluated for
both treatments over the five years (2006–2010) management and
weather data were fully available (for a total of ten runs per input
set). Additionally, simulated inputs (namely irrigation timing and
amount) were set to exactly match field management. This was
done to ensure that model output response sensitivity was a result
of parameter uncertainty and not necessarily varying irrigation
schedule and amounts. In all years and treatments, adequate N was
applied to avoid N stress.

2.2. CERES-Maize model description

Crop simulation models such as those found in the Decision Sup-
port System for Agrotechnology Transfer (DSSAT v4.5) can play a
role in assessing the costs and benefits of limited irrigation and
the interactions of timing and amount of irrigation water appli-
cations (Hoogenboom et al., 2010; Jones et al., 2003). The DSSAT
Cropping System Model (CSM) CERES-Maize is available as part of
the DSSAT suite of crop models designed to estimate production,
resource use, and risks associated with crop production practices
(Jones and Kiniry, 1986; Ritchie et al., 1998). It has been widely
used to assess cropping and management strategies for corn (both
rainfed and irrigated) for well over two decades. CERES-Maize is
a process-oriented corn growth model that simulates the follow-
ing: biomass accumulation based on light interception; partitioning
of accumulated biomass to leaves, stems, roots, and grain; envi-
ronmental stresses; and crop growth and development including
phenological states, biomass production, and yield. Additionally,
the CSM contains modules for soil water balance as well as soil N
transformations and uptake, which are used for other crop mod-
ules in addition to CERES-Maize. Required model inputs include
soil characteristics, daily weather, cultivar parameters, fertilizer
applications, irrigations, planting date, plant population, and other
management practices. To facilitate use of a minimum data set,
the CSM uses a simple water balance algorithm following a lay-
ered soil and a “tipping-bucket” approach (Ritchie, 1998). The USDA
curve number technique (USDA-SCS, 1972) is used to calculate
runoff and infiltration amounts resulting from rain and irrigation.
The Priestley–Taylor (1972) and FAO-56 Penman-Monteith method
(Allen, 1998) are available as options in DSSAT to calculate refer-
ence ET; the latter was used in this study. This method requires daily
solar radiation, minimum and maximum temperature, daily aver-
age dew point temperature, and wind speed; these inputs are used
in combination with energy balance and mass transfer to calculate
reference ET, or potential ET. Instead of applying a crop coefficient
to determine crop ET, CERES-Maize partitions the potential ET into
potential soil evaporation and potential plant transpiration, and
actual soil evaporation and plant transpiration rates depend on the
soil water availability to meet the potential values (López-Cedrón
et al., 2008). Water stress is generally determined as the compar-
ison between potential transpiration (demand) and available root
water or plant extractable soil water (supply) (Saseendran et al.,

2008a). In well-watered conditions, available root water exceeds
daily potential transpiration. As the soil dries, available root water
decreases until it cannot meet transpiration demand, thus intro-
ducing stress into the simulated crop.

http://ccc.atmos.colostate.edu/~coagmet/
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Because it is relevant to the study, it is important to understand
ow yield and biomass production is determined in CERES-Maize.

n CERES-Maize, crop development rates are calculated based only
n temperature and photoperiod (Ritchie et al., 1998). Biomass par-
itioned to grain in CERES-Maize can be affected by daily minimum
emperature (Singh, 1985). Four discrete functions of simulated
eaf-tip number are used for predicting plant canopy leaf area in
ERES-Maize (Jones and Kiniry, 1986). N uptake is simulated based
n the crop N demand and available N in the soil. In terms of crop
ield, number of grains per plant is a function of the potential num-
er of kernels per plant and the average crop growth rate (g/plant)
rom silking to the beginning of grain filling. The model assumes
ne ear of corn per plant, however if the number of kernels per
lant is significantly smaller than the potential number of kernels,
he model creates some barren plants. Ear growth rate (g/ear/day) is
ncreased by daily thermal time but can be decreased by water or N
tress. The effective grain filling period is based on the thermal time
rom silking to maturity, and during this period leaf senescence
ncreases, whereas ears, stalks, and roots are the only active grow-
ng tissues. Daily grain growth rate is a function of temperature,
rains per plant, potential kernel growth rate, and soil moisture
ffect on growth (Ritchie et al., 1998).

.3. Input parameters and output responses

CERES-Maize input parameters were selected that are relevant
n regard to their ability to affect crop growth timing and magni-
ude, yield, and ET (Table 1). These mainly include crop cultivar
arameters typically used in model calibration and soil hydraulic
arameters (i.e., DeJonge et al., 2011; Fraisse et al., 2001; He,
008). Random values for each parameter were determined assum-

ng a uniform distribution between the lower and upper bounds
Table 1). While sensitivity and uncertainty analyses often attempt
o define appropriate input distributions, these studies often uti-
ize simplified distributions for most of the parameters. Monod
t al. (2006) note that “the range of input values usually has more
nfluence on the output than the distribution shapes” and other
tudies echo this statement (i.e., Helton, 1993; Haan et al., 1998).
lso, the use of uniform distributions characterizes a more conser-
ative assumption since unimportant parameters, as determined
y the GSA, will show little influence regardless of distribution
Saltelli et al., 2008). Maize cultivar parameters P1, P2, P5, G2, G3,
nd PHINT (Table 1) were used as calibration parameters in DeJonge
t al. (2011).  Many of these same parameters were previously used
n the He (2008) Morris SA study, but they were evaluated sepa-
ately from soil hydraulic parameters because it was  assumed that
hese groups of parameters were independent. However, in this
tudy all parameters are evaluated simultaneously as it is assumed
hat interactions between soil hydraulic parameters are possible in
he context of water-stressed conditions. Additionally, some model
rowth components are based strictly on thermal time and have
o influence from stress, i.e., as indicated by total leaf count in
eJonge et al. (2011) showing no decrease in simulated succes-

ive leaf tip appearances. It is therefore important to identify in
his context which cultivar parameters have no stress effects to
rowth and subsequent yield and ET. In addition to the cultivar
arameters, the ecotype parameter (i.e., a type of parameter meant
o be specific to the species or subspecies at hand) for radiation
se efficiency (RUE, g dry matter per MJ  photosynthetically active
adiation, PAR) was evaluated for sensitivity. In DSSAT versions 4.0
nd above, RUE is set to 4.2 g MJ−1 PAR (Hoogenboom et al., 2010),
ut Lindquist et al. (2005) suggest maize simulation models such

s CERES-Maize that rely on RUE for biomass accumulation should
se RUE of 3.8 g MJ−1 absorbed PAR for non-stressed crops. Addi-
ionally, Stöckle et al. (2008) indicate that RUE has a dramatic daily
uctuation in response to weather variability. While CERES-Maize
elling 231 (2012) 113– 125 117

model developers do not recommend using RUE as a calibration
parameter (Ma et al., 2011; K. Boote, personal communication),
there is some discrepancy as to what the baseline value should
be. Instead of adjusting RUE, Ma  et al. (2011) suggest using the soil
fertility factor (SLPF) to adjust the conversion rate from solar radi-
ation to biomass, and this input was  evaluated in addition to RUE
as an input in this study. Cultivar and ecotype upper and lower
bounds were generally determined by the range of values used in
prior studies as indicated by the DSSAT v4.5 software (Hoogenboom
et al., 2010). CERES-Maize output responses (Table 1) were selected
based on potential effects from water stress, and were statisti-
cally evaluated in the DeJonge et al. (2011) study. Growth stage
timing outputs include anthesis day and maturity day after plant-
ing (ADAY and MDAY, respectively), crop growth outputs include
total leaf number per stem and maximum leaf area index (LNS and
LAIX, respectively), and the most important evaluation outputs for
limited irrigation management: crop yield (YIELD) and cumulative
evapotranspiration (ETC).

The soil was assumed to be the same texture as used in DeJonge
et al. (2011),  determined as a Fort Collins loam (fine-loamy, mixed,
superactive, mesic Aridic Haplustalf) by the NRCS Web  Soil Survey
(http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx),
with a typical profile of loam from 0 to 18 cm,  loam or clay loam
from 18 to 56 cm,  and loam, silt loam, or fine sandy loam from
56 to 152 cm.  In order to test parameter uncertainty (and avoid
error from input uncertainty), the soil was  assumed to exhibit
properties of a loam or clay loam throughout the profile (Table 1).
To simplify analysis, the nine separate soil layers were determined
simultaneously and assumed to be homogeneous throughout all
layers. From the soil surface, these layers are at depths of 0–5,
5–15, 30–45, 45–60, 60–90, 90–120, 120–150, and 150–178 cm.
Upper and lower bounds for soil lower limit (SLLL), soil drained
upper limit (SDUL), saturation (SSAT), and saturated hydraulic
conductivity (SSKS) were taken from Schwab et al. (1993) as typical
values for loam or clay loam (Table 1). By limiting the analysis
to loam and clay loam soil types, the upper and lower bounds
applied ensure that SLLL < SDUL < SSAT, as would be expected
mathematically. Upper and lower bounds for bulk density (SBDM)
were found in the DSSAT input files for recommendations based
on soil classification (Hoogenboom et al., 2010).

2.4. Sensitivity and uncertainty analysis methods

In general, SA is the study of how the variation of the output
of a model can be apportioned to different sources of variation
or input (Saltelli et al., 2000a). Sensitivity analyses are typically
classified as either local sensitivity analysis or global sensitivity
analysis (Saltelli et al., 2000a).  Local SA examines the local response
of model output responses by varying input parameters one at a
time while holding other parameters at fixed values. GSA charac-
terizes methods that possess two  basic properties (Saltelli et al.,
2000a): (i) multiple parameters are varied simultaneously, and (ii)
sensitivity is measured over the entire range of each input factor.
When dealing with a nonlinear model and input factors that are
affected by uncertainties of varying magnitude, a GSA approach
is the more robust option. Thus, more studies currently are using
GSA techniques instead of local SA. Most of the global SA methods
are variance-based, for example the global sensitivity index is pre-
sented by the contribution of each input factor to the total variance
of the model output. Methods for GSA are typically decomposed
into four steps: (1) definition of the inputs and their distribution; (2)
generation of a sample of input values; (3) evaluation of the model

output for each sample set of inputs; and (4) estimation of the effect
of each input on the model output (Tong, 2010). To perform the last
step, two  main approaches are used: a model approximation (e.g.,
linear regression) or a direct decomposition of the output variance;

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
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he latter is typically considered more advantageous in nonlinear
odels. The following paragraphs briefly describe two  common
SA methods which are used in this study, the Morris screening
ethod and the method of Sobol’.
Morris (1991) proposed an experimental plan to determine

hich input factors have important effects on an output using
ndividually randomized one-factor-at-a-time (OAT) designs, also
eferred to as “elementary effects.” The method is well-suited for
ases with a large number of input factors and/or expensive com-
utation, and is often considered a good compromise between
ccuracy and efficiency (Campolongo et al., 2007). The main idea
ehind the Morris screening method is to discriminate, at low sam-
le size, among effects which are (a) non-influential or negligible,
b) linearly influential and additive, and (c) non-linearly influential
r influential by interactions with other factors (Campolongo et al.,
007; Saltelli et al., 2004, 1999). For each input, two sensitivity
easures are computed: �*, which assesses the overall influence

f the factor on the output, and �, which estimates the ensem-
le of the factor’s higher order effects, i.e. non-linear and/or due
o interactions with other factors (Campolongo et al., 2007). While
onsidered a GSA method because it covers the entire space over
hich the factors may  vary, the experimental part of the method

s composed of individually randomized OAT experiments (Saltelli
t al., 2004). Morris suggests evaluating a graphical representation
f � vs. �* to determine the most important factors. One of the
ain advantages of the Morris method is the low computational

ost, especially in comparison with other screening methods such
s fractional factorial designs. However, the sensitivity measures
re typically considered qualitative (i.e., ranking significant input
actors) but not necessarily quantitative in regard to the degree
f significance. Quantitative methods, such as the variance-based
ethod of Sobol’ discussed next, give precise calculations of out-

ut variance but are also more computationally expensive (Saltelli
t al., 2004).

The Sobol’ (1993) GSA method computes an ANOVA-based
ecomposition of the output variance, where both main effects and

nteraction terms can be computed (Saltelli et al., 2000a). The Sobol’
ensitivity index represents the fraction of the total variance that
s due to any individual factor or combination of factors. Addition-
lly, the method of Sobol’ is able to estimate the total sensitivity
ndex STi, defined as the sum of all effects (including first-order and
igher-order) involving the input factor of interest (Saltelli et al.,
000b). With k quantitative input factors, the decomposition of the
ariance var(Ŷ) generalizes to:

ar(Ŷ) =
k∑

i=1

Di +
∑

1≤i<j≤k

Dij + · · · + D1,2,...,k (1)

here D1 is the variability associated with the main effect of input
actor x1, D2 is the variability associated with the main effect of x2,
nd D12 is the variability associated with the interaction between
1 and x2, and so on. This technique is very similar to the analysis of
ariance (ANOVA), except that var(Ŷ) represents the variability of

ˆ in terms of the overall uncertainty of the input factors, including
rregular and non-linear effects (Monod et al., 2006). The sensitivity
ndices are derived from the above equation by dividing individual
mportance measures by the total variability var(Ŷ):

i = Di

var(Ŷ)
(2)

ij = Dij (3)

var(Ŷ)

nd so on, where Si is called the first order sensitivity index for
actor xi, measuring the main effect of xi on the output [or the frac-
ional contribution of xi to the variance of f(x)]. Sij is called the
elling 231 (2012) 113– 125

second-order sensitivity index which measures the interaction
effect of the two inputs xi and xj, without considering the sum of the
individual effects (Saltelli et al., 2000b). A useful property of these
sensitivity indices is that all of the possible first-order sensitivity
index terms sum to one:

k∑

i=1

Si +
∑

1≤i<j≤k

Sij + · · · + S1,2,...,k = 1 (4)

The total sensitivity index (STi) can be defined as the sum of all
the sensitivity indices involving the factor in question. For example,
in a three-factor model, the three total effect terms for STi are:

ST1 = S1 + S12 + S13 + S123
ST2 = S2 + S12 + S23 + S123
ST3 = S3 + S13 + S23 + S123

(5)

where each Si is simply the fraction of the variance of that value to
the total variance of the model, as previously defined. Although the
sum of the individual effect terms will add to one, the sum of all
the STi values is typically larger than one because interactions are
counted multiple times.

GSA input samples were generated with SimLab (2010),  and
evaluation of CERES-Maize model input sets was automated with
SimLab and MATLAB (Mathworks, 2010). The Morris SA was  exe-
cuted by sampling r = 10 elementary effects (i.e., individualized
comparisons per factor) and k = 16 input factors for a total exper-
iment cost (as suggested by Morris, 1990) of r(k + 1) = 170 model
input sets. The Sobol’ SA was executed by using k = 11 input factors
after eliminating five insensitive inputs from the Morris analy-
sis, and a sample size of n(k + 2) model input sets (Saltelli, 2002;
Campolongo and Saltelli, 1997), where n is defined having a range
of 100 or higher (Saltelli, 1999). This study used n = 160 for a total
of 2080 input sets, consistent with other examples with simi-
lar number of input parameters (Campolongo and Saltelli, 1997;
Saltelli et al., 2000a), and verified as having results similar to over
15,000 input sets. Each input set was run for both full and limited
irrigation treatments, using observed management data from five
years (2006–2010). CERES-Maize output response uncertainty was
assessed using statistics and CDFs created from the Sobol’ simula-
tion outputs.

3. Results

3.1. Morris screening method

Results for the Morris SA are shown in both graphical (Fig. 1) and
tabular (Table 2) form. Morris (1991) suggested that only factors
with relatively high values of �* and � are considered important. As
mentioned in the previous section, high values for �* indicate large
overall sensitivity to the input parameter, whereas a high value for
� indicates interaction or non-linear effects associated with the
input parameter. ADAY was  most sensitive to P1, a trend that was
typical for every output response except YIELD and ETC (Table 2). In
order of decreasing �* (i.e., decreasing sensitivity), PHINT was the
next highest, with slightly higher � than P1 indicating more inter-
action. ADAY was  less sensitive to P2 than PHINT, but � for these
inputs was nearly the same as P1. For these three input parame-
ters, there was little difference between treatments (Fig. 1). There
was minor sensitivity to the soil parameters SLLL and SDUL (due
to higher standard deviations) for the limited irrigation treatment,
but very low �* values (indicating low overall influence). Another
phenological timing output, MDAY was similar to ADAY in that it

was most sensitive to P1, with the full irrigation treatment having a
slightly higher �* (Fig. 1). This trend is logical, as changes to ADAY
will naturally cause changes to MDAY, although their sensitivity to
inputs was  not identical because of thermal growth accumulations
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ig. 1. Morris sensitivity analysis results shown in graphical form for all CERES-M
quares  indicate limited irrigation treatment. Labels of the most important factors a

fter ADAY. P5 and PHINT were the next most influential inputs

ith sensitivity to P2 very low.

Both LNS and LAIX are vegetative growth outputs which should
e sensitive to phenological inputs but also to water stress. LNS was

able 2
orris sensitivity analysis rankings for both full and limited irrigation treatments and all 

n  Morris �*  (1 = most important input for the given output).

Irrigation treatment Output response Input parametersa

P1 P2 P5 G2 

Full ADAY 1 3 –b – 

MDAY 1 4 2 – 

LNS  2 3 – – 

LAIX  1 4 – – 

YIELD 5 – 4 3 

ETC  2 7 3 – 

Limited ADAY 1 3 – – 

MDAY 1 4 2 – 

LNS  2 3 – – 

LAIX  1 7 – – 

YIELD 2 11 7 5 

ETC  3 9 5 – 

a Input parameters SLPF, SLU1, SSAT, SSKS, and SBDM had no significant influence on a
b “–” = no significant influence based on Morris �* less than 10% of the maximum �* fo
output responses of interest. Filled circles indicate full irrigation treatment, open
own.

mostly sensitive to PHINT and P1, with little difference between

irrigation treatments (Fig. 1). There was  a limited amount of sen-
sitivity to P2 as well for LNS. On the other hand, for the two
treatments there was  a large difference between sensitive input

CERES-Maize output responses evaluated, in decreasing order of importance based

G3 PHINT RUE SLDR SLRO SLLL SDUL

– 2 – – – – –
– 3 – – – – –
– 1 – – – – –
– 2 3 – – – 5
2 6 1 – – 8 7
– 5 8 1 – 6 4

– 2 – – – – –
– 3 – – – – –
– 1 – – – – –
– 4 5 6 – 2 3
4 10 1 9 8 3 6
– 6 8 4 7 1 2

ny output responses and were omitted from the rankings.
r the output response in question).
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Table 3
Sensitive CERES-Maize input parameters, in order of decreasing total Sobol’ sensitiv-
ity  (STi), for both full and limited irrigation treatments and all CERES-Maize output
responses evaluated.

Output response Irrigation treatment Sensitive input parametersa

ADAY Full P1, PHINT
Limited P1, PHINT

MDAY Full P1, P5, PHINT
Limited P1, P5, PHINT

LNS Full P1, PHINT
Limited PHINT, P1

LAIX Full P1, PHINT, RUE
Limited P1, SLLL, SDUL, PHINT, RUE

YIELD Full RUE, G3, G2, PHINT, P5, P1
Limited RUE, P1, G3, SLLL, G2, SDUL, P5

ETC Full SLDR, P1, P5, SDUL, SLLL, PHINT
Limited SLLL, P1, SLDR, SDUL, P5

a All sensitive input parameters have STi greater than 0.05.

Table 4
Correlation (r) comparisons between the Sobol’ method total sensitivity index (STi)
and  the Morris method �* for both full and limited irrigation treatments.

Output response Irrigation treatment

Full Limited

ADAY 0.969 0.970
MDAY 0.943 0.950
LNS  0.960 0.928
20 K.C. DeJonge et al. / Ecologica

arameters for LAIX. For both treatments, P1 was the most influ-
ntial input considering �* but the sensitivity was higher for full
rrigation than for limited irrigation. PHINT was also a highly influ-
ntial input for both treatments, again with much higher sensitivity
or full irrigation than for limited irrigation. However, the soil input
arameters SLLL and SDUL were highly influential for limited irri-
ation with �* values greater than the value for PHINT. RUE also
ad some effect on LAIX for both treatments (Fig. 1).

YIELD was most sensitive to RUE for both treatments (Table 2),
lthough it had a higher �* and � for full irrigation (mainly because
ully irrigated yield naturally has higher values with more vari-
nce expected than for limited irrigation yield). For full irrigation,
he next five highest influential parameters were all cultivar coef-
cients (G3, G2, P5, P1, PHINT). Although these cultivar parameters
ere also sensitive for limited irrigation, sensitivity to the soil
arameter SLLL was much higher for the limited irrigation treat-
ent and should be considered equally influential. In addition,

IELD was also sensitive to the soil parameter SDUL for both
reatments. ETC was most sensitive to SLDR and P1 for full irri-
ation, followed by P5, SDUL, PHINT, and SLLL (Table 2). Several of
hese parameters were sensitive for limited irrigation; however,
he order of sensitivity was much different: SLLL was the most
nfluential input parameter, followed by SDUL, P1, SLDR, and P5.
his indicates that when water is limited the cumulative ET is very
esponsive to the water holding capacity and the drainage from the
eepest layer.

As suggested by prior literature (i.e., DeJonge et al., 2011), phe-
ological timing and total leaf count are not responsive to lack of
vailable water, as shown by little treatment difference between
ensitivity of any input parameter in ADAY, MDAY, and LNS (Fig. 1).
onversely, there was a large contrast in sensitive inputs between
reatments for the LAIX, YIELD, and ETC output responses, with

uch greater sensitivity to soil hydraulic parameters in limited irri-
ation, whereas in full irrigation the LAIX, YIELD, and ETC output
esponses are mainly sensitive to cultivar-specific inputs (Fig. 1).

.2. Sobol’ variance-based method

Because Morris is often used as a “screening” method to elimi-
ate insensitive parameters, the Sobol’ analysis used default values

or input parameters SLPF, SLU1, SSAT, SSKS, and SBDM, as they
ndicated no influence on CERES-Maize output responses of interest
or the Morris method. The Sobol’ total sensitivity index (STi) results
Fig. 2) were very similar to the Morris �* ranking results (Fig. 1
nd Table 2). First-order sensitivities were typically very close to
he STi for output responses typically sensitive to two  or three input
arameters (i.e., ADAY, LNS, and LAIX for full irrigation), but yielded
any more interactions when the output response was  sensitive

o three or more parameters (i.e., LAIX for limited irrigation, YIELD,
nd ETC). Interactions can easily be identified by a large difference
etween STi and Si in Fig. 2. A ranking of sensitive parameters in
ecreasing order of STi is also displayed (Table 3).

The CERES-Maize output response ADAY was highly sensitive
o P1 and slightly sensitive to PHINT (Fig. 2) with minimal interac-
ions between the input parameters. MDAY was also very sensitive
o P1 (followed by P5 and PHINT, respectively), with slight inter-
ctions between input parameters P1 and P5. LNS was  primarily
ensitive to P1 and PHINT, again with small interactions between
he two inputs. There were minimal differences between full and
imited irrigation treatments for the ADAY, MDAY, and LNS output
esponses, considering both STi and Si values. LAIX was  the most
ensitive to P1 and PHINT for full irrigation, but for limited irrigation

xhibited significant sensitivity to soil parameters SLLL and SDUL as
ell as RUE. For full irrigation, there were very small interactions

etween the two sensitive input parameters for LAIX; however,
here were larger interactions between P1, SLLL, and PHINT (Fig. 2).
LAIX 0.995 0.995
YIELD 0.980 0.969
ETC  0.962 0.954

YIELD was the most sensitive to RUE for both treatments, followed
by cultivar parameters typically used in calibration, although for
limited irrigation YIELD was  much more sensitive to soil param-
eters SLLL and SDUL. First-order sensitivity was highest in full
irrigation to RUE, G2, then G3; however for limited irrigation this
was RUE, P1, SLLL, and G2. For YIELD, G3 had the largest amount
of interaction, for both treatments. For full irrigation, ETC was pri-
marily sensitive to P1 and SLDR, and slightly sensitive to P5, with
interactions involved in all three inputs. For limited irrigation, ETC
was the most sensitive to SLLL followed by P1, SLDR, and SDUL, with
larger interactions for SLDR and P1 as well. Furthermore, ETC sensi-
tivity to SLDR showed the highest interaction of all the CERES-Maize
input parameters across both treatments.

3.3. Comparison between Morris and Sobol’ GSA methods

Because the Sobol’ STi results so closely replicated the order
and magnitude of the Morris �* results (taking into account the
entire sensitivity of the output to each input parameter), a direct
comparison was  made for each output response and treatment by
calculating the correlation (r) between Sobol’ STi and Morris �*
(Table 4). Comparisons were made using only inputs evaluated in
both GSA methods, so inputs with negligible sensitivity as found by
the Morris screening method were eliminated from this compari-
son. All comparisons yielded r values greater than 0.928, indicating
a very high correlation between the two GSA methods used.

3.4. Uncertainty analysis

Statistics and CDFs for all outputs of interest and both irrigation

treatments were created from the 2080 Sobol’ simulation outputs
(Table 5 and Fig. 3, respectively). Although GSA indicated little sen-
sitivity difference in treatments for ADAY, the UA revealed that
the reproductive growth stage was delayed for limited irrigation
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Fig. 2. Sobol’ total sensitivity (STi), and 1st order sensitivity (Si) indices for CERES-Maize output responses of interest. Model input parameters are those found sensitive by
the  Morris screening method.

Table 5
Uncertainty analysis statistics for full and limited irrigation treatments and all output responses, as determined from Sobol’ global sensitivity analysis simulations.

Output response (unit) Irrigation treatment Minimum 5% CIa Median 95% CI Maximum

ADAY (day) Full 57 66 82 103 123
Limited 65 74 92 114 125

MDAY (day) Full 101 119 160 174 174
Limited 118 131 145 174 175

LNS  Full 10.6 12.7 17.9 25.2 30.6
Limited 10.6 12.5 17.5 24.8 30.0

LAIX  Full 0.20 1.23 3.21 5.39 6.43
Limited 0.45 2.04 3.82 5.56 6.45

YIELD  (kg ha−1) Full 608 2791 6751 14,190 23,696
Limited 0 1004 6176 13,649 20,926

ETC  (mm)  Full 203 346 533 656 747
Limited 233 439 519 645 731

a Confidence interval.
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ig. 3. Uncertainty analysis cumulative distribution functions (CDFs) for CERES-Maiz
robability (%), x-axis unitless unless indicated with the output name.

median 82 days for full irrigation, 92 days for full irrigation). There
ere some differences in the uncertainty range between treat-
ents for MDAY, with high frequency in several cases as indicated

y sharply vertical lines (Fig. 3). The only difference between irri-
ation treatments for LNS was a minimal increase for full irrigation
ver limited irrigation. Simulated LAIX was found to be higher for
imited irrigation than full irrigation (median 3.21 for full irriga-
ion, 3.82 for limited irrigation). The UA for ETC indicated a broader
ange for full irrigation than for limited irrigation, i.e., full irriga-
ion exhibited respective 5% and 95% CIs of 346 and 656 mm but
imited irrigation indicated 5% and 95% CIs of 439 and 645 mm,
espectively. Finally, YIELD exhibited higher values under full
rrigation than under limited irrigation over the entire probability
ange.
. Discussion

Because the Morris �* and Sobol’ STi results had such a high cor-
elation, the remainder of this paper will refer to the sensitivity of
ut responses of interest, created from Sobol’ model runs. Y-axis indicates cumulative

a parameter in a general sense rather than in specific terms of SA
method (i.e., Morris or Sobol’). It is important to consider that the
results for Morris were found with 170 runs and a simpler algo-
rithm than the more complicated Sobol’ algorithm which required
2080 runs (with n = 160 cycles to determine sample size). While
Saltelli (1999) recommends n in the range of 100 or higher, Saltelli
et al. (2005) also note that n is typically in the range of 500–1000.
Preliminary Sobol’ runs performed for this study indicated that
sensitivity obtained with n = 160 had results indistinguishable to
n = 1200, and we  expect that increasing the total number of Sobol’
runs would only give the same results at additional cost. Regard-
less, the Morris and Sobol’ methods served equally well in terms of
not only ranking the input parameters, but also in quantifying rel-
ative total sensitivity of the input parameters. Similar results were
found by Campolongo et al. (2007) when assessing the sensitivity of

a chemical reaction model for dimethylsulphide (DMS). As the Mor-
ris method is less computationally expensive, it may  be preferred
over the Sobol’ method for many types of SA studies. However, cau-
tion must be used in this approach as interactions and nonlinearity
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re difficult to distinguish based on Morris screening results alone
Saltelli et al., 2000a). For example, in a previous study Campolongo
nd Saltelli (1997) performed both Morris and Sobol’ analyses
sing the GMSK model to simulate the oceanic production of DMS,
valuating 34 factors, and found that the Pearson correlation coef-
cient (r) between the Morris and Sobol’ methods was 0.66, a much

ower value than consistently found in this study. Campolongo and
altelli (1997) go on to suggest a procedure matching accuracy and
ost that would include a Morris analysis followed by a Sobol’ anal-
sis on a subset of selected inputs, just as was conducted in this
tudy. However, simple linear correlations between the two  meth-
ds were very high in our case. Confalonieri et al. (2010b) used
he rice model WARM to conduct SAs using the Morris method,
hree regression-based methods, and two variance-based methods
E-FAST and Sobol’), finding that the simpler SA methods includ-
ng Morris gave comparable results to the more computationally
xpensive Sobol’ method.

CERES-Maize output responses ADAY, MDAY, and LNS had no
otable sensitivity difference between treatments, indicating that
nthesis and maturity timing (as well as successive leaf tip appear-
nces) are generally insensitive to the effects of water stress. This is
ontradictory to some observed field responses, for example Farre
nd Faci (2006) observed delays in maize flowering and maturity
ue to water stress, and DeJonge et al. (2011) observed differences

n total leaf count for the same field experiment used in this study.
brecht and Carberry (1993) observed delayed leaf tip emergence,

assel emergence, silking, and onset of grain filling due to vary-
ng amounts of water stress. For the CERES-Maize LAIX, YIELD, and
TC output responses, water holding capacity was an extremely
mportant factor in regard to sensitivity under limited irrigation,
s the sensitivity is highly dependent upon the water management
bjectives. For full irrigation, none of the model output responses
valuated in this study exhibited significant sensitivity to the soil
arameters SLLL or SDUL. However, under limited irrigation, these

nput parameters were very important in terms of total sensitivity,
specially SLLL which was the most sensitive input parameter for
oth LAIX and ETC (Table 3). This indicates that much more atten-
ion is required in estimating SLLL and SDUL for limited irrigation
imulations than for full irrigation simulations, especially SLLL as
t is a main limiting factor for leaf area growth, crop yield, and ET
Fig. 2). Interactions are also important to consider, for example
n LAIX under limited irrigation SLLL has a large interaction (0.09),
ikely with P1 and PHINT as no other inputs show a large amount
f interaction (Fig. 2). SLDR was also an influential input in regard
o ETC under limited irrigation, as increased drainage out of the
oil profile limits the model’s ability to meet ET demand, and also
ad a large interaction with other parameters (0.17). Where these

nteractions exist, all parameters should be considered simultane-
usly instead of one at a time, and this GSA study illustrates this
mportance.

The UA results offer some interesting insight into the behav-
or of the model (Table 5 and Fig. 3). There was little difference
n sensitivity between irrigation treatments for ADAY and MDAY.
owever, the UA showed a shift in ADAY for limited irrigation,
hich may  partially be due to delayed crop planting for some lim-

ted irrigation treatments, but more likely due to sensitivity to some
nknown response not evaluated in this study. Responses also var-

ed between irrigation treatments for MDAY, with the CDFs crossing
ach other twice and both having strong vertical lines, indicating
rop maturity at the same date for many simulations. This trend
an be explained as an interaction between the weather inputs, the
rrigation treatment, and model code that indicates maturity (or

imulation end) under specific conditions. LNS essentially exhib-
ted the same uncertainty between irrigation treatments, with a
light decrease in LNS under limited irrigation; these differences
re illustrated in Fig. 2 where a very small sensitivity to soil water
elling 231 (2012) 113– 125 123

parameters is seen for limited irrigation. For LAIX, there was  a
very broad range in uncertainty for both treatments, and inter-
estingly the CDF and statistics for full irrigation indicated lower
LAIX values than under limited irrigation. Upon closer examina-
tion of the results, in many cases LAIX was  higher for full irrigation
than for limited irrigation as expected, but limited irrigation had
higher LAIX values overall. This trend is likely due to increased par-
titioning to leaf biomass when the crop is under water stress. It is
also important to consider that LAIX indicates the maximum LAI
over the season and under stressed conditions the LAI will often
spike and decrease quickly because of senescence. Future studies
may  consider using an average LAI during a specific developmental
stage; however, with differing treatments and input parameters
the growth stages obviously would be dynamic and difficult to
glean from the outputs. As expected, YIELD was  higher for full
irrigation than limited irrigation across the uncertainty range. The
95% CI indicates predicted yields of 14,190 kg ha−1 under full irri-
gation, numbers that are typically unrealistic under these climatic
conditions. These high simulated yields may  be due to unique com-
binations of input parameters that maximize yield, for example
large values for input parameters RUE P2, G2, G3. At higher cumula-
tive probabilities, ETC was  higher for full irrigation than for limited
irrigation, as would be expected (i.e., the 95% CI predicts 656 mm for
full irrigation and 645 mm for limited irrigation). However, as ETC
decreases, the values were actually higher for limited irrigation (i.e.,
the 5% CI predicts 346 mm for full irrigation and 439 mm for lim-
ited irrigation). This trend supports the conclusion of DeJonge et al.
(2011) that CERES-Maize tends to overpredict evapotranspiration
while the crop is under water stress.

Ma  et al. (2011) describe a systematic calibration of cultivar
parameters for DSSAT models, in which they suggest calibrating
these inputs based on phenology first, followed by biomass, LAI, and
yield. As this GSA study shows, the calibration method described
by Ma  et al. (2011) may  be appropriate in a study that observes
no water stress. However, the difference in input sensitivity in
regard to limited irrigation treatments found in this study pro-
vides a unique opportunity to perform a systematic calibration
of datasets for water stressed conditions, such as those used in
DeJonge et al. (2011),  and could provide guidance for other DSSAT
modelers to improve calibrations under limited water conditions.
Such a calibration would be roughly based on the method described
by Ma  et al. (2011) by calibrating or parameterizing individual out-
put responses to observed values based on which influential inputs
can be solved for the most easily. However, this new calibration
method would also acknowledge the strong influence that water
holding capacity has on outputs such as LAI and yield. In this study,
no output response was overly sensitive to P2 so the recommended
default value for this parameter could likely be used. PHINT also
was not an overly sensitive parameter in this study, but could be
estimated based on observations of successive leaf tip appearances
and growing degree days. Once PHINT is known, P1 can then be
estimated by matching ADAY for both treatments and LNS for full
irrigation only (as we  know that limited irrigation, the model will
not correctly predict observed leaf number). With P1 and PHINT
known, only P5 is left to estimate to fit MDAY. At this point, LAIX
(and leaf area index throughout the season, for that matter) should
match closely for full irrigation. Soil hydraulic parameters SLLL and
SDUL can then be estimated within acceptable levels for the known
soil type, and should help closely match leaf area index for the
limited irrigation treatment. Ma  et al. (2011) recommend using
SLPF to improve simulations, but this study found all relevant
outputs to be insensitive to changes in SLPF. While RUE has not

traditionally been documented in past studies as a calibration
parameter, this study suggests it could be evaluated within rea-
sonable ranges. RUE can also be used to make smaller adjustments
to LAIX, as it provides some sensitivity without interactions, and
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bviously has a high influence on YIELD. Finally, YIELD can be fit-
ed by finding values for G2 and G3, whereas ETC can be fitted by
efining SLDR. Without full testing, it is impossible to speculate

f such a systematic method of calibration would be worthwhile,
ut it is certainly worth considering in future studies as another
xtension of this GSA.

. Summary and conclusions

Two types of SA were performed on full and limited irrigation
reatments of corn using the CERES-Maize crop model and five
ears of observed full and limited irrigation schedules and weather.
n addition, an UA was conducted using CDFs created from the
obol’ SA simulation outputs. Model outputs evaluated included
rowth timing of anthesis date and maturity, total leaf number per
tem, maximum leaf area index, crop yield, and cumulative evapo-
ranspiration. Inputs, which were systematically varied throughout
n acceptable range of values, included crop cultivar parameters,
oil hydrologic parameters, and radiation use efficiency. The Morris
A method was used to eliminate completely insensitive parame-
ers prior to performing the more computationally intensive Sobol’

ethod. In this study, results comparing Morris mean and Sobol’
otal sensitivity index showed very high correlation between the
wo (Table 4), indicating that the computationally cheaper Mor-
is method could have been used as the sole indicator of input
ensitivity.

For the full irrigation treatment, outputs were mostly sensitive
o crop cultivar parameters. This was anticipated as CERES-Maize
as been known to perform best in non-water stressed environ-
ents and the crop cultivar parameters have historically been

sed for calibration (DeJonge et al., 2011). However, in the limited
rrigation treatment outputs for leaf area index, yield, and evapo-
ranspiration were highly influenced by the SLLL and SDUL input
arameters (which define water holding capacity). Evapotranspi-
ation was also highly sensitive to drainage rate (SLDR) in both
reatments, and crop yield was most sensitive to radiation use effi-
iency (RUE) in both treatments. For both treatments, anthesis date
nd maturity date were not sensitive to soil hydraulic parameters
nd had the same sensitivity between treatments, unsurprising as
n CERES-Maize these outputs are strictly a function of thermal
ime and have no reaction to available water (although the UA
howed slight differences between irrigation treatments). There
ere no differences in sensitivity or uncertainty between treat-
ents for leaf number per stem, a trend expected based on the
eJonge et al. (2011) results. For LAIX, the UA indicated higher val-
es for limited irrigation than for full irrigation, and future studies
re recommended to use a time-averaged value for LAI instead of
he maximum value. Although for YIELD the UA indicated higher
alues for full irrigation, analysis of ETC showed higher evapotran-
piration for the limited irrigation treatment in the lower range of
alues, indicating a need for further investigation as to why CERES-
aize tends to overpredict evapotranspiration while the crop is

nder water stress.
It is a well-known fact that identifying influential model param-

ters, in a specific arena of application, is of primary importance
or all types of models, in this case the agroecosystem (and specifi-
ally crop) modeling community. This is true for aiding not only
fficacious parameterization and calibration, but also for model
evelopment and enhancement itself. This study shows that as pre-
iction problems related to water availability in agriculture become
ore complex, our analysis techniques need to evolve and progress
o better represent and quantify how crop growth models behave
nder water limited environments. Although this study focused
n CERES-Maize parameter sensitivity and output uncertainty, a
uture study should focus on model sensitivity to water stress and
elling 231 (2012) 113– 125

how those functions are calculated. The ability to better quantify
crop development delay under water stress is a potential model
improvement as indicated by this SA. The current version of CERES-
Maize shows little phenological timing or growth response (in the
form of total leaf count) to water stress, as these outputs are strictly
functions of thermal time (DeJonge et al., 2011). Saseendran et al.
(2008a) review several examples of observed maize phenology
delay due to water stress, and emphasize that crop models that
simulate water stress should emphasize these effects. One possi-
bility for future improvement of CERES-Maize would be to adopt
an approach similar to the APSIM (Agricultural Production Sys-
tems Simulator) v 5.0 generic plant module. For example, between
the stages of emergence and flowering, the calculated daily ther-
mal  time in APSIM is scaled back by water and N stresses, causing
delayed phenology under stress (Saseendran et al., 2008a).  It is also
notable that DeJonge et al. (2011) reported underestimation of LAI
under limited irrigation while ET was overestimated, and UA in
this study actually indicates higher ET under water stress in some
cases. To obtain a full understanding of contributors to these output
biases, an evaluation of CERES-Maize water stress sub-procedures
is suggested to supplement this GSA study.

Finally, the linkage between sensitivity analysis and model
parameterization/calibration is not always well-defined or read-
ily apparent for the casual or even advanced crop modeler. As
real-world management paradigms change, for example limited
irrigation of crops, the models that are used to simulate these man-
agement changes will need to adjust appropriately. For example,
formerly suggested CERES-Maize calibration methods for non-
stressed crops may  not be adequate in cases that include, or even
focus on, water stress. Therefore, a new methodology for systematic
calibration of CERES-Maize, based on sensitivity indices for the two
irrigation treatments, is proposed for future evaluation. This cali-
bration method focuses on the strong influence that water holding
capacity has on outputs such as LAI and yield, and may  potentially
improve CERES-Maize predictive ability under limited water con-
ditions where water stress is commonly encountered during the
vegetative growth stage.
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