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Chapter 12. IRRIGATION COMPONENT

E. R. Kottwitz

12.1 Introduction

The use of irrigation has greatly increased agricultural productivity. This is reflected in the
following statistic: 18 percent of the cultivated land is irrigated but accounts for one-third of the world’s
food production (Stewart and Nielsen, 1990). Use of irrigation systems, however, may cause serious
erosion on a significant portion of the irrigated land.

Erosion from areas irrigated using stationary sprinkler or furrow irrigation systems can be
estimated using the irrigation component of the WEPP hillslope/watershed model. Rainfall, snowmelt, or
irrigation events may cause erosion. The contribution of each of these events to runoff and soil loss from
an area can be identified by the the hillslope/watershed model. The purpose of this chapter is to present
the governing equations and methodology used in the development of the irrigation-induced erosion
model.

12.2 Sprinkler Irrigation Systems

Stationary sprinkler systems considered by the model include solid-set, side-roll, and hand-move
systems. Stationary sprinkler systems are assumed to provide water simultaneously to all locations
within an overland flow element (OFE). Sprinkler irrigation water additions are simulated within the
WEPP model using the same calculations as for water additions from rainfall. An additional user input
allows modification of the effective sprinkler nozzle impact energy on the interrill detachment computed
by the model (see Chapter 11). For the fixed-date scheduling option (section 12.4.3), any combination of
OFE’s can be irrigated on a particular day. The depletion-level scheduling algorithms, described in
section 12.4.2, have the limitation of irrigating only one OFE on a particular day. The OFE irrigated is
that which is most severely depleted.

12.2.1 Concurrent Events

If a rainfall event occurs on a day on which stationary sprinkler irrigation is required, the events are
assumed to have identical starting times. Thus, the rainfall and irrigation hydrographs are combined. For
an irrigation event with a duration less than or equal to the duration of rainfall, the model first
disaggregates the rainfall into 10 intensity-duration blocks of equal volume (see Chapter 2). Starting with
the first block, each intensity is then increased by the irrigation rate until the block including the time at
which the irrigation stops is encountered. For this block, the intensity is increased by the average
irrigation intensity for duration of the block. The final disaggregated hydrograph has 10 intensity-
duration blocks with volumes that may not be equal.

For an irrigation event of duration greater than the rainfall duration, the model first disaggregates
the rainfall into 9 equal volume intensity-duration blocks. The intensity of each of these blocks is then
increased by the irrigation rate. A 10th intensity-duration block is established having an intensity equal
to the irrigation rate. The duration of this block is defined by the irrigation duration and the time at which
the 9th intensity-duration block ends. The final disaggregated hydrograph has 10 intensity-duration
blocks with volumes that may not be equal.

12.3 Furrow Irrigation Systems

Erosion on furrow irrigated areas has been long recognized as a serious problem. Isrealson et al.
(1946) and Mech and Smith (1967) reported erosion of up to 10.2 cm/yr near head ditches on some
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furrow irrigated fields. The long term effect of irrigation-induced erosion on the upper end of a field and
deposition on the lower portion is vividly described by Carter (1990). Several other researchers have
measured soil loss from furrow irrigated areas (Berg and Carter, 1980; Aarstad and Miller, 1981; Berg,
1984; Dickey et al., 1984; Brown, 1985; Sojka et al., 1992). Kemper et al. (1985) found that, in general,
reasonable soil loss estimates could be obtained by relating erosion to a power function of flow rate and
slope gradient. The empirical constants used in these equations limit their utility to a very specific set of
conditions.

12.3.1 Governing Equations and Methodology

12.3.1.1 Hydrology

Infiltration into an irrigated furrow is a three-dimensional process. This process can be simplified
into a two-dimensional form if infiltration opportunity time at each location within the furrow is known.
Numerous models are available for estimating infiltration. The Green and Ampt (1911) equation is
frequently used to predict one-dimensional flow. Considerable work has been performed to improve the
original Green and Ampt equation and to predict appropriate parameters from physical characteristics of
the soil (Rawls et al., 1983).
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Figure 12.3.1. Two-dimensional infiltration pattern.

Fok and Chiang (1984) presented a two-dimensional infiltration function useful for furrow irrigated
conditions. To use their function, Green and Ampt infiltration parameters must be known. The function
assumes two regions of one-dimensional horizontal infiltration, one region of one-dimensional vertical
infiltration, and two regions of two-dimensional infiltration as shown in Fig. 12.3.1. The two-
dimensional regions are assumed to be quarter ellipses. Using these assumptions, cumulative infiltrated
volume per unit furrow length, Z, is given by
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where d = depth of flow; Ix = horizontal advance distance of the wetting front; b = bottom width of the
furrow; Iy = vertical advance distance of the wetting front; and ∆θ = net change in soil moisture content.

The equation of Green and Ampt (1911), the basis for estimating vertical advance distance, is given
as
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where Ke = effective hydraulic conductivity; τ = infiltration opportunity time; and hy = total head loss in
the vertical direction. The equation for horizontal advance distance is given by Fok and Chiang (1984) as
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where hx = total head loss in the horizontal direction. The value of hx is assumed to be equal to hy.

Because the hydraulic model component described below must be solved numerically, it is not
computationally efficient to use the Green and Ampt infiltration function which also requires a numerical
solution. To improve efficiency, parameters for the Kostiakov-Lewis infiltration function are calibrated
to a set of time-cumulative infiltration pairs. The Kostiakov-Lewis infiltration function, which is often
used in computer models, is given as

Z = kτa + foτ [12.3.4]

where k, a, and fo are empirical parameters. The value of fo is assumed to be equal to the minimum
infiltration rate over the duration of the irrigation.

The largest infiltration opportunity time used for the time-cumulative infiltration pairs is the
summation of all inflow durations. The numerical solution of the Green and Ampt infiltration function is
used to identify vertical advance distance for this opportunity time. This vertical advance distance is then
divided by the number of time-infiltration pairs. The resulting value is used to incrementally increase
vertical infiltration distance. The time required for the wetting front to advance a given distance can be
determined directly using a form of Eq. [12.3.2]. From the calculated time it is possible to identify the
horizontal advance distance of the wetting front and cumulative infiltration using Eq. [12.3.3] and
[12.3.1], respectively. In this manner, all time-cumulative infiltration pairs can be determined from only
one numerical solution of the Green and Ampt function.

The use of horizontal advance distance in equations derived by Fok and Chiang (1984) requires
appropriate adjustments if horizontal wetting fronts meet prior to the completion of irrigation. Horizontal
wetting fronts are assumed to meet when Ix equals a maximum horizontal distance, (Ix)max, given by

(Ix)max =
2

W − bhhhhhh [12.3.5]

where W = distance between the center lines of irrigated furrows. A consequence of basing the definition
of (Ix)max on b is that, for a trapezoidal furrow, some overlapping of the horizontal wetting fronts occurs.
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The water contained in the overlapping regions is assumed to move upward into ridges located between
furrows. The volume of water in the overlapping regions is small compared to the total infiltrated
volume. Thus, the effect of this assumption on cumulative infiltration is small. If horizontal wetting
fronts are found to meet, the incremental vertical advance distance is assumed to occur over a
representative width equal to W. This assumption is demonstrated graphically in Fig. 12.3.2.

Infiltration pattern at time = t

Infiltration pattern at time = t +    t

W

Figure 12.3.2. Infiltration after wetting fronts meet.

The Kostiakov-Lewis infiltration parameters are estimated using a least squares regression analysis
of time-cumulative infiltration pairs. The technique is similar to that used for exponential functions as
described by James et al. (1985). This procedure properly weights errors obtained during the least-
squares analysis.

12.3.1.2 Hydraulics

The hydraulics of furrow irrigation have been modeled using a variety of approaches. Elliott et al.
(1982) used a zero-inertia procedure with a specified time step to model the advance phase of an
irrigation event. Kinematic wave theory with a specified time step was employed by Walker and
Humpherys (1983) to simulate the entire irrigation event including surged inflow. Wallender and Rayej
(1985) used a non-linear zero-inertia procedure with an adjustable time step to model irrigation events
including surged inflow. Volume balance analysis with specified space intervals was employed by
Wallender (1986) to simulate the advance phase of an irrigation event. Rayej and Wallender (1987) used
a cumulative solution of the volume balance equation with specified space intervals to model irrigation
events. A volume balance and Muskingum type storage-discharge relation with a specified time step was
employed by Singh and He (1988) to simulate irrigation hydraulics. SIRMOD (Utah State University,
1989) and SRFR (Strelkoff, 1990) are computer models that use the complete hydrodynamic, zero-inertia,
or kinematic wave approaches. These two computer models simulate the entire irrigation event including
surge flow.
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The kinematic wave approach executes rapidly and provides reasonable results for slopes greater
than or equal to 0.1% (Walker and Humpherys, 1983). Rayej and Wallender (1985) decreased computer
processing time and the amount of required memory by using variable time steps. In the WEPP
hillslope/watershed model, the hydraulics of a complete irrigation event are modeled using principles of
conservation of mass (continuity) and kinematic wave theory. A specified space interval is used to reduce
processing time and the required computer memory.

The continuity equation is given as

∂x
∂Qhhhh =

∂t
∂Ahhh =

∂t
∂Zhhh = O [12.3.6]

where Q = flow rate; x = downslope distance; A = cross-sectional flow area; and t = time. A kinematic
wave approximation of the momentum equation is used, resulting in the assumption that

Sf = So
[12.3.7]

where Sf = friction slope and So = furrow slope.

A first order Eulerian integration of Eq. [12.3.6] yields

I
K
L

R
Q
θ Qi, j −1 + (1 − θ) Qi, j

H
P − R

Q
θ Qi −1, j −1 + (1 − θ) Qi −1, j

H
P

M
N
O

δt

+
I
K
L

R
Q
φAi −1, j, + (1 − φ) Ai, j

H
P − R

Q
φAi −1, j −1 + (1 − φ) Ai, j −1

H
P

M
N
O

δx [12.3.8]

+
I
K
L

R
Q
σ Zi −1, j + (1 − σ) Zi, j

H
P − R

Q
σ Zi −1, j −1 + (1 − σ) Zi, j −1

H
P

M
N
O

δx = 0

where θ = time averaging coefficient for Q; i = distance indicator for the computational grid; j = time
indicator for the computational grid; δt = time increment; φ = space averaging coefficient for A; δx =
distance increment; and σ = space averaging coefficient for Z. A simplified computational grid where δx
is held constant is shown in Fig. 12.3.3.

A relationship between Q and A is given by the Chezy equation which is written as

Q = cAR 1/2So
1/2 [12.3.9]

where c = Chezy roughness coefficient and R = hydraulic radius. An approximating power function
relationship between Q and A, used in previous studies (Elliott et al., 1982; Walker and Humpherys,
1983; Rayej and Wallender, 1987), is given as

Q = αA m [12.3.10]

where α and m are empirical coefficients. The values for α and m depend on c, So , and the shape of the
furrow (Walker, 1989). The procedures for determining α and m are similar to those used to identify the
Kostiakov-Lewis infiltration parameters k and a.
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Figure 12.3.3. Typical advance curve showing time-distance computation cells.

Replacing Qi, j in Eq. [12.3.8] with the expression in Eq. [12.3.10] and rearranging yields

Ai, j
m + ClAi, j + C 2 = 0 [12.3.11]

where the values of C 1 and C 2, collections of variables used to simplify the kinematic wave equation, are
given by

C 1 =
(1 − θ)αδt
(1 − φ)δxhhhhhhhhh [12.3.12]
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P

Bassett et al. (1983) identify four phases for a typical irrigation event: advance, continuing,
depletion, and recession. Advance is that portion of the irrigation event during which water is supplied to
the furrow but has not yet progressed to the end of the field. The continuing phase begins when water
reaches the end of the furrow and concludes when inflow ceases. The period between cessation of inflow
and the time at which the flow area at the upper end of the furrow decreases to zero is the depletion phase.
The recession phase is defined by the end of the depletion phase and the disappearance of water from the
soil surface. If water does not reach the end of the furrow, the continuing phase does not occur and water
may continue to progress downslope during the depletion and recession phases. The solution procedure
for each phase of an irrigation event is discussed below.

July 1995



12.7

Advance

The solution to Eq. [12.3.11] for each cell of the advance phase (Fig. 12.3.3) is determined using
the Newton-Raphson technique. The upper end of the furrow provides boundary conditions for the left
column of cells. The solution begins by estimating δt for a row of computational cells and solving for
Ai, j for each rectangular cell, starting at the upstream cell. The tip cell is analyzed after all rectangular
cells in the row have been processed. For a tip cell Qi −1, j −1, Qi, j −1, Ai −1, j −1, Ai, j −1, and Ai, j are all
equal to zero and Zi, j = Zi, j −1 so C 2 = 0 (Eq. [12.3.11]) and Eq. [12.3.13] becomes

δt =
(1 − θ)Qi −1, j

δx R
Q
φAi−1, j + σ(Zi −1, j − Zi −1, j −1) H

Phhhhhhhhhhhhhhhhhhhhhhhhhhhhh
[12.3.14]

This value of δt is compared to the estimate used for the rectangular cells. If the two values differ by
more than an allowable amount, calculations for the row of computational cells are repeated using the
new value of δt. This procedure continues until the change in δt is less than or equal to the allowable
limit. By not assuming that Zi −1, j −1 = 0 in Eq. [12.3.14], the procedure can be applied to surge irrigated
fields.

Continuing

For the continuing phase, there are no tip cells. Consequently, the model must determine a
reasonable time step. The model divides the remainder of the inflow period into equal increments. These
increments are as large as possible but no greater than the largest time step of the advance phase (Fig.
12.3.3). The solution technique for Ai, j for each rectangular cell is the same as for the advance phase.

Depletion

When inflow is stopped, the flow rate at the upper end of the furrow goes to zero instantaneously.
The flow area, however, decreases over an unknown but finite amount of time. The procedure for
determining the duration of the depletion phase is based on three assumptions. The first assumption is
that flow depth at the second node (Fig. 12.3.4) does not change during the depletion phase. It is next
assumed that flow depth at the first node has an upper limit equal to the elevation of the upper end of the
furrow minus the elevation of the first node (a horizontal profile). Finally, flow depth at the first node is
assumed to not increase during the depletion phase. The smaller of the flow depths resulting from the
second and third assumptions controls the hydraulic process. The two possible outcomes are presented
grapically in Fig. 12.3.4.

The depletion phase is modeled using a single time step. Referring to Eq. [12.3.8], Q0, j and A 0, j
are equal to zero at the end of this time step. All variables with a subscript that includes j−1 are known
from previous calculations. The assumptions given above provide values for Q1, j and A 1, j . Inspection
of Eq. [12.3.8] shows that values for Z 0, j , Z 1, j , and δt are not known. An iterative procedure can be used
to solve Eq. [12.3.8] by assuming a value for δt, calculating Z 0, j and Z 1, j , and then determining a new
value of δt. This procedure is repeated until the change in δt is less than or equal to an allowable limit.
The solution procedure for the remaining rectangular cells is the same as that used for the advance phase.
The model can estimate lower end advance or recession during the depletion phase. If advance occurs,
Eq. [12.3.14] can be used to determine the advance distance. The nearest calculation grid boundary is
shifted to this new location.
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Figure 12.3.4. Limiting factors for flow depth at the first node:
a) horizontal water surface profile, b) previous flow depth.

Recession

The recession process results in a tip cell configuration for the first cell being analyzed (Fig.
12.3.3). This means that Qi −1, j −1, Qi −1, j , Qi, j , Ai −1, j −1, Ai −1, j , and Ai, j are all equal to zero and
Zi −1, j = Zi −1, j −1. Inspection of Eq. [12.3.8] shows that Zi, j and δt are unknown. An iterative procedure,
similar to that of the depletion phase, can be used to solve for δt. The solution procedure for the
rectangular cells is the same as that used for the advance phase. The model can estimate lower end
advance or recession during the recession phase.

12.3.1.3 Erosion

Methods of predicting erosion on croplands using process-based models have progressed gradually
since mathematical descriptions were given by Meyer and Wischmeier (1969). Foster and Meyer (1972)
presented a relationship between detachment rate and the ratio of sediment load to transport capacity.
Meyer et al. (1975) were the first to evaluate detachment and transport on rill and interrill areas, a critical
step in the prediction of erosion due to furrow irrigation.

In this model, erosion is estimated using the approach identified in Chapter 11. This procedure
uses a steady-state sediment continuity equation to describe the movement of suspended sediment. Two
hydrologic variables, peak runoff rate and effective runoff duration, are required input parameters.
Effective runoff duration is the ratio of runoff volume to peak runoff rate.

12.3.1.4 Inflow Management

Several approaches to furrow inflow management exist. Each inflow management technique has a
unique set of advantages and disadvantages that must be considered in the selection or evaluation process.
Inflow management approaches the furrow erosion model is capable of simulating are constant inflow,
cut-back inflow, and surge inflow.
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Constant inflow, the simplest of the three methods, is the continuous application of a single flow
rate. Cut-back inflow management may also be utilized. This option uses a continuous supply of water
to the furrow but the flow rate is reduced either when the water reaches the end of the field or after a
selected delay period.

Surge irrigation is the most complicated of the three inflow management practices. Surge irrigation
consists of a series of intermittent inflows to a furrow (Stringham and Keller, 1979). The surges may be
of constant or variable duration (Israeli, 1988). During the advance surges, the final advance distances
seldom correspond with the uniform space intervals initially established. This difficulty is resolved by
shifting the nearest grid boundary to the location corresponding to the final advance distance.
Overlapping advance and recession waves of successive surges are not considered by the model.

12.3.2 Concurrent Events

Furrow irrigation and rainfall processes are much different. Therefore, the hillslope/watershed
model generally does not allow furrow irrigation to take place on a day in which rainfall occurs. The
exception occurs for rainfall events with depths less than 0.001 m and peak intensities less than the
effective hydraulic conductivities of all soil layers. For this situation, the rainfall event is not simulated
and the furrow irrigation occurs.

12.4 Irrigation Scheduling Options

A large variety of approaches are used by irrigators for scheduling irrigation. Four scheduling
alternatives are incorporated into the model to provide the user considerable flexibility in simulating these
approaches. These alternatives are described below.

12.4.1 No-irrigation Option

The no-irrigation option is included so that the model may also be used for non-irrigated
conditions. Also, the irrigation component is structured such that, after completion of all irrigation
events, model flags are assigned values indicating the no-irrigation option is in effect.

12.4.2 Depletion-Level Scheduling

Depletion-level scheduling results when the decision to irrigate is based on soil water depletion
exceeding some critical, predetermined value. Before performing calculations to determine whether
irrigation is necessary, the simulation date is compared to the beginning and end of the irrigation period.
If the simulation date is prior to the specified irrigation period, no irrigation will occur. If the simulation
date corresponds with the last day of the irrigation period, the hillslope/watershed model checks for
additional irrigation periods. When no additional irrigation periods are identified, the hillslope/watershed
model then operates under a no-irrigation condition. Multiple irrigation periods are allowed for a single
growing season. A potential use of this feature is to adjust the critical soil water depletion-level during a
growing season to allow greater protection from water stress during periods that are critical to crop
development.

If the simulation date falls within the irrigation period, calculations are performed to determine if
irrigation is necessary. Current and maximum available soil water values are calculated for both the
current rooting depth and for the entire soil profile. The ratio of current to maximum available soil water
defines the depletion level. An irrigation will occur if either the depletion level for current rooting depth
or the entire soil profile is greater than the critical value supplied by the user. The irrigation requirement,
that amount of water necessary to fill the soil profile to field capacity for the appropriate rooting depth, is
then calculated.
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For sprinkler irrigation systems, the user specifies minimum and maximum irrigation depths as well
as the percentage of the irrigation requirement to be applied. The minimum irrigation depth is necessary
to prevent the frequent application of small quantities of water. This may especially be a concern at the
beginning of a cropping season when a very shallow rooting depth may be present. Specifying a
maximum irrigation depth can help the user prevent irrigation depths larger than a preferred amount. The
percentage of the irrigation requirement to be applied allows the user to simulate the practice of leaving
room in the soil profile for natural precipitation that might occur within a few days of the irrigation.

Similar calculations are performed for furrow irrigation systems. A minimum irrigation depth is
used to prevent frequent applications of small irrigation amounts. A required ponding time at the lower
end of the furrow must also be calculated. The required ponding time is related to the infiltration function
parameters and a user-specified ratio of desired application depth at the lower end of the furrow to the
irrigation requirement. Additional calculations are described below.

For constant inflow management (section 12.3.1.4), the model performs advance phase calculations
until water reaches the end of the furrow. Continuing phase calculations are performed for a number of
uniform time periods until the required ponding time at the lower end of the furrow is satisfied. The
model then assumes water is turned off and depletion and recession phase calculations are performed.

The cut-back option also performs advance phase calculations until water reaches the end of the
furrow. The second inflow event, or cut-back, begins immediately and has a duration equal to the
required ponding time at the lower end of the furrow. The flow rate for the cut-back event is set equal to
the infiltration rate of the furrow, 60 seconds after the time of advance, integrated over the length of the
furrow.

For the surge option, the irrigation component develops the sequence of surges for the advance and
cut-back phases using algorithms that mimic those in commercially available surge valve controllers.
The user specifies the number of surges typically required for water to reach the end of the furrow.

12.4.3 Fixed-Date Scheduling

The fixed-date scheduling option uses known irrigation dates and amounts. This alternative is
especially useful in situations where irrigation is provided at predetermined dates during the growing
season or for applications using historical data. An irrigation will occur when the date of simulation is
equal to the date specified for the fixed-date irrigation. Operating parameters and the date of the next
irrigation are read from the input file. If no additional fixed-date irrigation events are identified, the
model then moves into the no-irrigation mode.

12.4.4 Combination of Fixed-Date and Depletion-Level Scheduling

A combination of depletion-level and fixed-date scheduling is included in the model primarily to
allow for pre-planting irrigation and for leaching of salts from the root zone. When this scheduling
alternative is used, the model checks on a daily basis for a fixed-date irrigation. If a fixed-date irrigation
is indicated, the effects of the irrigation application are identified. If a fixed-date irrigation is not
indicated, then the need for irrigation using depletion-level scheduling is evaluated.

If, on the last day of a depletion-level scheduling period, no additional periods are identified, the
model moves into the fixed-date scheduling mode and proceeds as described in section 12.4.3. If, after
performing a fixed-date irrigation, the model finds no additional fixed-date irrigations, the model will
move into a depletion-level scheduling mode and proceed as described in section 12.4.2.
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12.6 List of Symbols

Symbol Definition Units

A cross-sectional flow area m2

a empirical parameter for the Kostiakov-Lewis infiltration function none
b bottom width of the furrow m
c Chezy roughness coefficient m0.5.s−1

C 1 collection of variables used to simplify kinematic wave equations m (2m −2)

C 2 collection of variables used to simplify kinematic wave equations m2m

d depth of flow m
fo empirical parameter for the Kostiakov-Lewis infiltration function m2.s−1

hx total head loss in the horizontal direction m
hy total head loss in the vertical direction m
i subscript indicating distance for a space-time grid none
Ix horizontal advance distance of the wetting front m
(Ix)max maximum horizontal advance distance of the wetting front m
Iy vertical advance distance of the wetting front m
j subscript indicating time for a space-time grid none
k empirical parameter for the Kostiakov-Lewis infiltration function m2/s a

Ke effective hydraulic conductivity m.s−1

m empirical exponent in flow rate - flow area relationship none
Q flow rate m3.s−1

R hydraulic radius m
Sf friction slope m.m−1

So furrow slope m.m−1

t time s
W distance between center lines of irrigated furrows m
x downslope distance m
Z cumulative infiltration per unit furrow length m2

z furrow side slope m.m−1

α empirical coefficient in flow rate - flow area relationship m (3−2m)/s
∆θ net change in soil moisture content m3.m−3

δt time increment s
δx distance increment m
θ time averaging coefficient for flow rate none
σ space averaging coefficient for cumulative infiltration none
τ infiltration opportunity time s
φ space averaging coefficient for cross-sectional flow area none
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