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EXECUTIVE SUMMARY

The general objective of this study was to provide the U.S. Army Corps of Engineers,
Vicksburg District with erodibility, erosion rates, and knickpoint migration rates for the cohesive
streambeds of the Yalobusha River system. Specifically, the USDA-ARS National
Sedimentation Laboratory was charged with:

1. Determining bed-material characteristics, incipient-motion criteria, and erosion rates of the
clay beds in reaches targeted by the Corps of Engineers (CoE) for grade control and
knickpoint areas previously identified by 1997 CoE surveys and the ARS in Simon (1998);

2. Determining the spatial distribution of the erodibility, incipient-motion criteria, and erosion
rates of the clay beds;

3. Developing predictive technology for rates of erosion and knickpoint migration for the clay
beds; and

4. Identifying and prioritizing clay-bed reaches in most need of erosion control;

Erosion of streambed materials in the Yalobusha River system is controlled by the nature
of the two dominant geologic formations: Naheola and Porters Creek Clay. These are expressed
in terms of two parameters: critical shear stress and an erodibility coefficient. Maps of the
distribution of these parameters throughout the Yalobusha River system are provided in the body
of the report. In general, Porters Creek Clay is extremely resistant to erosion by hydraulic
stresses, requiring shear stresses in the hundreds of Pa to initiate downcutting. Given the range
of representative flow depths and bed slopes, shear stresses of this magnitude probably do not
occur on a frequent basis. This resistance to hydraulic erosion apparently also plays an important
role in limiting knickpoint migration in two key ways. Firstly, the potential for geotechnical
failure is reduced because of a lack of downcutting needed to produce a knickpoint face of
sufficient height to create instability; and secondly, secondary scour, caused by pressure
reduction and flow acceleration close to the brink, is reduced. Erosion of streambeds cut into the
Naheola formation, however, can occur over a range of commonly occurring shear stresses.
These differences lead to stark contrasts in knickpoint migration rates between the two
formations, notwithstanding that the geotechnical shear strength of Naheola beds are greater than
those composed of the Porters Creek Clay.

Tables are provided that classify erosion resistance (in Pascals) and erodibility (in cm®/N-
s) for every study site. For every site, an estimate of the amount of erosion that would occur for
one-day storms at a range of shear stresses is provided as a guide. In addition, shear stress-
exceedance series for the intensively monitored sites, and associated erosion estimates have also
been provided. These have been compared to the erosion observed in surveys and a hydraulic
analysis has been performed to account for discrepancies.

That migration of some knickpoints or knickzones, particularly those cut into the Porters
Creek Clay formation, has been severely limited is directly related to the hydraulic resistance of
these clay beds. More than 30 years after the completion of the most recent channel dredging on
the Yalobusha River main stem (1967), the major erosion zone is still just upstream of the
upstream terminus of the channel work (river kilometer 27.8). With maximum critical shear
stress values reaching more than 400 Pa, erosion of knickpoints cut into the Porters Creek Clay
formation is marginal.
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INTRODUCTION AND BACKGROUND

Thousands of kilometers of cohesive-bed stream channels in the Midwestern United
States are incised and eroding at accelerated rates due to human disturbances imposed near the
turn of the 20™ century (Simon and Rinaldi, 2000). The Yalobusha River of north-central
Mississippi (upstream of Grenada Lake) is one of these systems and poses particular concerns to
river managers because of downstream flooding problems in the vicinity of Calhoun City. The
U.S. Army Corps of Engineers (CoE), Vicksburg District is charged with alleviating the
downstream flooding problems resulting from a massive debris dam (see Simon, 1998) while
protecting middle and upper reaches from further streambed and streambank erosion. Before the
CoE can consider removing the debris dam or re-routing downstream flows, they are protecting
reaches upstream from this zone by constructing grade-control and other structures. Prediction
of future channel responses and the effects of potential mitigation measures are difficult,
however, because of an incomplete knowledge of erodibility and erosion mechanisms in
cohesive streams.

The detachment and erosion of cohesive (silt- and clay-sized) material by gravity and/or
flowing water is controlled by a variety of physical, electrical, and chemical forces.
Identification of all of these forces and the role they play in determining detachment, incipient
motion, and erodibility of cohesive materials is incomplete and, at least, still poorly understood.
The behavior of cohesive materials in flowing water is important in estimating erosion and
sedimentation in a variety of types of waterways, and in the associated transport of adsorbed
constituents. Sub-aerial behavior of cohesive materials is important in determining soil
detachment and erosion from channels, upland areas (by overland flow or raindrop impact), and
with regards to mass movements on hillslopes and channel banks.

Assessing erosion resistance of cohesive materials by flowing water is complex due to
the difficulties in characterizing the strength of the electro-chemical bonds that define the
resistance of cohesive materials. The many studies that have been conducted on erodibility of
cohesive materials have observed that numerous soil properties influence erosion resistance
including antecedent moisture, clay mineralogy and proportion, density, soil structure, organic
content, as well as pore and water chemistry (Grissinger, 1982). Furthermore, field evidence
indicates that cohesive streambeds erode by a variety of mechanisms including particle-by-
particle detachment, geotechnical failure of knickpoint faces, and possibly, by upward-directed
seepage forces. Studies of streambank stability in cohesive materials have led to recognition of
the importance of positive and negative pore-water pressures in accurate numerical analysis of
mass-wasting processes and channel widening (Casagli et al., 1997; Simon and Curini, 1998;
Rinaldi and Casagli, 1999; Simon ef al., 1999). Negative pore-water pressures increase the shear
strength of unsaturated, cohesive materials by providing tension between particles. These studies
led to the idea that positive and negative pore-water pressures may play an important role in the
entrainment and erosion of cohesive streambed particles or aggregates (Simon and Collison,
2001).

The need for evaluation of cohesive streambed erodibility in the incised channels of the
Midwestern United States led to initial field testing of the hydraulic stresses required to erode
cohesive streambeds (critical-shear stresses; Hanson and Simon, 2001). As part of this effort, a
number of sites in the Yalobusha River system were tested during the spring of 1998. The
preliminary results from several streams in the Yalobusha River basin along with the location
and size of major knickzones were reported to the CoE in Simon (1998) and showed that some of



