SIMULTANEOUS SoiL MOISTURE AND
CoNE INDEX MEASUREMENT
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ABSTRACT. Soil compaction can restrict root growth and water infiltration, resulting in yield reduction. Maps of yield monitor
data aid in visualization of variations in yield, without identifying underlying factors for these variations. Soil penetration
resistance can help identify areas where soil physical characteristics are negatively impacting yield. However, penetration
resistance is a function of soil moisture content and soil type as well as compaction. A standard penetrometer cone was modi-
fied to collect near—infrared reflectance and estimate moisture content. The instrument was tested in the laboratory on a selec-
tion of soil types with varying moisture tension levels using stepwise and continuous probe insertions. Soil moisture, dry bulk
density, and clay content were significant variables in predicting soil cone index at the lower moisture tension level.
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nterest in soil compaction, and its effect on crop produc-

tion and yield, has grown in the latter half of the 20th

century with the adoption of large machinery for agri-

cultural crop production. Increased axle loads, and
changes in farming operations, have resulted in soil compac-
tion problems, which have been ameliorated by deep plowing
to loosen compacted soil (Bengough, 1991). The reduction in
compaction has resulted in yield increases, which have been
attributed to lowering of mechanical impedance to root
growth (Hamblin, 1985). While tillage facilitates burial of
crop residue and pulverizes the soil surface, this operation
may also enhance water and wind erosion and is an energy—
intensive field operation. Researchers have been investigat-
ing the basic causes of soil compaction for many years
(Davidson, 1965; Morgan et al., 1993; Ngunjuri and Sie-
mens, 1995).

SoiL COMPACTION ASSESSMENT

Penetrometers are typically used to measure soil strength
and to identify compacted soil conditions. Commonly used
penetrometers include the pocket, cone, and small-diameter
friction sleeve cone types (Lowery and Morrison, 2002). The
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soil cone penetrometer (ASAE Standards, 2002b) was
initially adopted as an ASAE recommendation in 1968 and
was reclassified as an ASAE Standard in 1978. Procedures
for use of the soil cone penetrometer have been developed
(ASAE Standards, 2002a) and indicate that the most desirable
moisture content for sample collection is when the soil is near
field capacity.

Cone penetrometer resistance, as a means of assessing soil
mechanical properties, has been limited by the significant
effects of several factors, e.g., soil type, bulk density, and soil
moisture. The variability in these factors, both temporally
and spatially (horizontally and vertically), has made assess-
ment of the relationship of penetration resistance data to soil
compaction difficult during a single sampling period, and
virtually impossible across multiple sampling dates.

SITE-SPECIFIC MAPPING OF SOIL

COMPACTION

The spatial variability in soil characteristics affects
site—specific information, which can be visualized through
layers of maps in a Geographic Information System (GIS)
(Cambardella and Karlen, 1999). These maps can provide
additional information for informed decision-making in
formulating best management practices. Simultaneous mea-
surement of soil moisture and soil penetration resistance, in
conjunction with maps of soil type, might allow the
adjustment of penetration resistance data to compensate for
soil type and moisture. This capability would improve soil
compaction measurement techniques and the ability to
understand the effects of tillage, wheel traffic, and traction on
soil productivity.

Several researchers have attempted to measure soil
moisture and simultaneously measure soil bulk density
and/or soil penetration resistance (Tollner, 1994; Mead et al.,
1995; Fulton et al., 1996). In each instance, problems
occurred in relating the factors, e.g., a need for a site—specific
calibration, differences in calibration among soil types,
and/or an inability to predict soil moisture and soil bulk
density simultaneously.
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A portable soil sensor, which utilized near—infrared (NIR)
reflectance, was developed (Sudduth and Hummel, 1993b)
and was shown to be capable of predicting soil moisture
levels in prepared samples of A—horizon soils with coeffi-
cients of determination of over 0.95 and standard errors of
1.5% to 2% d.b. soil moisture (Sudduth and Hummel, 1993c).
Additional research (Hummel et al., 2001) showed that the
sensor could predict soil moisture in undisturbed soil cores
and B-horizon soils, although the sensor—based prediction
accuracy was reduced (coefficients of determination of about
0.88 and standard errors of 4.8% to 6.4% d.b. soil moisture.

This article reports on the combination of the portable NIR
soil sensor and a cone penetrometer to simultaneously predict
soil moisture and measure soil penetration resistance (com-
monly called “cone index”) and laboratory testing of the
combined sensor.

OBJECTIVES
The overall objective of this research was to design and

develop a cone penetrometer system that can be used to
remove the effects of soil moisture from soil cone index
readings without the need of specific calibrations for
different soils. The following sub—objectives were estab-
lished:

¢ Design a cone penetrometer for use with the NIR soil sen-
sor to simultaneously determine penetration resistance
and moisture content of soil.

e Compare stepwise penetrometer insertion data, including
NIR soil moisture data, with the sensor remaining station-
ary at each depth, to data collected continuously at the
standard penetrometer insertion rate.

e Develop a calibration relating soil moisture to NIR reflec-
tance of the soil for a wide range of soil types.

e Evaluate the ability of the soil moisture/soil cone pe-
netrometer sensor to predict soil compaction over a range
of soil textures and soil moisture contents.

SoiL MoisTure/SoiL CoNE

PENETROMETER SENSOR DESIGN

A standard soil cone penetrometer was modified to
accommodate NIR soil moisture sensing through an opening
in the cone surface. A stainless steel (SS) cone (base area of
323 mm?2), corresponding to the larger of two standard cone
sizes (ASAE Standards, 2002b), was bored to accept the
terminal end of a fiber—optic bundle fitted with a custom 90°
mirror tube (Molpi Manufacturing, Auburn, N.Y.) (fig. 1).
The window was covered with a 10 mm dia. sapphire
plano—convex lens (part 01LSX011, Melles Griot, Irvine,
Cal.). The sapphire lens was selected to resist scratching by
soil particles, and flush-mounted to minimize soil adher-
ence. The lens replaced about 10% of the SS surface of the
cone, but because the frictional characteristics of the lens
were similar to those of SS, the effect on cone insertion force
was minimized. The hollow steel shaft (15.88 mm O.D. X
9.53 mm 1.D.) used to provide a path for the fiber—optic
bundle reduced the strength of the shaft by 13%, based on
conventional column theory. The reduced strength should
have no effect on penetrometer functionality, and minimal
effect on durability, since a factor of safety of about 10
appears to exist in the conventional design.
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Figure 1. Schematic diagram of the standard soil cone, illustrating the
modifications to incorporate a fiber optic bundle and turning mirror to
sense soil spectral reflectance.

The NIR soil sensor consisted of a broadband light source
(50 W, 12 V quartz halogen automotive-type lamp), circular
variable filter (CVF) (Optical Coating Laboratory, Inc.,
Santa Rosa, Cal.), and a lead sulfide (PbS) photodetector
(model OTC-22-53, OptoElectronics, Petaluma, Cal.). The
rotating CVF (1600 nm to 3100 nm) sequentially provided
monochromatic, chopped light from the broadband source
with an apparent bandwidth of 52 nm, and the PbS
photodetector measured the energy reflected from the soil
surface (Sudduth and Hummel, 1993b). A bifurcated silica—
fiber optic bundle was inserted in the system to transmit light
energy from the quartz—halogen source to the soil surface and
back to the photodetector (Newman and Hummel, 1999). The
bifurcated fiber optic cable (Volpi Manufacturing, Auburn,
N.Y.) consisted of 328 fibers, with 152 fibers (46%) for
transmitting light to the soil surface and 176 fibers (54%) for
receiving the reflected light from the soil surface. Combined
characteristics of the PbS photodetector and the fiber optics
limited the effective sensing range to 1600 nm to 2500 nm.
The fiber optic light guide conducted light down the hollow
shaft of the penetrometer to the cone, where the 90° mirror
directed the light through an air gap and the sapphire lens to
the soil surface. The light impinged on the soil surrounding
the cone, and the reflected portion reentered the cone through
the sapphire lens and was transmitted through the second leg
of the bifurcated cable to the exit end, which was aligned with
the photodetector. The transmission characteristics of the
fiber optics and the sapphire lens reduced the signal
throughput of the sensor but permitted the photodetector to
be positioned above the soil surface.

A reference standard of halon (polytetrafluoroethylene,
PTFE) powder was molded to fit the cone. Halon has
reflection properties in the ultraviolet, visible, and near—in-
frared spectral regions that make it a useful standard for
diffuse reflectance measurements (Weidner and Hsia, 1981).

SOIL SELECTION AND PREPARATION
Three soils from a group of 30 soils with varying organic
matter contents and textures representative of the soils of
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Illinois (Worner, 1989) were cleaned, dried, sieved, and
stored in 28 cm dia. X 37 cm deep plastic containers (New-
man, 1999). The three soils, selected to provide a broad range
of soil texture, were: Drummer silty clay loam (fine—silty,
mixed, mesic Typic Haplaquolls), Plainfield sandy loam
(mixed, mesic Typic Udipsamments), and Shoals silt loam
(fine—loamy, mixed, nonacid, mesic Aeric Fluvaquents)
(table 1). Soil texture was determined on a composited sam-
ple of each soil using the hydrometer method. The moisture
contents of the soils were determined using the gravimetric
method. Combustion analysis was used to determine organic
carbon content of the soils, and organic matter content was
estimated by multiplying the organic carbon content by 1.72
(Nelson and Sommers, 1982). The target moisture tension
levels for testing were 0.05, 0.1, 0.3, 0.7, and 1.5 MPa, which
provided a wide range of moisture contents between field ca-
pacity and wilting point. Prior to conducting each set of tests,
the volume of soil representing each soil series was divided
into five lots, and a different amount of water was added to
each lot to adjust the moisture content to approximate the var-
ious target moisture tension levels.

Fifteen compacted soil samples in 28 cm dia. plastic
containers, one for each soil texture/soil moisture combina-
tion, were prepared for each replication. Soil was added to
each container in 5 cm lifts, and each lift was compacted by
five impacts of a 2.2 kg mass onto the surface of a steel plate
placed on the soil surface (Newman, 1999). The target depth
was 35 cm, yielding a test depth of approximately 30 cm. The
containers were sealed and placed in a cold storage room
(5°C) to minimize moisture loss. Each sample container was
emptied, refilled, and recompacted with the same soil for
each succeeding replication of each of the two sets of tests.

TEST PROCEDURE
DATA COLLECTION

For the first set of tests (set 1), the sensor was installed on
a Tinius—Olsen Electromatic Universal Testing Machine
(Newman, 1999), which was powered for at least one hour

prior to data collection to stabilize its electrical components.
The insertion rate of the combined penetrometer cone/soil
moisture sensor was limited to the maximum travel speed of
the testing machine (2.5 mm s71), which was much lower than
the 30 mm s71 rate specified in ASAE Standard EP542 (ASAE
Standards, 2002a). The testing machine was interfaced to an
IBM-compatible personal computer (PC) through a General
Research Corporation Model T-100 interface connected to a
DAS-8 A-D 1/0 board (Keithley—Metrabyte, Taunton,
Mass.). The combined sensor was also interfaced with the PC
through the DAS-8 board. The spectrophotometer was
powered for at least 30 min prior to data collection to stabilize
its light source and electrical components.

A second set of tests (set 2) was conducted to evaluate the
sensor while utilizing the ASAE standardized probe insertion
speed, and concurrently, to move the sensor onto a platform
that, in the future, could be used for field data collection. The
combined soil sensor was incorporated into the automated
cone penetrometer system on a 12 m wide—span instrumenta-
tion carrier (Sudduth et al., 1989). The NIR sensor was
mounted on the probe mounting plate using steel shafting and
linear ball bearings so that the unit moved vertically in
concert with the penetrometer. This mounting minimized
flexing of the bifurcated fiber optic bundle that extended
from the NIR soil sensor through the 15.9 mm dia. hollow
penetrometer shaft to the soil cone.

On the wide—span carrier, the axial compressive force at
the connection between the penetrometer shaft and the
51 mm dia. X 760 mm stroke hydraulic cylinder was
measured with an 890 N force transducer (model U3SB, BLH
Electronics, Inc., Waltham, Mass.) having an output of
3.115 mV VL. The force transducer output was conditioned
to a 0 to 5V range and input to the data acquisition system
through an inline DC transducer amplifier (model S7DC,
RDP Electrosense, Pottstown, Pa.) that provided variable
excitation, signal amplification, and noise reduction. The
force transducer received a regulated 10.0 V excitation, and
calibration showed a digital resolution of 0.127 N. The
movement of the penetrometer was measured with an
incremental shaft encoder (model 70, Litton Industries,

Table 1. Physical characteristics and moisture levels of the soils.

Organic Matter Soil Texture (%)[€]

Target Moisture Actual Moisture (% d.b.)

Soil Series Contentlb] Moisture Tension

and Numberlal (%) Sand Silt Clay Level (kPa) Set 1 Set 2
Drummer silty 5.10 12.6 55.9 315 5 0.05 24.0 21.4
clay loam 4 0.1 215 16.5
(29) 3 03 16.2 16.2

2 0.7 131 15.8

1 15 8.8 14.3

Plainfield 1.73 83.7 12.7 3.6 5 0.05 3.9 7.1
sandy loam 4 0.1 3.0 4.7
V) 3 03 1.9 45

2 0.7 0.7 3.7

1 15 0.4 2.3

Shoals 0.61 27.8 59.6 12.6 5 0.05 11.8 19.6
silt loam 4 0.1 8.4 12.7
(13) 3 03 6.5 123

2 0.7 41 10.2

1 15 4.5 5.6

[e] Descriptions of the soil samples and collection sites are included in Worner (1989). The soils sampled by Worner (1989) were numbered for identification.
[b] Organic carbon was determined by combustion analysis, and a multiplier used to obtain organic matter content.

[c] Obtained by the hydrometer method (Worner, 1989).
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Chatsworth, Cal.) driven through a rack and pinion. The 1024
pulse/revolution encoder output was input to the personal
computer through a counter in the data acquisition system.
The digital resolution was 0.099 mm.

For both set 1 and set 2 tests, computer programs were
written and used to save spectral reflectance, force, and depth
data. A reference scan of the halon reflectance standard was
collected prior to each probe insertion. For the stepwise probe
insertion, the control program was executed and a scan of the
halon reflectance standard was collected, followed by a soil
scan (base of soil cone flush with the surface of the soil
sample), followed by up to seven scans (the number
depended on the depth of soil in the sample container).
Stepwise scans were collected at approximately 2 cm and
3 cm depth intervals for the set 1 and set 2 tests, respectively.
The reflectance standard scan and the soil scans were stored
sequentially, each scan consisting of a sequence of 252 num-
bers corresponding to known wavelength bands (Sudduth and
Hummel, 1993c). Concurrently, force and depth data were
stored in another file at a sampling rate of 18.2 Hz. For the
continuous probe insertion, the probe was lowered until the
base of the soil cone was flush with the surface of the soil
sample. A soil scan was collected with the probe stationary,
and then a second soil scan was collected as the probe was
moving downward through the soil sample at 2.5 mm s™1 and
30 mm s~1 for the set 1 and set 2 tests, respectively. If multiple
spectra were collected, they were stored sequentially in the
spectral reflectance data file.

A randomized complete block experimental design was
used for both sets of tests with the soil sensor, with replication
as the block. Each of the 15 compacted soil samples (3 soils
X 5 moisture contents) was transported to the sensor
according to the experimental design, and a continuous probe
insertion test, a stepwise probe insertion test, and the
collection of soil cores for gravimetric moisture analyses
were performed. The order of the continuous probe insertion
and stepwise probe insertion tests was randomized for each

soil/moisture content combination. Probe insertion locations
were 10 cm apart, and at least 5 cm from the container wall.
During the stepwise probe insertion, spectral reflectance data
were collected while the probe was stopped at each depth
interval. The number of scans for each stepwise insertion
probe ranged from five to seven, depending on the available
sampling depth in each soil container. For the continuous
probe insertion, spectral reflectance data were collected
while the probe was traversing through the soil sample. The
spectrophotometer was programmed to sum the output of 64
revolutions of the CVF into each of the wavelength bins, and
consequently, required nearly 13 s to collect an individual
scan. Thus, scans collected during continuous insertion
probes did not occur at one depth but were composites over
the depth increment that the probe traversed during the scan
data collection.

For the set 1 tests, three soil cores (1.2 cm dia.) were
extracted from random locations within each soil container
after each pair of penetrometer insertions. The cores were
segmented into 2 cm depth intervals and composited for
gravimetric moisture analysis (typically 10 to 11 depth
increment segments). The disturbance caused by the pe-
netrometer probes and the moisture sampling probes did not
permit simultaneous collection of bulk density samples.

For the set 2 tests, the soil core extraction procedure was
modified so that bulk density as well as moisture content
profiles could be obtained in each soil container. A modified
soil coring tube (fig. 2a), equipped with a standard Giddings
bit (Giddings Machine Co., Fort Collins, Colo.), was pressed
into the soil sample using the electrohydraulic system on the
wide—span carrier platform. The resulting core was seg-
mented into 3 cm lengths (figs. 2b, 2c, and 2d), and the mass
of each core segment was recorded. Up to seven core
segments were collected from each container, depending on
the depth of soil. Approximately 20 g of each core segment
was weighed and dried at 105°C for 24 hours for gravimetric
moisture analysis.

Figure 2. Sample collection technique for obtaining samples at varying depth levels for gravimetric moisture and bulk density analyses (set 2 data).
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DATA COMPILATION

In previous research (Sudduth and Hummel, 1993a), a set
of coefficients relating soil moisture content with NIR
spectral reflectance was developed using Partial Least
Squares Regression (PLSR) for the entire group of 30 Illinois
soils (Worner, 1989). The PLSR procedure creates factors
that are linear combinations of the original reflectance data
and determines the maximum number of usable factors
without overfitting the data. In this case, there were seven
valid factors relating soil moisture and spectral reflectance.
Using these factors, coefficients were determined that could
be applied to the spectral data to predict soil moisture. The
relationship used data (24 bands on a 39.6 nm spacing) from
the 1623 nm to 2605 nm portion of the spectrum and required
that a sequence of operations be performed to convert raw
digitized data obtained from the spectrophotometer to the
percent (or decimal) reflectance data needed to estimate soil
properties. A compiled C language program was written to
calculate a normalized optical density for these wavelength
bands by comparison against data obtained with the halon
reference standard just prior to the probe insertion, and to
apply the set of coefficients to the set 1 data. The form of the
equation is:

MC=a, +& xlog ﬂ+ +ap, xlog, Tefos (1)

1P E 0 gy 0 daty,

where MC is soil moisture content (% d.b.), ag ...ay4 are the
coefficients developed by the PLSR software, and ref and dat
are the digital spectra data from the halon reference standard
scan and soil scan, respectively. The subscripts refer to the
39.6 nm spectral bands with center wavelengths from
1640 nm to 2551 nm.k

During post—processing of the set 1 data, a second
statistical procedure, stepwise multiple linear regression
(SMLR), was employed with a goal of increasing the speed
and improving the accuracy of moisture content estimation.
The stepwise procedure investigated all of the set 1 spectral
scan data and sequentially identified those data that ex-
plained the greatest proportion of variance. Another com-
piled C language program was written for this analysis, and
only those terms that were statistically significant at the 5%
level were retained. The equation, including those terms that
were statistically significant for relating spectral reflectance
and soil moisture content, is:

ref ref
MC=a0+a1><IoglodTlt1+...+a4xlogloﬁ )
4

where MC is soil moisture content (% d.b.), and ref and dat
are the digital spectral data from the halon reference standard
scan and soil scan, respectively. The bandpass center wave-
lengths of the four 6.6 nm bands were 2473 nm, 2309 nm,
2282 nm, and 1742 nm, respectively. The SMLR calibration
relating spectral reflectance and soil moisture (eq. 2) was de-
veloped using the set 1 data collected for the three soils.
Normalized optical density was also used in developing a
relationship between soil moisture and NIR spectral reflec-
tance for the set 2 data. For each of the 265 scans (5 to 7 scans/
probe insertion) collected during the 45 stepwise insertion
probes (3 soils X 5 moisture contents X 3 replications),
decimal reflectance was calculated for all 252 wavelength
bands by comparison against data obtained with the halon
reference standard just prior to the probe insertion. The scans
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collected during the continuous insertion probes were not in-
cluded in the analyses to develop a calibration, since they did
not correspond to a specific depth increment and gravimetric
moisture content. The decimal reflectance scans were con-
verted to optical density by taking logig(1/reflectance) for
each of the 252 values for each scan. These optical density
data were normalized by dividing the optical density value
from each wavelength band by the mean of the values from
91 bands, which appeared to be the most stable portion of the
wavelength range of the sensor. The normalization procedure
appeared to compensate for ambient light contamination of
the soil scan taken with the base of the penetrometer cone
flush with the soil surface.

Penetrometer depth encoder data were used to determine
the depths at which the stepwise insertion NIR reflectance
data had been collected, and these data along with continuous
probe insertion force data were used in the analyses. The first
soil scan, taken with the cone base at the soil surface, was
considered to be at zero depth, even though the center of the
optical window in the side of the cone was approximately
10.3 mm below the surface.

Soil moisture and dry bulk density data were collected
from each soil sample, but the depth intervals did not
coincide with the intervals at which NIR reflectance scans
were collected. Soil moisture and bulk density at each depth
where an NIR reflectance scan had been collected were
estimated by straight-line interpolation between the two
nearest actual measurements.

RESuLTS AND DiscussioN

Electromagnetic interference (EMI) can deteriorate spec-
tral reflectance data quality. During collection of the set 1
data, equipment in a mechanical service room adjacent to the
test stand was generating significant EMI. Shielding of the
spectrophotometer and cabling was unsuccessful, and test
scheduling to avoid the periods of interference was only
partially successful. Post—test data processing suggested that
signal deterioration due to the electromagnetic interference
was a major factor in reducing the soil moisture prediction
capability of the dataset. The set 2 data collection, using the
wide—span carrier as a platform for the sensor, took place in
another building where EMI was not a problem.

Use of a fiber optic bundle for transmitting light to and
receiving light from the penetration point attenuated the
signal to varying degrees across the entire spectrum (New-
man, 1999). Use of a calibration standard compensated for
the effect of the diminished output signal. However, above
2400 nm, the output signal was no longer useful, as the
magnitude was comparable to background electrical noise.

The laboratory tests were designed to test the functionality
of the modified cone penetrometer tip and hollow shaft, and
the design performed as expected. Of course, use under
controlled conditions in the laboratory did not address the
adequacy of the strength and endurance of the design for use
in field operations. The sapphire lens was left unmarred, as
was expected; however, some soil clung to the upper edge of
the lens in the higher moisture samples of soils with higher
clay contents.

LABORATORY TESTING MACHINE TESTS (SET 1 DATA)
Moisture Prediction Methods Comparison
The two moisture prediction models (egs. 1 and 2) were
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applied to the set 1 data collected during both the stepwise
and continuous probe insertion tests, resulting in four mois-
ture prediction comparisons (table 2). The SAS PROC
MEANS statistical analysis procedure (Littell et al., 1991),
a comparison of two sets of data, was sequentially used to
compare the moisture contents predicted by each of the four
moisture prediction methods with the gravimetric moisture
contents to determine which prediction procedure most accu-
rately predicted gravimetric moisture content. The procedure
was used to test moisture prediction accuracy across the
range of soils and moisture contents included in the test. Sub-
sequent applications of the procedure were used to determine
if prediction accuracy was better for a particular soil type or
soil type/soil moisture combination.

The means of the soil moisture contents predicted by the
four prediction procedures were all significantly different
from the means of the gravimetric moisture contents (table 2)
when all soils and all moisture contents were included in the
analysis. Furthermore, many of the means of predicted soil
moisture for the individual soils and the soil type/soil
moisture combinations were significantly different from the
soil moisture means obtained by gravimetric analyses.
Overall, soil moisture prediction accuracy with the SMLR

Table 2. Prediction of soil moisture from spectral reflectance data
collected during set 1 continuous and stepwise probe insertion
using stepwise multiple linear regression (SMLR) and
partial least squares regression (PLSR) techniques.

Continuous Probe Stepwise Probe
Insertion[®] Insertion[®]

Moisture  Gravimetric

Tension  Moisturelal SMLR PLSR SMLR PLSR
(MPa)  (%db) (%db) (%db)  (%db) (%db)
All soils, all moisture tensions
8.4 7.5* 10.4* 7.2* 10.7*
Drummer silty clay loam
Allle] 17.8 13.7* 15.4* 14.6* 16.7*
0.05 24.0 17.0* 18.2* 18.2* 20.2*
0.1 215 17.7* 19.2* 17.5* 19.7*
0.3 16.2 13.7* 14.4* 14.0* 14.8
0.7 131 11.9* 12.6 10.2* 14.2
15 8.8 9.5 9.5 9.9* 11.2*
Plainfield sandy loam
Allle] 2.0 2.0 7.3* 2.0 7.0%
0.05 3.9 5.1* 10.7* 5.4* 11.4*
0.1 3.0 -1.0* 12.6* -2.2* 11.7*
0.3 1.9 2.4 7.3* 3.4* 7.0*
0.7 0.7 2.2* 3.3* 2.0* 2.4*
15 0.4 1.0* 2.0* 1.2* 1.9*
Shoals silt loam
Allle] 6.6 73 9.1* 6.3 9.0*
0.05 11.8 8.6* 114 18.7* 11.3
0.1 8.4 1.7* 11.5* 7.4*% 11.7*
0.3 6.5 6.2 8.3* 5.1* 7.5*
0.7 4.1 10.1* 6.6* 5.6* 7.6*
15 4.5 4.4 8.6* 55 1.7*

[e] Moisture values presented are means of all samples collected for all
depth increments and all replications for each respective soil series and
moisture tension.

[b] SMLR = mean SMLR-predicted moisture (% d.b.).

PLSR = mean PLSR-predicted moisture (% d.b.).

Predicted moisture means that are significantly different from the gravi-
metric mean in the same row at the 5% level, according to the t-test, are
indicated with an asterisk (*).

[T All samples, at all moisture levels for the respective soil series, are in-
cluded in the grouping.
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method was somewhat better than with the PLSR method for
both probe insertion methods. We attribute the improvement
to the development and use of regression equation coeffi-
cients specifically for the three soils used in the test (SMLR),
in contrast with the use of coefficients developed for a larger
set of soils (PLSR). The use of coefficients developed with
a different sample subset, as was the case for the PLSR pre-
diction, would introduce some error. An additional error
source was a fiber optic bundle, with associated signal attenu-
ation, that was not included in the instrument when the data
that led to the coefficients used in the PLSR prediction were
collected (Sudduth and Hummel, 1991). Finally, the original
group of 30 Illinois soils contained more soils of the finer tex-
tures, which may have biased the relationship toward these
soils. These data indicate that the soil moisture prediction ac-
curacy of the PLSR method was comparable to that of the
SMLR method for the Drummer silty clay loam soil, the fin-
er—textured of the three test soils.

The SMLR prediction method used spectral reflectance
data from only four wavelengths. On the other hand, the
PLSR prediction identified seven significant factors, but then
used the entire spectrum to develop a soil moisture prediction
(eg. 2). Less data to manipulate should make prediction using
SMLR more rapid than the PLSR method, which is important
in real-time sensing applications. In addition, since data at
only four wavelengths are required for the SMLR method,
four narrow bandpass filters could be used in place of the
CVF in the monochromator. This design alternative would
reduce the initial cost, improve serviceability, and extend the
life of the instrument since there would be no moving parts.

Moisture prediction capability, as compared to gravimet-
ric moisture methods, was less accurate for these tests than
was reported earlier with a similar data collection system
(Sudduth and Hummel, 1993a). Considerable reduction in
moisture prediction capability was attributed to the intermit-
tent electromagnetic interference that affected some of the
soil reflectance spectra. Soil core instability, particularly
with the Plainfield loamy sand, may have reduced the
accuracy of the set 1 gravimetric data. However, the
statistical comparisons of predicted moistures with gravimet-
ric moistures (table 2) do not show reduced prediction
accuracy with the Plainfield soil data as compared to the
other two soils.

Soil Cone Index Prediction

A soil penetrometer is typically used when soil moisture
content is near field capacity (ASAE Standards, 2002a), i.e., a
soil tension of 0.033 MPa, to assess soil strength. We wanted
to evaluate how soil moisture and cone index values could be
combined to predict cone index values at the lowest moisture
tension (moisture level 5), which was slightly drier than field
capacity. A regression analysis was used to relate cone index
values at each of the four highest moisture tension levels with
the cone index at moisture level 5. Separate analyses were
made using the gravimetric, PLSR—predicted, and SMLR-
predicted soil moisture values. The analyses were performed
over the entire range of soil types and moisture contents, and
also within each soil type (table 3). The coefficients of
determination (r2) were used to compare the capability of the
resulting relationships to predict cone index at a base or
reference moisture level (i.e., moisture level 5). For the entire
range of soil types and moisture contents, the following
model was obtained for each of the three different methods
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of moisture estimation (gravimetric, PLSR predicted, SMLR
predicted):

Clg =a+bCl, +cClI2 +dM, +eM?

+fC+gC2+hDX+in (3)

where Cls is the predicted cone index (kPa) at moisture lev-
el 5, a ...i are the regression coefficients shown in table 3, Cly
is the cone index (kPa) at moisture level x, My is the moisture
content (%, d.b.), C is the clay content (%), and Dy is the dry
bulk density (g/cm3).

High coefficients of determination were obtained for the
Shoals and Plainfield soils, irrespective of how the moisture
data were obtained. Conversely, low coefficients of deter-
mination resulted for the Drummer soil across all three
moisture data sets. The coefficients of the variables in the soil
cone index prediction equations (eq. 3) for each soil type are
also included in table 3.

The contribution of soil bulk density (D) to soil cone index
prediction was expected to be minimal, since the sample
preparation procedure was developed to minimize differ-

ences in bulk density of the samples. The coefficients of the
bulk density variable were significant in about one-third of
the equations (table 3). To better understand the contribution
of bulk density to force prediction, the equations were
formulated again with bulk density excluded from the list of
independent variables. The resulting coefficients of deter-
mination changed very little from those obtained with the full
set of independent variables (table 3).

These results (table 3) indicate that the prediction of
penetration force at moisture level 5, based on penetration force
and moisture content measurement under current soil condi-
tions, is as accurate with NIR-predicted moisture content as
with gravimetric moisture data. Some improvement in overall
prediction capability may be possible if prediction for the heavy,
silty clay loam soils, represented in these tests by the Drummer
sample, can be raised to the levels shown for the lighter soils.
Clay content was a statistically significant variable in the
prediction of cone index across all soils, irrespective of the
source of soil moisture, when all variables were included (table
3) and remained in the predictive relationships when the bulk
density variable was removed, irrespective of whether gravi-
metric, PLSR- or SMLR-estimated moisture content was used.

Table 3. Coefficients and fit statistics for equations developed for estimating field capacity soil cone index
using SMLR and PLSR, and the set 1 datal@l collected at varying soil textures and moisture contents.

Coefficients of Variables

Cone (Cone Moisture (Moisture Clay (Clay Bulk (Bulk
Intercept Index Index, Content Content, Content Content, Density Density,
12 (kPa)[b] (kPa) kPa)2 (% d.b.) % d.b.)2 (%) %)?2 (glem3) g/cm3)2
Gravimetric moisture
All soils 0.895 -26.80 0.99* -0.0004* 0.789 0.089 38.6* -1.37* 53.34 -11.76
Drummer 0.596 301.8* 0.41* -0.0003* -18.4* 0.626* N/A N/A -41.68* 13.70*
Plainfield 0.910 -29.41 1.21* -0.0005* -9.10 1.326 N/A N/A 138.0* -34.90*
Shoals 0.898 211.7* 1.18* -0.0005* 0.886 -0.057 N/A N/A 15.13 -11.48
PLSR-estimated moisture
All soils 0.895 -6.701 1.00* -0.0004* -3.83* 0.236* 40.0* -1.38* 35.18 -7.560
Drummer 0.499 195.8* 0.37* -0.0003* -2.34 0.643* N/A N/A -25.21 9.083
Plainfield 0.910 -30.44* 1.21 -0.0005* -2.50 0.134 N/A N/A 134.6* -32.89*
Shoals 0.899 202.7* 1.19* -0.0005* 4,01 -0.222 N/A N/A 12.78 -11.83
SMLR-estimated moisture
All soils 0.896 -10.87 0.99* -0.0004* 1.33 0.063 37.1* -1.32* 41.71 -9.092
Drummer 0.505 191.9* 0.36* -0.0003* -2.24 0.115 N/A N/A -22.85 8.624
Plainfield 0.910 -61.13 1.19* -0.0005* -1.90 0.582 N/A N/A 160.4* -38.99*
Shoals 0.914 165.8* 1.16* -0.0005* 8.78* -0.144 N/A N/A 90.12 -6.302
Predicted Results with Bulk Density Removed from Model Consideration
Gravimetric moisture
All soils 0.894 26.02* 1.00* -0.0004* -1.98 0.156 39.3 -1.38
Drummer 0.579 264.9* 0.38* -0.0002* -16.2* 0.562* N/A N/A
Plainfield 0.907 99.21* 1.24* -0.0006* 20.8* 3.656 N/A N/A
Shoals 0.897 200.4 1.18* -0.0005* 3.24* -0.108 N/A N/A
PLSR-estimated moisture
All soils 0.895 31.26* 1.00* -0.0004* -4.23* 0.246* 39.7* -1.38*
Drummer 0.491 185.0* 0.35* -0.0002* -2.49 0.108* N/A N/A
Plainfield 0.908 95.87* 1.23* -0.0006* -4.48* 0.218 N/A N/A
Shoals 0.896 198.5* 1.19* -0.0005* 3.42 -0.183 N/A N/A
SMLR-estimated moisture
All soils 0.896 31.66* 0.99* -0.0004* 0.903 0.074 36.9* -1.32
Drummer 0.498 182.7* 0.35* -0.0002* -2.39 0.119 N/A N/A
Plainfield 0.905 85.98* 0.20* -0.0005* -1.77 0.534 N/A N/A
Shoals 0.914 163.3* 1.17* -0.0005* 9.30* -0.156* N/A N/A

[e] Data were collected on a laboratory testing machine, using a probe insertion rate of 2.5 mm s,
[b] Form of the equations is shown in equation 3, and an asterisk (*) indicates that the intercept or coefficient is statistically significant at the 5% level, based on

the t-test.
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The performance of the combined soil moisture/soil cone
penetrometer sensor in these tests, even with concerns about
EMI, was promising at the reduced insertion speed. Addition-
al testing, with steps taken to eliminate EMI and to operate
the probe at the standard probe insertion rate, was scheduled
to further evaluate the technique.

WIDE-SPAN CARRIER PLATFORM TESTS (SET 2 DATA)
Calibration of Soil Moisture to NIR Reflectance

For the set 2 data, the relationship of soil moisture to NIR
reflectance was established with SMLR, using a 4-fold
cross—validation approach. The procedure identified nine
reflectance values (eq. 4) that could be used, each contribut-
ing significantly to improved calibration and estimation
ability. The following equation was used to estimate
dry-basis soil moisture content (MC) values at the depths
along each probe insertion where an NIR reflectance scan had
been collected:

MC =—1627.5+234.2X, +445.9X , —320.6X 5
+471.8X 4 +116.6X 5 + 242.4X 5
+871.3X —452.6Xg +45.0Xg )

where X1 through Xg are the reflectance values for a 52 nm
bandpass centered at each of the following wavelengths, re-
spectively: 2160, 2108, 2094, 2048, 1883, 1870, 1679, 1626,
and 1607 nm. A coefficient of determination (r2) of 0.896 was
obtained, the standard error of calibration (SEC) was 1.97%
d.b. moisture, and the standard error of prediction (SEP) was
2.38% d.b. moisture.

A plot of NIR-estimated soil moisture versus gravimetric
soil moisture (fig. 3) shows that the ranges of gravimetric soil
moisture values for the Drummer, Plainfield, and Shoals soils
were approximately 7%, 5%, and 14% d.b., respectively.
Selection of 0.033 MPa (field capacity) as the lowest
moisture tension level for these tests would have increased
these ranges by perhaps 2% d.b., but it would also have
caused significant sample preparation problems. Closer
matching of actual soil moisture levels during sample
preparation with target moistures would have enhanced NIR
moisture estimation, especially of the Drummer silty clay
loam, where most of the samples exhibited moisture contents
in a 7% d.b. range, even though the target moisture range was
18% d.b. The vertically elongated shape of the data cloud for
each soil/moisture level combination illustrates the error
present in the NIR moisture estimation.

Penetrometer I nsertion Force

The penetrometer insertion force data for the stepwise
insertion probes were difficult to analyze due to force
decreases when probe insertion stopped to collect an NIR
reflectance scan. More accurate penetrometer insertion force
data were available from the continuous insertion probe,
since the insertion rate was constant from the time the probe
entered the soil until the maximum penetration depth was
achieved. At each of the depths of the stepwise insertion
probes, the mean force (from the continuous probe insertion)
was calculated for a 1 cm band surrounding the depth of that
scan. At the data sampling rate (18.2 Hz) and penetration
insertion rate (30 mm s71), a typical force value was the mean
of six data points. These data were merged with the spectral
reflectance, soil moisture, and bulk density data at each depth
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Figure 3. NIR—-predicted soil moisture versus gravimetric soil moisture,
over all three soils, using the nine-wavelength model (set 2 data).

where a reflectance scan was collected during the stepwise
probe insertion.

Soil Cone Index Prediction

As with soil moisture estimation, SMLR was used to
develop a relationship to estimate soil cone index at moisture
level 5 (table 1) using cone index, soil moisture content, bulk
density, and clay content at each of the other four test
moisture levels as independent variables. Observation of the
force transducer data revealed that force increased with depth
within each sample container, even though the samples had
been prepared to produce uniform bulk density and moisture
content (fig. 4). The graphs also show that cone index values
tended to be more scattered at the intermediate moisture
levels than at the ends of the moisture range (moisture
levels 1 and 5), particularly for the Drummer and Shoals
sails.

At the depth of each NIR scan collected during the
stepwise probe insertions (moisture levels 1 to 4), a measured
soil cone index was calculated using the force data collected
during the continuous insertion probes at moisture level 5. A
total of 159 usable data points (Drummer = 65, Plainfield =
62, and Shoals = 32), i.e., those scans that had corresponding
force data, moisture data, etc., were available for developing
a relationship between soil cone indices measured at different
soil moisture levels. Since both gravimetric soil moisture and
NIR-predicted soil moisture values were available for each
data point, analyses were conducted using data from both soil
moisture sources (table 4). For both analyses, possible linear
and quadratic relationships of any of the independent
variables with the dependent variable were investigated.
Similar equations, in terms of coefficients of determination,
standard errors, and significant variables, were obtained
when including data for all three soils in the SMLR analysis
to predict soil cone index at a moisture level approaching
field capacity, irrespective of the source of the soil moisture
data. However, the coefficient of the moisture variable was
no longer significant when gravimetric soil moisture was
replaced with NIR-estimated soil moisture. Evidently the
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Figure 4. Cone index versus depth for each of the three soils investigated,
and their corresponding gravimetric moisture levels (set 2 data).

errors associated with moisture estimation (SEP = 2.38%)
were sufficiently large to affect the relationship. When the
data were grouped and analyzed by soil series, lower predic-
tive capability was exhibited with the Shoals silt loam soil
(table 4). This reduced predictive capability may have oc-
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curred because less test soil in the container, for this soil, lim-
ited the insertion depth of the probes. Because of the reduced
insertion depth, fewer data points (and only low force values)
were obtained for the Shoals soil as compared to the other two
soils included in this study. The coefficient of the moisture
content variable was not statistically significant for any data
sets in which both bulk density and NIR—estimated moisture
were used as variables.

The effect of soil moisture on soil cone index is evident
(fig. 5) when predicted cone index at moisture level 5
(approaching field capacity) is plotted versus measured soil
cone index at moisture levels 1 to 4 (the lower moisture
levels). A plot of predicted soil cone index versus measured
soil cone index (fig. 6) illustrates how the range of cone index
values is affected by soil texture. The ability to predict cone
index (r2 = 0.869) at one soil moisture using multivariable
data, including gravimetric soil moisture, collected under
other conditions, is also evident. The plot (fig. 7) resulting
from the same model as fig. 6, but with NIR-estimated soil
moisture instead of gravimetric soil moisture, provided
similar prediction accuracy (r2 = 0.856).

A plot of predicted soil cone index versus measured soil
cone index using the model for Plainfield loamy sand (fig. 8)
illustrates the excellent prediction accuracy (r2 = 0.918;
table 4) of this model for the loamy sand soil. Conversely, the
Plainfield model provides poor prediction of soil cone index
for the other two soils, also illustrated in figure 8. Obviously,
more accurate cone index predictions were possible within a
single soil texture class.

Soil bulk density, both as linear and quadratic terms, was
a significant variable when cone index prediction was
attempted using data for all three soils. Removal of soil bulk
density as a variable in the SMLR analyses (table 4) resulted
in slight increases in the standard errors as compared to those
obtained with the full set of variables. Soil moisture was a
significant variable in this model, irrespective of whether
gravimetric or NIR-predicted soil moisture was used when
predicting soil cone index across all three soils.

Clay content was a statistically significant variable in the
prediction of cone index across all soils, irrespective of the
source of soil moisture values, when all variables were
included (table 4) and remained in both predictive relation-
ships when the bulk density variable was removed. This
result is similar to that obtained in the laboratory testing
machine tests (table 3). Results from both tests indicate that
some information on soil type and/or texture, whether by
onboard analysis or the use of prior mapping and the Global
Positioning System (GPS) to georeference position on the
landscape, would be desirable to improve spatial and
temporal cone index prediction in an in—field situation. This
information could also be used to select the appropriate
calibration curve for each soil type, if different calibration
curves for different soil textural classes improve the cone
index prediction accuracy.

Statistical analyses were conducted to evaluate the impact
of using additional variables to predict soil cone index at one
moisture level, e.g., field capacity, using data collected at
other moisture levels (table 5). The coefficients of variables
and other statistical information from table 4 for the “all
soils” relationships (both with and without bulk density) have
been included for comparison purposes. In addition, analyses
are reported with clay content removed from the statistical
analysis, and analyses using only cone index at varying soil
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Table 4. Coefficients and fit statistics for equations developed for estimating field capacity soil cone
index using SMLR and set 2 datal@l collected at varying soil textures and moisture contents.

Coefficients of SMLR Variables

Standard Cone (Cone Moisture (Moisture Clay (Clay Bulk (Bulk
Error Intercept Index Index, Content Content, Content ~ Content,  Density  Density,
(kPa) r2 (kPa)lb] (kPa) kPa)2 (% d.b.) % d.b.)2 (%) %)?2 (glem3) g/cm3)2
Gravimetric moisture
All soils 41.94 0.869 -493.60 0.981 -0.00058 -9.418 6.779 693.2 -221.1
Drummer 52.29 0.832 -79.20 1.053 -0.00068 N/A N/A 110.57
Plainfield 24.32 0.926 357.09 1.504 -0.00183 -131.375 15.189 N/A N/A -41.80
Shoals 39.49 0.743 152.38 0.597 -9.308 N/A N/A
NIR-estimated moisture
All soils 43.93 0.856 -624.6 0.906 -0.00051 4.384 737.2 -200.8
Drummer 52.33 0.832 -79.18 1.053 -0.00068 N/A N/A 110.57
Plainfield 31.90 0.866 20.31 1.255 -0.00138 N/A N/A
Shoals 43.09 0.693 -152.8 0.560 N/A N/A 154.8
Predicted Results with Bulk Density Removed from Model Consideration
Gravimetric moisture
All soils 43.05 0.861 56.30 0.978 -0.00051 -12.228 6.134
Drummer 54.50 0.814 39.62 1.103 -0.00068 N/A N/A
Plainfield 25.33 0.918 232.32 1.367 -0.00157 -115.197 13.882 N/A N/A
Shoals 39.49 0.743 152.38 0.597 -9.308 N/A N/A
NIR-estimated moisture
All soils 45,92 0.838 87.95 0.684 -5.729 0.0899
Drummer 54.50 0.814 39.62 1.103 -0.00068 N/A N/A
Plainfield 31.90 0.866 20.31 1.255 -0.00138 N/A N/A
Shoals 47.36 0.616 78.49 0.508 N/A N/A

[e] Data were collected on a wide—span carrier platform, using the specified probe insertion rate of 30 mm s~ (ASAE Standards, 2002a).
[b] Form of the equations is shown in equation 3, and only coefficients of variables that are statistically significant at the 5% level, based on the t—test, are

shown.
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Figure 5. Predicted cone index at moisture level 5 versus measured cone
index at moisture levels 1 to 4, using the model derived from all soils and
gravimetric moisture (set 2 data).

moisture levels to estimate cone index at moisture level 5
were also conducted. Considering the relationships devel-
oped using gravimetric moisture (table 5), soil bulk density
provided little improvement in the correlation coefficient.
Soil texture, represented by clay content, had a greater im-
pact on both standard error and correlation coefficient than
did soil bulk density. This result is underscored by the very
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Figure 6. Predicted cone index at moisture level 5 versus measured cone
index at moisture level 5, using the model derived from all soils and gravi-
metric moisture (set 2 data).

different intercepts and coefficients among the three soil se-
ries (which mainly differ in soil texture) shown in table 4.
When bulk density was removed from model consideration
for the individual soil types and NIR-estimated moisture was
included (table 4), the coefficients of the moisture content
variables were no longer significant. Thus, these relation-
ships show that soil moisture and texture information are
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Figure 8. Predicted cone index at moisture level 5 versus measured cone
index at moisture level 5, using the model derived from Plainfield sandy
loam soil and gravimetric moisture.

Table 5. Overall comparison of coefficients and fit statistics for equations developed for estimating field capacity
soil cone index using SMLR and set 2 datal@l collected at varying soil textures and moisture contents.

Coefficients of Variables[?]

Standard Cone (Cone  Moisture  (Moisture Clay (Clay Bulk (Bulk
Error Intercept  Index Index, Content Content,  Content Content, Density Density,
(kPa) r2 (kPa) (kPa) kPa)2 (% d.b.) % d.b.)? (%)lel %)?2 (g/cm3)  glem3)?
All soils, gravimetric moisture
All variables 41.94 0.869 -493.60 0981 -0.00058 -9.418 6.779 693.2 -221.1
w/o density 43.05 0.861 56.30 0.978 -0.00051 -12.228 6.134
w/o density and clay 47.94 0.827 93.39 0.916 —-0.00042 -16.62 0.914
w/o density, clay
and moisture 49.90 0.809 59.81 0.728
All soils, NIR-estimated moisture
All variables 43.93 0.856 -624.6 0.906 -0.00051 4.384 737.2 -200.8
w/o density 45.92 0.838 87.95 0.684 -5.729 0.0899
w/o density and clay 4990  0.809  59.81 0.728 [d] [d]
w/o density, clay
and moisture 49.90 0.809 59.81 0.728

[e] Data were collected on a wide—span carrier platform, using the specified probe insertion rate of 30 mm s~ (ASAE Standards, 2002a).
[b] Form of the equations is shown in equation 3, and only coefficients of variables that are statistically significant at the 5% level, based on the t—test, are

shown.
[c] The clay content value was obtained through textural analysis.

[d1 The coefficients of (cone index)2 and (moisture content)2 were very close to being significant (o. = 0.092 and 0.081, respectively).

useful in adjusting soil cone index values, but that the accura-
cy of the on—-the—go moisture estimation technique needs to
be increased.

Cone index prediction on the wide-span carrier platform
used predicted soil moisture from spectral reflectance data
obtained during the stepwise insertion probes in conjunction
with force measurement data obtained during the continuous
insertion probe. This was a sequential, rather than simulta-
neous, measurement technique, which was necessary be-
cause the CVF monochromator in the NIR spectrophoto—
meter results in a sequential, rather than simultaneous,
collection of spectral reflectance data. For real-time field
application of this technique, a new sensor design providing
instantaneous, simultaneous spectral reflectance data will be
required.

Vol. 47(3): 607-618

CONCLUSIONS

The standard penetrometer cone, modified to incorporate
fiber optics to transfer light to an NIR soil sensor, provided
data to simultaneously predict moisture content and deter-
mine penetrometer resistance. Limited testing of the cone
and shaft design revealed no major design problems.

Stepwise and continuous (2.5 mm s71) penetrometer
probes of soil samples, conducted with the penetrometer
cone/soil moisture sensor on a laboratory testing machine,
showed that the combined sensor was able to estimate soil
moisture content, although the prediction accuracy was low.
Soil moisture prediction was more accurate when using a
relationship between moisture and reflectance developed by
SMLR using the data collected in these tests than when a
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previously developed relationship based on PLSR analysis of
a broader range of soils was used, even though the latter
approach utilized data from the full NIR spectra. Reduced
signal amplitude due to fiber optic signal attenuation and
increased random noise due to EMI from adjacent mechani-
cal equipment required a new calibration to improve
prediction capabilities. However, cone index prediction at a
standard soil moisture level was as accurate using NIR—pre-
dicted soil moisture as with gravimetric moisture.

Subsequent tests utilized stepwise and continuous (30 mm
s71) penetrometer probes of soil samples conducted on a
wide-span carrier data collection platform where EMI was
not a factor. NIR spectral reflectance data collected from the
stepwise insertion probes were able to predict soil moisture,
using stepwise multiple linear regression (SMLR), with a
coefficient of determination of 0.896. The standard error of
calibration (SEC) was 1.97% d.b. moisture, and the standard
error of prediction (SEP) was 2.38% d.b. moisture. The cone
index prediction equation for the data over the entire range
of soil type/moisture content at the standard probe insertion
speed yielded r2 values of 0.83 or higher. Gravimetric soil
moisture content was a significant variable, indicating that
accurate simultaneous measurement of soil moisture would
be useful to improve soil cone index prediction. Separate
calibrations of soil moisture versus spectral reflectance for
different textural classes appears to improve moisture
prediction accuracy and could be implemented by using GPS
to locate field sampling sites on previously obtained textural
maps. A new sensor design will be needed for collection of
instantaneous, simultaneous spectral reflectance and pene-
tration resistance data.
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