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Abstract

The potential benefits of using spreadsheets in education is well documented and more
use of spreadsheets examples have been encouraged. Understanding two-way Analysis
of Variance (ANOVA) with unbalanced data is challenging and is often dismissed and
handed over to dedicated statistical software program without knowing how the data are
handled by those programs. This paper allows students, instructors, and researchers to
use Excel spreadsheets to explore two-way ANOVA scenarios with unbalanced data.
Supplementary material includes a complete spreadsheet with the examples used in the
text and three different approaches on how to handle unbalanced data.
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1. Introduction

The use of technology in education has long existed and implemented for different reasons [1].
Sometimes as a more effective method of transferring information. Sometimes for uniform
training purposes and sometimes as a problem-based learning tool. When it comes to
spreadsheets, educational research studies have shown that spreadsheet applications aid in
promoting problem-solving skills in students and expanding their capabilities [1, 2, 3]. There is
probably no better argument for the benefit of using spreadsheets in education than the excellent
review article written for the first issue of Spreadsheets in Education by Baker and Sugden [4], who
summarized the findings of many others from K-12 mathematics education to several secondary
education areas of science such as Number Theory, Combinatorics, Numerical Analysis,
Statistics, Physical Sciences, Computer Sciences, etc. The article concludes with “There is no
longer a need to question the potential for spreadsheets to enhance the quality and experience of
learning that is offered to students” and promotes improving access to computers and
encouraging the development of more types of spreadsheets covering more topics. It is in that
spirit that the enclosed spreadsheet was developed as a further expansion of spreadsheet use
when teaching, understanding, and using two-way Analysis of Variance (ANOVA) statistics. The
examples used are simply used to frame the discussion and spreadsheet development and does
not constitute limitation of the area of implementation.

Students and researchers are often introduced to ANOVA statistics by first studying one-way
ANOVA examples. Textbooks then move on to factorial ANOVA statistics, for example two-way
ANOVA, but often this is limited to balanced data. Balanced data occur when the number of data
values (replications) for each of the categories (or groups) is the same and all the desired
categories contain data values. When this is the case, the calculations are relatively simple and
equations can be written to construct an ANOVA table. It is rare that classes, even secondary
education classes, ever address the case of unbalanced data; however, unbalanced data are almost
always encountered in some science disciplines (often with human, animal, plant, or
environmental subjects). To illustrate an example of unbalanced data, we can take data from
Smith and Cribbie [5] and the results from a hypothetical survey of gambling behaviour of men
and women with different personal connections to sports (former athletes, current athletes, and
non-athletes). This is a classic 2x3 two-factor ANOVA (gender being one factor, with two levels,
and athlete status being the second factor, with three levels). We will designate the first factor
with the letter A and the second with the letter B. The data taken from Smith and Cribbie [5] are
shown in Table 1. Noted is the unbalanced data with different number of scores for the different
categories. We can imagine that a data value represents the summary score from a survey taken
by one of the individuals belonging to a specific category (e.g., a female former athlete) and we
are interested in how gender and athletic status impact gambling behaviour. When discussing
data like this, it is convenient to say that the data are contained in cells (there are six data cells in
Table 1) and the cells are arranged in rows and columns.
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Table 1. Hypothetical gambling behaviour of women and men with different athlete status. The values within
parenthesis are the mean values for the cells.

Athletic status (Factor B)

Current athlete (B=1) | Former athlete (B=2) | Non-athlete (B=3)
Male 5.1,4.7,49,5.2,4.9 2.1,2.0,19,1.8
. 2. X 2. 7 7 7 4 7 7 7 7
(A=1) 3.0,2.8,3.0(2.93) 5.0 (4.97) (1.95)
Gender (Factor A) . 121113 11 10
Female 2, L1, 15, 11, L
(A=2) 2.3,2.1,24 (2.27) 3.9,3.8,4.1 (3.93) (1.14)

In most cases when ANOVA information is sought, the unbalanced data are entered into a
statistical program such as SAS and the results are reported without much knowledge to the
process and procedures that are used. There are, in general, three accepted types of ANOVA
treatment of unbalanced data when all categories are represented (i.e., no empty cells). These
types have been summarized by, for example, Herr [6] and Shaw and Mitchell-Olds [7].
Discussions about the preferred treatment have been a topic of many articles; even as recently as
2014 [5], which is remarkable as the methods originate from the 1930’s [8]. This manuscript is not
intended to make any unambiguous recommendations on which ANOVA treatment to use; it is
simply an example on how spreadsheets can be used to explore the different ANOVA types of
sums of squares. It also highlights how statistical software packages calculate the sums of squares.
It should be noted that not all statistical software support the three types or the software defaults
to one of the types [5, 9]. The spreadsheet developed here does not exclude or default to any of
the three types. The typical ANOVA table for a two-way design is shown in Table 2. The three
types of ANOVA treatments differ in the values of the entities SSA and SSB and the underlying
hypotheses [5].

Table 2. Typical spreadsheet structure of a two-way ANOVA table with shaded cells where values are located.
Below, the number of Factor A levels is N4, the number of Factor B levels is N5, and the total number of data values is

N.
Source of Sums of Degrees of Mean Square F Ratio Critical | p value
Variability Squares | Freedom (df) Error (MSE) F value
Factor A SSA Na-1 SSA/dfa MSEA/MSEE
Factor B SSB N1 SSB/dfs MSEs/MSEE
Interaction AxB SSAB (Na-1)(Ns-1) SSAB/dfas MSEAs/MSEE
Error SSE N-NaNs SSE/dfe
Total SST N-1

2. Examples used

The first example that we will use was introduced above. The second hypothetical example has
been used by others as well. Here we consider how the final botanical plant height depends on
whether or not weeds were removed around plants of two different initial sizes. This is a classical
2x2 two-factor ANOVA (weed status being one factor, with two levels, and initial size being the
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second factor, with two levels.) Again, we will designate the first factor with the letter A and the
second factor with the letter B. The data were taken from Hector, von Felten, and Schmid [10] and
Shaw and Mitchell-Olds [7] and are shown in Table 3. We can imagine that a data value represents
the final height of a single plant belonging to a specific category (e.g., weeds removed around a
short plant in early-growth).
Table 3. Hypothetical final plant heights of short and tall plants that had or had not weeds removed around them at
early growth.
Early growth height (Factor B)

Shorter than 4 inches Taller than 4 inches
(B=1) (B=2)
Weeds not removed 50, 57 (53.5) 91, 94,102, 110 (99.25)
Weed status (A=1)
(Factor A)
Weeds removed 57,71, 85 (71) 105, 120 (112.5)
(A=2)
3. Theory

The theory of the two-way ANOVA for balanced data can easily be found in most statistics
textbooks or on the web. The handling of unbalanced data goes back to the 1930’s and the work
of Frank Yates [6, 11], who first published on agricultural experimental data that were unbalanced
[8]. Since then, numerous articles have discussed the work, the use of various statistical computer
software, and how to visualize the data [5, 7, 9, 10]. Much of the published work focuses on the
type of sums of squares used in the ANOVA table and what hypotheses they are addressing. As
the three types of sums of squares are different, their values are often different and, thus, leading
to different interpretation of the statistical significance of the different factors. In this manuscript,
we use the terms Type I, Type II, and Type III [5, 10] to designate the types. Other names that
have been used over the years have been summarized by Smith and Cribbie [5].

3.1. Type I sums of squares

To briefly explain Type I, first consider the assumption that the gambling behaviour in Example
1 is completely independent on gender and athletic status and that the variability in the data
within and between cells is simply a result of random error. In this scenario, the data would be
best represented by an overall mean (u) across all the data values. The goodness of fit of this
model can be estimated from the square of the residual between the actual value and the model
prediction (in this case, a single mean) summed over all the data. This would be calculated as

R? =33 Yk(iji — ,u)z or, in short hand, R*(u) (1)

where i is the row counter, j is the column counter, and k is the item counter within the cells. Most
will recognize that this is the first step in calculation of variance in a data set. It should be noted
that R?, as calculated by Equation 1, is equal to the Total Sum of Squares (SST) in the ANOVA
table (Table 2). Now, let us assume that gender, but not athletic status, has an impact on the scores
in Table 1. This would suggest that data scores for males would vary around a mean value and
the scores for females would vary around a different mean value, and both of these gender means



K. Thomas Klasson, Two-way ANOVA for Unbalanced Data: The Spreadsheet Way

would vary around a common value. We are not going to refer to this common value as a mean
but as a common value, which can or cannot be a mean. The means of the female and male group
minus the common value (u') is given as ai and can be seen as impact values. They are simply the
values by which p” should be adjusted to give the predicted female and male mean scores. The
goodness of fit of this model can be estimated from the square of the residual between the actual
value and the model prediction (in this case, u” + ai), summed over all the data.

R? = YiX; Zk()’ijk -+ ai))z or, in short hand, R*(u’,ar) (2)

The improvement in fit due to us considering gender, would be the difference between the results
of Equation 1 and 2. This is known as the sum of squares for Factor A (gender) and would be part
of the ANOVA table.

SSA=R*(u) - R*(u’,ar)

Next, let us assume that both gender and athletic status have an impact on the scores and that
they are independent of each other. This would suggest that, just as the data vary around row
means (gender means), the data also vary around column means (athletic status means). That
would lead to us to state that the values in a cell can be estimated by adjusting a common value
(u”) for gender impact (ai) and for athletic status impact (5). The goodness of this model to fit the
data can be estimated from the square of the residual between the actual value and the model
prediction (in this case, u” + ai + ), summed over all the data.

R? =5, %; Sk(ij — (' + @i + )’ o, in short hand, R¥(u’,a,) 3)

The improvement in fit due to us considering athletic status impact, AFTER considering gender
impacts, would be the difference between the results of Equation 2 and 3. This is known as the
sum of squares for Factor B (athletic status), after Factor A (gender status) has been considered,
and would be part of the ANOVA table.

SSB = Rx(u’,a) — Ry, B)

The actual values of " and ai in Equations 2 and 3 are not necessarily the same. Lastly, let us
assume that both gender and athletic status have an impact on the scores and that they may be
partially dependent of each other; i.e., there may be some interaction between the two factors that
may cause the scores to be higher (or lower) than they were if the factors were completely
independent from each other. That would lead to us to state that the values in a cell can be
estimated by adjusting a common value (1) for gender impact (a), for athletic status impact (),
and for interaction impact, (af)i. The goodness of fit of this model can be estimated from the
square of the residual between the actual value and the model prediction [in this case, u” + ai + 5
+ (ap)i], summed over all the data.

R2 =%, % (yijx — (0 + a; + B; + (@B)i)))” or, in short hand, R(u’,a,,ap) @)

The improvement in fit due to us considering interactions, AFTER considering gender and
athletic status, would be the difference between the results of Equation 3 and 4. This is known as
the sum of squares for interaction AxB (gender-athletic status) and would be part of the ANOVA
table.
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SSAB = RZ(‘L'l,/a/ﬁ) - RZ(M,/a/ﬁ/aﬁ)

It is notable that the square residuals, R?, calculated by Equation 4 is equal to the sum of squares
errors (SSE) in the ANOVA table. Together with the other calculations above, we can now
construct a complete ANOVA table.

In the above description of calculation of the Type I sums of squares for Factor A and B, we
considered Factor A first and Factor B second, but we could just as well have considered Factor
B first and then Factor A. In that case, the resulting equations would have been

SSB (B first) = R¥(u) — R¥(u’,8) SSA (B first) = R¥(u’,f) — R¥(u/,a,p)

It is important to realize that SSA (A first) # SSA (B first) and SSB (A first) # SSB (B first). Thus,
there are two versions of Type I sums of squares; one that considers Factor A first and one that
considers Factor B first. To summarize the Type I sums of squares.

Type IA: SSA =R*(u) - R¥(u',ar) SSB=R¥u’,a) — R* (', )
Type IB: SSA=R¥u’,p)—R¥u'a,p) SSB = R*(u) — R*(u’,p)
Type IA & IB: SSAB = R*(u’,a,) — R¥(u’,a,p,ap)  SSE =R¥u',a,B,ap) SST = R*(u)

3.2. Types II and III sums of squares

The above procedure correctly calculates the Type I sums of squares for the ANOVA table by the
method used in most statistical software. Calculation of SSA and SSB by Types II and III follow
slightly different logic and has been outlined by Smith and Cribbie [5]; Shaw and Mitchell-Olds
[7]; Speed, Hocking, and Hackney [12]. One may think of Type II as a method where
improvement to a model, by adding a main factor (i.e., A and B), is evaluated after all the other
main factors have been considered. Type III could be thought of as a method where improvement
to a model, by adding a main factor (i.e., A and B), is evaluated after all the other factors (mains
and interactions) have been considered. The values for SST, SSE, and SSAB are common among
all three types and are calculated by the same equations each time. The sums of squares for SSA
and SSB differ between the types, and the calculations for Types II and III are given below.

Type II: SSA=R¥u",p) - R*(u',a,p) SSB=R¥u’,a) - R*(u’,av, )
Type III: SSA=R¥u"p,ap)—R¥(u'a,p,ap)  SSB=RXu’a,apf)—R(u,a,pap)

In the case of Types II and III there is no such thing as considering the order of A or B. Two more
types of (sums of) squares of residuals were introduced above, R%(u’,a,af) and R*(u’,,ap), that
were not shown in Equations 1-4. These additional entities are calculated by the following two
equations:

R?2 = Y% Zk(yijk -+ a+ (aﬁ)ij))z or, in short hand, R*(u’,a,a8) 5)

RZ = ZLZ] Zk(yijk - (M’ + ﬁ] + (aﬁ)u))z or, in short hand, Rz([.l,,ﬁ,aﬁ) (6)

When using Equations 2-6, we also need to consider that ANOVA normally add the following
restrictions [13], forcing sums of the impact values to be zero when looking at rows and columns.

Yia; =0 XiBi=0 Xi(ap);j=0 Yj(ap)i =0 (7,8,9,10)
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3.3. Calculations of ', ai, Bj, and (af);

The calculation of p’, ai, B, and (af)iiis done by least square regression; i.e., for each of Equations
2-6, u’, i, Bj, and (ap)i are found by seeking the minimum R? value for the equation. The use of
least square regression models to calculate the different types of sums of squares is explained by
Overall and Spiegel [13] but note that these authors called the different types of sums of squares
“methods” rather than “types” and their numbering system differs from most others (Model 1 =
Type III and Model 3=Type I) [5].

The least square regression technique to find u’, i, f, and (af)ij is aided by using dummy contrast
variables. To summarize this method, consider trying to determine p’, &, §j, and (af);j in the model
used in Equation 4 [+ ai + i + (af)ij]. For the scenario described in Example 1 (gambling scores),
the predicted value (less random error) for any data value can be written in the most general
sense as

Predicted value =
ptartazt+ B+ fat Bzt (af)u+ (ap)iz+ (af)is+ (af)a + (af)z + (af)s (11)

With the acknowledgement that only some of the terms will be used when predicting a specific
data value. When the restrictions in Equations 7-10 are imposed, Equation 11 simplifies to

Predicted value =
p’+ai(a) + B1(b1) + B2 (b2) + (af)un (mb1) + (af)r2 (a1b2) (12)

Where a1, b1, b2, mbi1, and aib2 are dummy contrast variables that are assigned values of 1, 0, or -1,
depending on which data value is predicted. For example, if we want to predict the gambling
score of a male current athlete (first row, left column in Table 1), we use the following values for
the dummy contrast variables:

m=1 bi=1 b2=0 abi=arrbi=1 amb2=a1-b2=0

Similarly, if we wanted to predict the gambling score for a female former athlete (bottom row,
center column in Table 1), we use the following values for the dummy contrast variables:

a=-1 bi=0 b2=1 abi=a-b1=0 mb2=a1b2=-1

By assigning values to the dummy contrast variables for each of the data values, we can use the
multiple variable least square regression technique to determine a1, 1, f2, (af)1, and (af)z as the
regression coefficients of Equation 12. These results can be used with Equations 7-10 to determine
the other impact values. How to assign the values of all the dummy contrast variables is described
later.

3.4. The unique case of no interactions between the main factors

In the above discussion, we included the possibility of interaction between the main factors which
is the normal two-way ANOVA assumption. However, in some cases, it may be desirable not to
consider the interactions and instead include that variance in the SSE. If this is the case, the above
derivation of some sum of squares will not apply. Specifically, the “Interaction AxB” row in Table
2 is not applicable and the Degrees of Freedom for the Error in Table 2 is calculated as
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dfas (in Table 2) = N-NaNs + (Na—1)(Ns-1)

and the sum of squares for the different types are

Type IA: SSA =R*(u) - R¥(u',ar) SSB=R*(u’,a) — R¥(p',ev, )

Type IB: SSA =R(y',p) - R((u',a,B) SSB=R*(p) — R¥(u’,B)

Type II: SSA=Rxu’,p) - R¥ ' a,p) SSB=R¥u",a) — R*(u’,a,8)

Type III: SSA=Rxu’,p) - R¥ ' a,p) SSB=R¥u",a) — R*(u’,a,8)

All Types:  SSAB =not applicable SSE = R*(u/,a,B) SST = R¥(u)

As is noted, SSA and SSB for Types II and III are exactly the same when interactions between
main factors are not considered.

4. Development of a spreadsheet

The layout of the spreadsheet is shown in Figure 1 with sections shaded for the different regions.
Below is the general description of each region. It is recommended that the spreadsheet which
accompanies this report is downloaded from the report’s web site or requested from the author
and that Excel Help is used to look at the detailed description of each Excel function. It should be
noted that the example spreadsheet is set up for handling up to a 5x5 classic ANOVA design with
up to 100 data values. The spreadsheet can easily be expanded downward to allow for more data
values (up to 999). Expanding the design beyond 5x5 becomes more challenging.

4.1. Data (A10:C111)

The data entry section has three columns. One for the data values and two for the A-and B-levels.
From the examples above, we are showing the first 10 lines (Figure 2). There is one data value per
row in the spreadsheet. Several other grey sections in the spreadsheet (Figure 1) are “extensions”
of that data row.

4.1. Basic information about the data (D10:J13)

This section has basic information about the data which is needed for some calculations. The
number of data values, the number of levels of A and B, and the location of each of these. The
spreadsheet functions used are COUNT, MAX, and CONCATENATE.
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‘Basicinformation about the data Square residuals of linear models Dummy contrast variables

User selection

B

+  100%

Rty 20 B E m- 1

Figure 1. Layout of spreadsheet with different regions highlighted. Green sections represent user input sections. The
gray sections carry out calculations and show results.

» o ossx. ? @ o » ossu. 7 @ o
HO INSE PAG FOR DAT E HO INSE PAG FOR DAT E
E25 - i S F30 - | i S

4 . d 4

H E M H E M

Figure 2. Data entry section in the spreadsheet stretches from A10 to C111. The first 10 lines of the data and A- and B-
levels of Examples 1 and 2 (Tables 1 and 3).

4.2. Dummy contrast variables (510:BJ111)

The number of dummy contrast variables is related to the number of levels of A and B. The
number of dummy contrast variables for A is equal to Na—1 and the number of dummy contrast
variables for B is equal to Ns—1. Thus, in the example of gambling scores we will have one dummy
contrast variable (a1) associated with Level 1 of A and two dummy contrast variables (b1 and b2)
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associated with Levels 1 and 2 of B. Every data value will each have a set of dummy contrast
variable values depending on where its cell is located within the rows and columns. The values
for the dummy contrast variables will be the same for all data values within a cell. The general
procedure of how to assign dummy contrast variable values for ai follows these simple principles:

a1 =1 for data where A=1

m = -1 for data where A=the last (highest) level of A
a1 = 0 for all other data, regardless of A

a2 =1 for data where A=2

a2 = -1 for data where A=the last (highest) level of A
a2 =0 for all other data, regardless of A

and so on until all the ai contrast variable have values.

The procedure of how to assign dummy contrast variable values for b; follows the same principle.
In the Excel spreadsheet, nested IF functions were used to assign the dummy contrast variable
values based on above principles. There is also a set of dummy contrast variables that are
associated with the interactions of A and B. There are (Na—1)*(Ns—1) interaction dummy contrast
variables which we will call ab and they are simply multiplications of a- and b-values for each
data value. In Tables 4 and 5, values of the dummy contrast variables are shown for the two
examples. Note that the three columns to the left in Tables 4 and 5 are the data entry columns,
coloured green in Figure 2. In the spreadsheet, that can handle more levels of A and B, the dummy
contrast variables that are not relevant are assigned values of zero.

Table 4. Dummy contrast variable values for cells in Example 1 (Table 1, Gambling Scores) as determined by the A-
and B- levels of the cell.

A B a 141 b2 aib a1b2
Data value 1 1 1 1 0 1 0
Data value 1 2 1 0 1 0 1
Data value 1 3 1 -1 -1 -1 -1
Data value 2 1 -1 1 0 -1 0
Data value 2 2 -1 0 1 0 -1
Data value 2 3 -1 -1 -1 1 1

Table 5. Dummy contrast variable values for cells in Example 2 (Table 3, Plant Height) as determined by the A- and
B- levels of the cell.

A B ai b aib
Data value 1 1 1 1 1
Data value 1 2 1 -1 -1
Data value 2 1 -1 1 -1
Data value 2 2 -1 -1 1
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4.3. Least squares regression of linear models (R1:AQ6)

There are six linear models (data value predictors) that need to be solved separately. Each model
is a linear equation, based on a portion of Equation 12, and the model consists of dummy contrast
variables (ai, bj, aibj) and regression coefficients [ai, i, (af)i]. Excel has a convenient function,
LINEST, that takes two main range arguments, which determines coefficients of linear equations.
The first argument is the range of dependent values (in Excel, these are referred to as y-values),
the second argument is the range of independent values (in Excel, these are referred to as x-
values). In our case, the range of dependent values is the range of data values and our range of
independent values is the range of all dummy contrast variable values for the model in question.
One of the restrictions of the LINEST function is that the y- and x-values must be in ranges that
are uninterrupted and of specific sizes. In the spreadsheet created, the functions
CONCATENATE and INDIRECT are used to select the ranges (shown in R1:R6) to be used for
the various models. The result from LINEST is a small array of values, but only the value in the
upper left corner of the array is normally displayed in the spreadsheet. In order to access other
parts of the array, we use the Excel INDEX function with the COLUMN function as a counter. If
you are not familiar with the LINEST and INDEX functions, please consult the Excel Help menu.
It also explains the other arguments needed for LINEST.

4.4. Square residuals of linear models (L10:Q111)

For each of the six linear models, the square residual is calculated for each of the data values as
the difference between the data value and its predicted value (according to the model used). That
difference is then squared. The Excel function SUMPRODUCT is partially used for the predicted
value calculation with range arguments of the dummy contrast variable values and the
determined regression coefficients. An IF function is also used to make sure residuals are only
calculated when needed.

4.5. Sums of squares of residuals (L9:Q9)
The sums of the squares of the residuals are simply that. Each of the square residuals are summed.
The function used in Excel is SUM.

4.6. Summary of sums of squares (D24:J29)

Each of the sums of squares for the main effect and the interaction that make up the ANOVA
table is the difference between two of the sums of squares of residuals (Equations 2-6.) The SST
Sum of Squares (Equation 1) can be directly calculated with the DEVSQ Excel function. All the
types (IA, IB, II, and III) of the sums of squares are summarized in this section of the spreadsheet.

4.7. User selection (D14:]J17)

This section is intended to give the user flexibility over the ANOVA table. The significance level
can be set and the sums of squares type [1 (IA), 2 (II), or 3 (III)] and can be selected for the ANOVA
table and to evaluate importance. If the number 7 is entered for the Type, Type IB sums of squares
will be used. The interaction between the main factors can also be changed.

10
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4.8. ANOVA table (D18:J23)

The classic ANOVA table is simply a compilation of values taken from the “Basic information
about data,” the “User selection,” and the “Summary of sums of squares” sections. The critical F-
value and the p-value use the Excel functions FINV and FDIST. The choice of sums of squares is
selected by the CHOOSE function.

5. Results of examples

The results of entering the data from Examples 1 and 2 into the Excel spreadsheet are displayed
in Figure 3 and 4. Only information in the green sections were entered and the remaining parts

of the spreadsheet were automatically calculated. An interesting aspect to point out is noted in
the “Summary of sums of squares” section where it can be seen that the Type II SSA and SSB
values are the same as some of the Type IA and IB values. Another thing to note is that SSA + SSB
+ SSAB + SSE only adds up to SST in the case of Type IA and IB types of squares, which is typical
for balanced data and Type I unbalanced data [10]. The spreadsheet can be used for both balanced
and unbalanced data.
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Figure 3. Results of ANOVA analysis for data in Example 1, using Type IA sums of squares.
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Figure 4. Results of ANOVA analysis for data in Example 2, using Type IA sums of squares.

6. Examples of the implementation of the spreadsheet as an education and research tool

ANOVA evaluation implies the use of F statistics and some significance level or acceptable error
rate (i.e., alpha, cell H16 in the spreadsheet), often 0.05 (i.e., 5%). To explore the implication of
selecting a particular type of sums of squares and using 0.05 as the acceptable error rate, consider
the Example 1 data (Table 1) using the spreadsheet to calculate the p-value for the Factor A, Factor
B, and the interaction between Factors A and B. The resulting p-values are listed in Table 6, left,
and they strongly indicate that gambling behaviour is dependent on both gender (Factor A) and
athlete status (Factor B) with p-values of <<0.05. We also find that the gambling is not dependent
on the interaction between Factor A and B with a p-value of 0.081 (which is >0.05). In this example,
it made no difference which type of sums of squares were chosen to calculate the p-values and
evaluate the overall impact of the different factors.

Table 6. F test results (p-values), from the developed spreadsheet (range D18:]23), using different types of sums of
squares to evaluate the impact of different factors for Examples 1 and 2.

Example 1, p-values Example 2, p-values
Factor | IA 1B 11 111 IA 1B II III
A 9E-15 | 4E-11 | 4E-11 | 6E-11 0.58 0.051 | 0.051 | 0.050
B 8E-19 | 2E-19 | 8E-19 | 1E-18 0.00027 | 0.00039 | 0.00027 | 0.00028
AxB | 0.081 | 0.081 | 0.081 | 0.081 0.75 0.75 0.75 0.75

Now consider the data in Example 2 (Table 2). Using the spreadsheet we can calculated the F test
statistics and the p-values for this data set. The results (Table 6, right) show that, regardless of the
type of sums of squares used, the final plant height is clearly dependent how tall the plants were
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during early growth (Factor B) as the p-values were <<0.05. We also see that, regardless of the
type of sums of squares used, there was no interaction between the two Factors A and B as the p-
values were >>0.05. However, when we try to determine the impact of weed removal (Factor A)
on final plant height, we find the results conflicting. On one hand, the p-value using Type IA
sums of squares indicate that there is no impact of weed removal on final plant height (p-value
>>().05 for Factor A). On the other hand, using Types IB, II, and III sums of squares, weed removal
appear to have an impact on the final plant height because the p-values are either equal to, or
slightly above, the acceptable error rate value of 0.05. The significance of this would be that an
experimenter using the Type IA sums of squares would conclude with absolute certainty that
weed removal had no impact on final plant height. But another experimenter using the same data
and the Type III sums of squares would probably be very hesitant to state something definite
about the impact of weed removal, and would likely recommend additional experiments.

So what sums of squares should be used? Unfortunately, there is not a “correct” answer to this
question even though much has been written about the topic [5, 7, 9, 10, 14]. Most statistical data
packages defaults to Type I and III sums of squares [5, 9], but Type I has fallen out of favour [7]
as it can be dependent on the order of which the main factors are considered and also on the
degree of data unbalance. This would suggest that Type III should be recommended, which is a
recommendation shared by several others according to Shaw and Mitchell-Olds [7]. However,
recent writings within the last two decades [5, 9, 14] have recommended that Type II should be
the default method if no (or minor) interaction is noted because it is often more powerful than
Type III, but in most cases these recommendations come with the caveat that Type Il is dependent
on the degree of unbalance and care must be taken when using Type II to investigate main effects.
All recommendations warn against using two-way ANOVA treatment when interactions are very
significant. For the sake of simplicity, it is safe to recommend Type III sums of squares as the basis
of analysis, once it has been determined that interaction is not highly significant. However, it is
always recommended that the details of any statistical method used is stated when results are
presented. Using this recommendation, we can formulated the conclusions of ANOVA
evaluation of the data in Examples 1 and 2.

In the case of Example 1: Using two-way ANOVA Type III sums of squares and a significant level
of 0.05, it is concluded that both gender and athletic status had an impact on gambling behaviour.
There was no statistical evidence that this conclusion was impacted by interactions between
gender and athletic status.

In the case of Example 2: Using two-way ANOVA Type III sums of squares and a significant level
of 0.05, it is concluded that the final plant height was clearly dependent how tall the plants were
during early growth. There was no clear evidence that removal of weeds during the early growth
impacted the final plant height; however, more experiments are recommended to confirm this
initial finding. There was no statistical evidence that these conclusions were impacted by
interactions between the weed removal scheme and early growth plant height.

The spreadsheet technique for calculating sums of squares for Types I, II, and III ANOVA
treatment of unbalanced data was presented to a panel of chemists and engineers at the Annual
Meeting of American Chemical Society, March 18-22, 2018, in New Orleans, Louisiana, USA.
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7. Supplementary material

The Excel spreadsheet shown in Figures 3 and 4 can be requested from the author.

8. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[%]

[10]

[11]

[12]

[13]

[14]

Gasiorowski, J. H. (1998), The relationship between student characteristics and math
achievement when using computer spreadsheets. A PhD Dissertation, West Virginia
University, Morgantown, West Virginia.

Abramovich, S. and Nabors, W. (1997), Spreadsheets as generators of new meanings in
middle school algebra. Comp Schools, 13(1-2): 13-25.

Molyneux-Hodgson, S., Rojano, T., Sutherland, R. and Ursini, S. (1999), Mathematical
modelling: the interaction of culture and practice. Educational Studies in Mathematics, 39(1—-
3): 167-83.

Baker, J. and Sugden, S. J. (2007), Spreadsheets in education-The first 25 years. Spreadsheets
in Education, 1(1): 18-43.

Smith, C. E. and Cribbie, R. (2014), Factorial ANOVA with unbalanced data: A fresh look at
the types of sums of squares. Journal of Data Science, 12(3): 385-404.

Herr, D. G. (1986), On the history of ANOVA in unbalanced, factorial designs: The first 30
years. American Statistician, 40(4): 265-270.

Shaw, R. G. and Mitchell-Olds, T. (1993), ANOVA for unbalanced data: An overview.
Ecology, 74(6): 1638-1645.

Yates, F. (1934), The analysis of multiple classifications with unequal numbers in the
different classes. Journal of the American Statistical Association, 29(185): 51-66.

Langsrud, @. (2003), ANOVA for unbalanced data: Use Type Il instead of Type III sums of
squares. Statistics and Computing, 13(2): 163-167.

Hector, A., von Felten, S. and Schmid, B. (2010), Analysis of variance with unbalanced data:
An update for ecology & evolution. Journal of Animal Ecology, 79(2): 308-316.

Nelder, J. A. and Lane, P. W. (1995), The computer analysis of factorial experiments: In
memoriam-Frank Yates. American Statistician, 49(4): 382-385.

Speed, F. M., Hocking, R. R. and Hackney, O. P. (1978), Methods of analysis of linear models
with unbalanced data. Journal of the American Statistical Association, 73(361): 105-112.

Overall, J. E. and Spiegel, D. K. (1969), Concerning least squares analysis of experimental
data. Psychological Bulletin, 72(5): 311-322.

Lewsey, ].D., Gardiner, W.P. and Gettinby, G. (2001), A study of Type Il and Type III power
for testing hypotheses from unbalanced factorial designs. Communications in Statistics —
Simulation and Computation, 30(3): 597-609.

14





