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hyperspectral imaging through machine
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Abstract

BACKGROUND: Dicamba effectively controls several broadleaf weeds. The off-target drift of dicamba spray or vapor drift can
cause severe injury to susceptible crops, including non-dicamba-tolerant crops. In a field experiment, advanced hyperspectral
imaging (HSI) was used to study the spectral response of soybean plants to different dicamba rates, and appropriate spectral
features and models for assessing the crop damage from dicamba were developed.

RESULTS: In an experiment with six different dicamba rates, an ordinal spectral variation pattern was observed at both
1 week after treatment (WAT) and 3 WAT. The soybean receiving a dicamba rate >0.2X exhibited unrecoverable damage.
Two recoverability spectral indices (HDRI and HDNI) were developed based on three optimal wavebands. Based on the
Jeffries-Matusita distance metric, Spearman correlation analysis and independent t-test for sensitivity to dicamba spray rates,
a number of wavebands and classic spectral features were extracted. The models for quantifying dicamba spray levels were
established using the machine learning algorithms of naive Bayes, random forest and support vector machine.

CONCLUSIONS: The spectral response of soybean injury caused by dicamba sprays can be clearly captured by HSI. The
recoverability spectral indices developed were able to accurately differentiate the recoverable and unrecoverable damage,
with an overall accuracy (OA) higher than 90%. The optimal spectral feature sets were identified for characterizing dicamba
spray rates under recoverable and unrecoverable situations. The spectral features plus plant height can yield relatively high
accuracy under the recoverable situation (OA = 94%). These results can be of practical importance in weed management.
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1 INTRODUCTION

Weed management in soybean farming is essential to maxi-
mize crop yield. As a substitute herbicide to the classic herbi-
cide glyphosate, Dicamba (3, 6-dichloro-2-methoxybenzoic acid)
is able to control several annual and perennial broadleaf weeds
that have evolved resistance to the glyphosate. Although dicamba

and biochemical properties of plants.” HSI has been successfully
used for detecting plant stresses caused by toxic metals,? salt,?
diseases and pests.* With its ability to acquire abundant spectral
information and imaging details of plants, HSI exhibits promis-
ing potential in capturing the plant response of abiotic and biotic
stresses at both leaf and canopy levels.>®

is effective on many broadleaf weeds, its severe drift damage
to non-dicamba-tolerant (non-DT) crops has raised public concern
about its applications. With commercial DT-trait soybean and cot-
ton, off-target dicamba drift from routine use in DT crops onto
susceptible (non-DT) crops has become a major concern, therefore
the assessment of crop damage from dicamba drift is important
for effective weed management.

Currently, crop damage is mainly determined by assessing phys-
iological and biochemical changes (leaf area, leaf color, plant
height, yield, etc.). However, these assessments are labor-intensive.
A rapid, cost-effective method is needed for assessment on large
scale farms. Hyperspectral imaging (HSI) is a technique that can
rapidly scan plant samples. The significance of developing HSI
relies in its ability to acquire a complete reflectance spectrum for
each pixel in an image, and it has been developed for improving
the identification and quantitative determination of biophysical

In detecting, monitoring and quantifying crop damage, a num-
ber of machine learning (ML) algorithms have been utilized, such
as Bayes’ decision,” maximum likelihood classification,® K-means
clustering,® random forest,'® support vector machines' and artifi-
cial neural networks.'> Behmann et al.'* mentioned that given that
the ML algorithms are able to establish both linear and non-linear

* Correspondence to: Y Huang, Crop Production Systems Research Unit, United
States Department of Agriculture, Agricultural Research Service, PO Box 350,
Stoneville, MS 38776, USA. E-mail: yanbo.huang@ars.usda.gov

a College of Life Information Science & Instrument Engineering, Hangzhou Dianzi
University, Hangzhou, China

b United States Department of Agriculture, Crop Production Systems Research
Unit, Agricultural Research Service, Stoneville, MS, USA

Pest Manag Sci 2019; 75: 3260-3272

WWW.S0Ci.org

© 2019 Society of Chemical Industry


mailto:yanbo.huang@ars.usda.gov

Assessing crop damage from dicamba on non-dicamba-tolerant soybean

@)
SCI

WWW.S0Ci.org

models, they require few statistical assumptions and have flex-
ibility on a wide range of data characteristics. As reviewed by
Huang etal.'* and Singh etal,'” the ML algorithms are essen-
tial in agricultural engineering and management, especially for
high-throughput plant stress phenotyping. These algorithms can
be deployed in crop production processes for identification, classi-
fication, quantification and prediction of various biotic and abiotic
plant stress traits.

As for detecting herbicide injury in crops, Henry etal.’® used
hyperspectral data to differentiate soybean and corn plants that
are treated with glyphosate and paraquate for the untreated ones.
Yao etal.'” proposed a modified method of spectral derivative
analysis to improve the detection of soybean plant injury from
glyphosate. Based on leaf hyperspectral reflectance spectra, Zhao
et al.'® achieved early detection of crop injury from the herbicide
glyphosate by PROSPECT (leaf optical PROperty SPECTra model)
inversion of several biophysical and biochemical parameters. With
the aid of spectral observation and analysis, Huang et al.,'® Ortiz
et al.?’ and Huang et al.?! illustrated the possibility of detecting and
mapping the herbicide injury with aerial remote sensing images.

As an auxinic herbicide, dicamba has profound effects on the
growth and structure of plants. As mentioned in Huang et al.??
and Johnson et al.,?* dicamba can cause cupping and crinkling of
leaves, twisting and curling of stems and petioles, and disruption
of phloem transport leading to chlorosis, growth inhibition, wilt-
ing and necrosis on non-DT crops. The biophysical changes in the
plants can induce corresponding spectral variations, which allow
detection via hyperspectral sensing. Our previous study showed
that sprayed dicamba can result in detectable spectral changes
as early as 24 h after treatment (HAT).?2 However, the relationship
between dicamba spray rates that is critical to weed management
and spectral changes over time is not yet clear. It is important
to understand the spectral response of soybean plants to differ-
ent dicamba rates and to develop appropriate assessing methods.
With the aid of HSI, the aim of this study was (i) to understand the
variation in biophysical parameters, yield and corresponding spec-
tral response under different dicamba spray rates, (ii) to identify
appropriate spectral features for assessing the impact of dicamba
rates on the plants and (iii) to establish a model using machine
learning to assess dicamba rates based on HSI features.

2 MATERIALS AND METHODS

2.1 Study area and experiment design

A field experiment was conducted in an experimental field (cen-
tral latitude: 33.445062° and central longitude: 90.869967°) with a
4.5-ha area at the USDA Agricultural Research Service, Crop Pro-
duction Systems Research Farm, Stoneville, MS, USA. A random-
ized complete block experimental design? was used in the setup
of experimental plots, which guaranteed that the treatments were
randomly assigned to the experimental units. The entire experi-
mental field consisted of four blocks. In each block, seven plots
of soybeans (Progeny P4819LL, Progeny Ag Products, Wynne, AR,
USA) receiving different dicamba spray rates, 0.05X, 0.1X, 0.2X,
0.3X, 0.5X and 1X (where X = 0.56 kg ae ha~") and a dicamba-free
plot (0.0X), respectively, were set, which resulted in a total of 32
plots (4 blocks x 8 plots) of soybeans. Each plot consisted of eight
rows with a plot size of 7.76 x 25 m (Fig. 1). The soybeans were
planted on 7 May 2014. In late March 2014, the surroundings of
the experimental area were planted with maize, which was used
to establish a buffer zone to minimize the spray drift of dicamba
to/from the neighboring fields.
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Figure 1. Experiment field layout for soybean dicamba damage study.

Since many broadleaf plants are sensitive to dicamba, it is rec-
ommended that dicamba is applied in the field at early leaf stage.
On 17 June 2014, when the soybean was at the five to six triflolio-
late leaf stage, the soybean plots were treated with the dimethy-
lamine salt of dicamba, RIFLE® (Loveland Products, Inc., Greeley,
CO, USA) using a tractor-mounted sprayer with Tee Jet 4003 stan-
dard flat-spray nozzles delivering 140 Lha~" of water at 193 kPa
(Fig. 2). The hyperspectral plant sensing and the measurements of
plant height and plant biomass were taken 1 week after treatment
(WAT) and 3 WAT. To avoid the influence of various measurements,
no postemergence herbicides were applied up to 3 weeks after
dicamba treatment. After 3 weeks, other postemergence herbi-
cides were applied as needed to keep the plots weed-free. The field
was furrow irrigated as needed. The soybean yield was recorded at
the time of harvest on 9 September 2014.

2.2 Measurements of hyperspectral and biophysical data

In each plot, an area with representative growing conditions
was chosen for hyperspectral and biophysical measurements at 1
and 3 WAT when each treated and non-treated control plot was
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Pika Il VNIR hyperspectral imaging system

Tractor mounted dicamba spray system

Figure 2. Dicamba spray system and hyperspectral imaging system.
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Original image Image mask Segmented image

1.0X
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Figure 3. Hyperspectral image masking and segmentation for low-dose (0.05X) and high-dose (1.0X) images, respectively (selected images acquired at
3 WAT).
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Table 1. Conventional spectral features used in this study

Spectral features Definition

Description/formula

Literature

Derivative features

Dy Maximum value of first derivative
within blue edge

Ap Wavelength at D,

SDy, Sum of first derivative values within
blue edge

D Maximum value of first derivative

within yellow edge

Blue edge covers 490-530 nm

Dy, is a maximum value of first-order
derivatives within the blue edge of 35 bands

Ap is wavelength position at Dy,

Defined by sum of first-order derivative values
of 35 bands within the blue edge

Yellow edge covers 550-582 nm

D, is a maximum value of first-order derivatives
within the yellow edge of 28 bands

4y is wavelength position at D,

Defined by sum of first-order derivative values
of 28 bands within the yellow edge

Red edge covers 670-737 nm

D, is a maximum value of first-order derivatives
within the red edge of 61 bands

A, is wavelength position at D,

Defined by sum of first-order derivative values
of 61 bands within the red edge

Gong et al.?°
Gong et al.?°
Gong et al. 26

Gong et al.?

Gong et al.?
Gong et al. 2

Gong et al. 2

Gong et al. 2
Gong et al.?°

Ay Wavelength at D,

SD, Sum of first derivative values within
yellow edge

D, Maximum value of first derivative
within red edge

A Wavelength at D,

SD, Sum of first derivative values within
red edge

Continuous removal features

DEPs550.750 The depth of the feature minimum
relative to the hull

WIDs550.750 The full wavelength width at half
DEP (nm)

AREA;50.750 The area of the absorption feature
that is the product of DEP and
WID

Vegetation index

Gl Greenness index

CARI Chlorophyll absorption ratio index

TCARI Similar to OSAVI

MCARI Modified chlorophyll (a and b)
absorption in reflectance index
(MCARI)

NPCI Normalized pigment chlorophyll
ratio index

PRI Photochemical reflectance index

RARS Ratio analysis of reflectance spectra

ARI Anthocyanin reflectance index

PSRI Plant senescence reflectance index
(PSRI)

In the range of 550-750 nm
In the range of 550-750 nm

In the range of 550-750 nm

R554/R677
(|(@ 670 + Rg70 + b)|/(@% + 1)V2)*(Ry00/Rs70)
a = (Ryg9-Rs50)/150, b = Rggy—(a*550)

3[(R700—R670)—0.2*(R700—Rs50)1* R700/ Re70
[(R700—R670)—0.2*(R700—Rs50)1* R700/ Re70

(Rego—Ra30)/(Rego + Ra3o)

(Rs31—Rs70)/(Rs31 + Rs70)

R760/Rs00
ARI = (Rss0) ™" —(Ryg0) "

(R678 _RSOO )/R750

Pu et al.?728
Pu et al.?728

Pu et al.?728

Zarco-Tejada et al.?®
Kim et al.*®

Haboudane et al.3!
Daughtry et al.3?

Pefuelas et al.33

Gamon et al.3*
Chappelle et al.3
Gitelson et al.3°
Merzlyak et al.3”

sampled to measure biological responses: plant height (Ht), shoot
wet weight (wet Wt) and dry weight (dry Wt). Soybean Ht was
recorded on five randomly selected plants in each plot. Ten soy-
bean plants from each plot were excised at the soil surface
and the wet Wt values recorded. The plants were then oven dried
at 60°C for 72 h, after which dry Wt was recorded. Simultane-
ously with field biophysical measurements, five soybean plants
from each plot were excised, stored in the cooler and transported
to the laboratory forimmediate hyperspectral imaging. When har-
vesting, the yield of each plot was recorded by the yield monitor
mounted on the combine harvester.

The plants were imaged using a Resonon Pika Il VNIR (Visible
+ Near Infrared) hyperspectral imaging system (Resonon, Boze-
man, MT, USA). The Pika Il camera was mounted approximately
1 m above the sample stage, which (when combined with the
lens magnification) resulted in sub-millimeter pixel sizes (Fig. 2).
The camera had 2.1 nm spectral resolution and 12-bit dynamic

range. The spectral range of the camera was 400-900 nm, with
240 narrow wavelength bands evenly spaced in the range. The
high spatial resolution of the imaging settings ensured that a very
large number of pure plant pixels were present in the images. Dur-
ing imaging, the sample stage was covered by black felt cloth,
which has almost no spectral reflection, to provide good contrast
between the plants and the background in the acquired images.
The good contrast also simplified segmentation of the plant pix-
els from the non-plant pixels in the images. This collected hyper-
spectral image data permitted the extraction of the plant portion
within the field of view, which thus avoid background interfer-
ence (i.e. soil, canopy gaps). To achieve this, mask layer of soybean
plants was generated from the hyperspectral images (Fig. 3). An
average spectrum for soybean plants was then derived for each
hyperspectral image with this mask. The averaged spectra that
were purely for plant information were used to analyze the impact
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Figure 4. A framework of the data analysis in this study.

of dicamba treatments. Before plant measurement, the hyperspec-
tral camera measured the dark current with the lens cap on and the
white reference with a 0.3 x0.3 m Spectrolon® reference target
with 99% nominal reflectance (Labsphere, North Sutton, NH, USA).
The dark current and white reference data were used to radiomet-
rically calibrate the plant hyperspectral data to generate percent
reflectance. The algorithm of hyperspectral image processing was
programmed using Python, a widely used high-level programming
language for general-purpose programming.

2.3 Data analysis

2.3.1 Spectral response analysis and features extraction

First, the spectral response to dicamba rates was analyzed. The
spectra that were extracted from the hyperspectral images within
one plot were averaged to represent the plot. The plot-level
spectra were then further averaged in line with the dicamba rates
to facilitate the comparison. In addition, to highlight the spectral
difference between dicamba affected soybeans and herbicide-free
soybeans, a spectral ratio analysis was performed that took

Crops suffered
unrecoverable
damage
(0.2X-1X)

v

Feature sensitivity
analysis and selection
(Spearman Correlation)

A

Spectral feature
sets for
differentiating
damage levels
(Wavebands, Average
Der&Cons, Vis) Ht.(cm)

l—l

Classification
model
(NB, GA-SVM, RF)

the averaged spectra of the reference plots as the denomina-
tor. From the spectral pattern at 1 and 3 WAT, it was clear that
the soybeans receiving a dicamba dosage >0.2X suffered an unre-
coverable injury (for detail please see Section 3.1). Therefore, two
analysis steps were designed to construct and identify effective
spectral features for (i) differentiating the recoverable soybean
plants from the unrecoverable ones and (ii) indicating dicamba
rates under both recoverable and unrecoverable situations. In
analytical modeling, 60% of the spectral and biophysical data
at each dicamba rate was randomly selected as training data,
whereas the other 40% of the data was used for validation.

2.3.1.1 Development of recoverability index. To develop an
index for differentiating the recoverable or unrecoverable
dicamba injured samples, a sensitivity analysis was performed
on the reflectance spectra to identify the wavebands that had
the greatest potential in indicating recoverability. To achieve
this, a Jeffries—Matusita (JM) distance?® was used to evaluate
the spectral difference between samples receiving 0.05-0.1X

wileyonlinelibrary.com/journal/ps
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Figure 5. Averaged reflectance spectra and spectral ratio curves (treated/untreated) for different dicamba spray rates at 1 and 3 WAT (0.05-1.0X indicate

dicamba spray rates).

dicamba dosage (recoverable) and 0.2-1.0X dicamba dosage
(unrecoverable) for each waveband. The JM distance takes into
account the distance between class means and the distribution
of values from the means by involving the covariance matrices
of the classes. It was applied as an efficient feature separability
criterion in band selection for hyperspectral image analysis.?> In
addition, a Student’s t-test was used to examine the statistical
significance of the difference for each waveband. The wavebands
corresponding to the peak values of the JM distance curves were
identified as sensitive wavebands. Based on these sensitive wave-
bands, a recoverability index was developed by taking the ratio
or normalization form as a basic structure. The index construction
process is detailed in Section 3.2.

2.3.1.2  Extraction of sensitive spectral features indicating dicamba
rates. Forboth the recoverable and unrecoverable situations, sen-
sitive spectral features (SFs) were identified as being associated
with the rates of dicamba, respectively. As only subtle spectral dif-
ferences were expected between different dicamba rates, in addi-
tion to the original reflectance wavebands, a total of 21 con-
ventional SFs that are potentially sensitive to plant biochemical
and biophysical responses were included to form candidate fea-
ture sets (Table. 1). In these sets, 12 derivative and continuous
removal features (Der & Con features) were able to capture plant
absorption features around some classic wavelength ranges (i.e.
blue edge, yellow edge and red edge) of plants,26-28 and were

able to be correlated with plant biophysical status and stresses.’
In addition, nine classic narrow-band hyperspectral vegetation
indices (VIs) were considered that can be associated with plant
greenness,?® pigments such as chlorophyll,*°-33 carotenoid,3*3>
anthocyanin® and plant stress.3”

For the recoverable situation, a JM distance and Student’s t-test
exam were used to identify sensitive features in differentiating
samples receiving 0.05X and 0.1X dicamba rates (called 0.05X sam-
ples and 0.1X samples hereafter for short). For the unrecover-
able situation, given that the 0.2X, 0.3X, 0.5X, 1.0X samples exhib-
ited increasing dicamba damage, an ordinal Spearman correlation
analysis was used to identify sensitive features in differentiating
these rates. For both recoverable and unrecoverable situations, a
cross-correlation check was performed on the identified sensitive
SFs to eliminate features that had high cross-correlation to other
features, but relatively lower sensitivity, until there were no fea-
tures with cross-correlation of R? > 0.8. Such a procedure guaran-
tees that the spectral feature sets have relatively low levels of infor-
mation redundancy.®

2.3.2 Differentiation of dicamba rates

To differentiate the recoverable and unrecoverable situations
for soybean plants that received dicamba treatments, a threshold-
ing method was applied to the developed novel index. A stepwise
method was applied to determine the optimal threshold. One hun-
dred evenly spaced intervals were set within the data range (i.e.
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Figure 6. Sensitive analysis of wavebands to the recoverability of soybean plants due to dicamba treatment (JM distance and t-test were performed
on the wavebands’ spectral ratio between 0.05-0.1X samples and 0.2—-1.0X samples, which represent the recoverable and unrecoverable situations of

dicamba-treated soybean plants).

from minimum to maximum) of the index. Based on the training
data, the overall accuracy was calculated by traversing all intervals.
The cut-off value was defined as the point when the highest accu-
racy was reached.

Based on the identified sensitive spectral feature sets corre-
sponding to both recoverable and unrecoverable situations, three
machine learning classification algorithms, naive Bayes (NB), ran-
dom forest (RF) and support vector machine coupled with a
genetic algorithm (GA-SVM), that have different principles were
used to differentiate the effects from dicamba rates. NB is a sim-
ple probabilistic classifier based on the Bayes’ theorem. The RF
classifier is an ensemble classifier that produces multiple decision
trees using a randomly selected subset of training variables. The
SVM classifier addresses the small-size training set problem and
has a good generalization capacity. In GA-SVM, the GA was imple-
mented to optimize parameters for the SVM. These three algo-
rithms have shown excellent classification capabilities in remote
sensing applications, which are therefore adopted in this study for
comparison.'%340 Apart from the SFs, given that plant height is a
measurable biophysical parameter that also exhibited a response
to the herbicide effect, it was also included to generate a syn-
thetic model (SFs + plant Ht), which was further compared with
the model based on solely SFs. The models were trained by the
training samples and validated against the validation samples. The
overall accuracy (OA) and Kappa coefficients were calculated from
the confusion matrices to evaluate the classification accuracies.*'
All statistical analysis and modeling was conducted using MATLAB

software (MathWorks Inc., Natick, MA, USA). Figure 4 illustrates the
framework of the data analysis in this study.

3 RESULTS AND ANALYSIS

3.1 Spectral response and biophysical changes due

to dicamba

In comparing the averaged spectra of soybean under different
dicamba rates, an orderly variation pattern can be clearly observed
from the results for both 1 and 3 WAT (Fig. 5(A,B)). With the increase
in dicamba rate, several typical spectral traits of green vegetation,
such as green peak, red valley and red edge, gradually become
vague. Comparing with the untreated control samples, the spec-
tral ratio curves on 1 and 3 WAT provide a clear spectral vari-
ation pattern, which exhibited two peaks at 480-510 nm and
640-690 nm, and a low platform beyond 730 nm (Fig. 5(C,D)). In
addition, it can be seen that the 0.2X dicamba rate seems to be a
turning point of the soybeans’ fate, after which the plants receiving
lower dosages would recover, whereas the plants receiving higher
dosages (include 0.2X) would become feeble. The spectral differ-
ence between the 0.05-0.1X samples and the 0.2-1.0X samples
can be observed at 1 WAT (Fig. 5(A)), and this becomes clearer at
3 WAT (Fig. 5(B)).

3.2 Differentiating recoverable and unrecoverable
situations

The curves of JM distance and the P value of the t-test between
0.05-0.1X samples and 0.2-1.0X samples (Fig. 6(A,B)) show the
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sensitivity of wavebands to the recoverability of soybean plants
from dicamba treatment. Fig. 6(C) shows the JM distance based
on the pooled data from 1 and 3 WAT. From the data, the three
best sensitive wavebands were determined at 495, 679 and 752
nm, which correspond the spectral peaks of the JM distance curve.
These spectral values were used to construct a recoverability index.
The results of the t-test for the three wavebands at 1 and 3 WAT
also confirmed that the difference between 0.05-0.1X samples
and 0.2-1.0X samples was statistically significant. As indicated in
Fig. 6(C), the reflectance tended to significantly increase at 495
and 679 nm for dicamba-treated samples, whereas it decreased at
752 nm. Considering that adverse spectral variation can enhance
the sensitivity of the recoverability index, two types of indices were
constructed following the basic ratio and normalization structures.
Instead of using the original band reflectance, the spectral ratio
of a band (i.e. the band reflectance of a dicamba-treated sample
divided by the averaged band reflectance of untreated reference
samples) was used to create a new index to improve the generality
of the index. Two recoverability indices, the Herbicide Damage
Ratio Index (HDRI) and the Herbicide Damage Normalized Index
(HDNI), were constructed:

RatioRef s
%
RatioRef,,

RatioRef,,

HDRI = a - s
RatioRef,s,

a=1.53,b=0.095
M

RatioRef,,, — RatioRef,s,

HDNI = g % — :
RatioRefy,, + RatioRef, s,

RatioRef,qs — RatioRef,,

* - - ,a=215b=1.01
RatioRef,qs + RatioRef,s,

()

Given the wavebands of 495 and 679 nm located at two separate
peaks of the spectral ratio curves (Fig. 6(C)), the combination of
the two components in both the HDRI and HDNI thus provides
complementary information in capturing the spectral response
caused by dicamba treatment. In this study, the coefficients a and
b in HDRI and HDNI were determined through fitting by a Fisher
linear discrimination analysis based on the training dataset. In this
process, the two fraction terms in the HDRI and HDNI were treated
astheindependent variables (x; and x,) whereas the recoverability
was treated as the dependent variable (y) with recoverable and
unrecoverable situations indicating 0 and 1, respectively. The fitted
coefficients for x; and x, were determined as the coefficients a and
b in HDRI and HDNI.

A stepwise thresholding method was applied on HDRI and
HDNI to determine the optimal cut-off values for differentiating
the recoverable and unrecoverable situations. As shown in Fig. 7,
the cut-off values were 2.89 (1 WAT) and 2.58 (3 WAT) for HDRI
and 2.15 (1 WAT) and 2.82 (3 WAT) for HDNI. According to the
validation samples, the OA of determining the recoverable and
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Figure 8. Sensitive analysis of wavebands to dicamba rates under recov-
erable and unrecoverable situations (for the recoverable situation, the JM
distance and the P value of the t-test were used to indicate the sensitivity
of wavebands to dicamba rates. For the unrecoverable situation, the Spear-
man correlation coefficient |R| and the P value of the correlation analysis
were used as the selection criteria. The analysis was performed based on
the pooled data at 1 and 3 WAT.

unrecoverable samples reached 0.91 (1 WAT) and 0.95 (3 WAT) for
HDRI and was slightly better at 0.92 (1 WAT) and 0.97 (3 WAT)
for HDNL. It is therefore feasible to differentiate the recoverable
soybean plants from the unrecoverable ones through HSI analysis.

3.3 Quantifying dicamba rates by spectral features

The sensitivity of spectral wavebands and other types of spec-
tral features was evaluated to model dicamba rates under both
recoverable and unrecoverable situations. For the recoverable situ-
ation, based on the pooled data from 1 and 3 WAT, the JM distance
and P value of the t-test between 0.05X samples and 0.1X sam-
ples are shown in Fig. 8(A). From this, three sensitive wavebands at
409, 516, 684 nm can be identified at the peaks of the JM distance
curve. The P values of these wavebands were less than 0.01, which
ensures the differences are statistically significant. Moreover, the
sensitivity analysis was also performed on Der & Con features and
Vls. A cross-correlation check with a criteria of R? < 0.8 was imple-
mented on those sensitive SFs, which retained a total of eight sen-
sitive SFs as the input variables of the model: 409 and 684 nm, 4,,,
4. WIDs55 750, Gl, TCARI and PSRI.

For the unrecoverable situation, the absolute value of the Spear-
man correlation coefficient |R| and the P value of the correlation
analysis are shown in Fig. 8(B). Three sensitive wavebands at 403,
540 and 719 nm were identified at the peaks of the |R| curve. The P
values of these wavebands were less than 0.01, which ensures the

validity of the waveband selection. Similarly, according to the sen-
sitivity analysis and cross-correlation check, a total of seven sensi-
tive SFs were retained: 403, 719 nm, SD,, DEP<5 550, WIDs54.750. PRI,
MCARI.

Based on the selected SFs for both the recoverable and unrecov-
erable situations, the classification models were established using
NB, GA-SVM and RF on 1 and 3 WAT. In addition to the models solely
based on SFs, synthetic models that include both SFs and plant Ht
were also established. Table 2 summarizes the OA and Kappa coef-
ficient for the two models under different algorithms and feature
combinations. It should be noted that the accuracies of the models
for the recoverable situation were significantly greater than for the
models for the unrecoverable situation. The models driven by both
SFs and Ht (called the SFs + Ht model hereafter) exhibited obvious
higher accuracies than the models driven by solely SFs (called the
SFs model hereafter). For the three algorithms, NB or RF showed
the highest accuracies under different variable combinations.

For models corresponding to the recoverable situation, the OA
and Kappa coefficients of the SFs models ranged from 0.69 to 0.75
(OA) and 0.38 to 0.50 (Kappa) at 1 WAT, and from 0.56 to 0.69 (OA)
and 0.13 to 0.38 (Kappa) at 3 WAT. The SFs + Ht models exhibited
a significantly higher accuracy as OA and Kappa ranged from
0.88 to 0.94 (OA) and 0.75 to 0.88 (Kappa) at 1 WAT and achieved
0.94 (OA) and 0.88 (Kappa) for all three algorithms at 3 WAT. The
RF outperformed the other two algorithms for both SFs models
and SFs + Ht models, except for the SFs model at 1 WAT, which
achieved the highest accuracy under the NB algorithm.

For the models responsible for the unrecoverable situation, the
highest OA and Kappa values decreased to 0.53 (OA) and 0.38
(Kappa) for SFs models at 1 WAT and to only 0.38 (OA) and 0.17
(Kappa) for SFs models at 3 WAT accuracies. The SFs + Ht models
yielded relatively higher accuracies, with the highest OA and
Kappa values reaching 0.63 (OA) and 0.46 (Kappa) at 1 WAT and
0.69 (OA) and 0.58 (Kappa) at 3 WAT. Within these models, NB
performed best for the SFs models whereas RF performed best for
the SFs + Ht models.

4 DISCUSSION AND CONCLUSIONS

From the spectral variation of the soybean plants receiving
dicamba treatments at 1 and 3 WAT, it is interesting to find that
the plants receiving less than 0.2X dicamba will have a differ-
ent fate from those receiving more than 0.2X (including 0.2X),
resulting in recoverable and unrecoverable situations for the
dicamba-treated plants. It is encouraging that the plants’ spectra
of the two situations started to show a clear difference at 1 WAT
(Fig. 5(A)), which thus permitted the prediction of recoverability at
an early stage. Figure 9 demonstrates the relationships between
the dicamba rates and corresponding yields, as well as between
dicamba rates and several biophysical parameters. It can be seen
that the yield loss generally conforms a logarithmic function with
the dicamba dosage, which shows a sharp increase at the begin-
ning and then levels off (i.e. almost total crop failure) at 0.2X rate.
In addition, despite the soybean plants receiving 0.05X and 0.1X
rates recovered at 3 WAT, the yield loss for the 0.05X samples still
surpassed 50% of the maximal yield, indicating that the misuse
of dicamba on those non-DT soybean plants will cause severe
damage and significant yield loss. The variation of the plant Ht,
wet Wt and dry Wt over different dicamba rates showed a gener-
ally consistent pattern similar to the relationship between yield
and rates, with these biophysical parameters declining sharply
with rates over 0.05-0.1X. Therefore, for future research, further
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Table 2. Classification accuracies of models determining different dicamba rates

Recoverable (0.05-0.1X)

Unrecoverable (0.2-1.0X)

1 WAT 3 WAT 1 WAT 3 WAT

Algorithms Variables OA Kappa OA Kappa OA Kappa OA Kappa
NB SFs 0.75 0.50 0.63 0.25 0.53 0.38 0.38 0.17

SFs + Ht 0.88 0.75 0.94 0.88 0.53 0.38 0.44 0.25
GA-SVM SFs 0.69 0.38 0.56 0.13 0.31 0.08 0.34 0.13

SFs + Ht 0.88 0.75 0.94 0.88 0.59 0.46 0.66 0.50
RF SFs 0.69 0.38 0.69 0.38 0.50 0.33 0.34 0.13

SFs + Ht 0.94 0.88 0.94 0.88 0.63 0.46 0.69 0.58

features mentioned in Section 3.3; Ht, plant height of soybean.

All the accuracies were derived based on the validation datasets. The underlined cells indicate the highest accuracy achieved in certain algorithm
and feature combination. NB, naive Bayes; GA-SVM, support vector machine coupling with genetic algorithm; RF, random forest; SFs, selected spectral

investigation and comparison of the impact of dicamba on plants
at lower dosage levels between 0.0X and 0.1X, such as 0.01X,
0.02X, 0.03X, 0.04X, 0.05X, 0.06X, 0.07X, 0.08X, 0.09X and 0.1X, is
recommended.

The strong and clear orderly pattern of the spectral response
due to dicamba treatments (Fig. 5(A,B)) suggested the possibility
of spectrally quantifying different dicamba rates. From the spectral
ratio curves (Fig.5(C,D)), the two peaks around the green and
red bands indicate less absorption of pigments like chlorophyll,
carotenoid and anthocyanin. As confirmed by Silva etal.*? and
Huang et al.,?? herbicides like glyphosate and dicamba can lead
to severe destruction of the pigment systems associated with
photosynthesis, and affect the dry matter accumulation, resulting
in corresponding changes in biophysical parameters (Fig. 9). The
decline of the reflectance in the NIR region of the dicamba-affected
plants reflects the impact of the herbicide on the foliar cellular
structure of the plants.*° Such a spectral response for dicamba was
also in good agreement with Huang et al.??

The clear separation of the recoverability of dicamba-treated
plants (Fig. 5) permits spectral differentiation between the recov-
erable and unrecoverable situations (i.e. 0.05-0.1X vs 0.2-1.0X).
These spectral differences are induced by changes in biochemi-
cal status and biophysical parameters due to dicamba treatments.
In addition, the hyperspectral imaging technique enables purifica-
tion of the spectra (i.e. the non-plant portion was eliminated). The
high-quality spectral data facilitated the spectral determination of
the recoverability of the dicamba-treated plants at an early stage
(1 WAT). Therefore, based on only three wavebands at 495,679 and
752 nm, both the newly developed indices HDRI and HDNI were
able to yield a satisfactory classification accuracy, with OA over 0.9
at 1 and 3 WAT. The two response wavebands (495 and 679 nm)
are located at the green and red bands, which are also close to
the two peaks of the spectral ratio curves (Fig. 5(C,D)). The ratio
and normalization of the band combination enhanced the spec-
tral difference between recoverable and unrecoverable samples,
which facilitated their separation. The early determination of the
recoverability of the dicamba-treated plants can help producers
and herbicide applicators to prevent the plants from further injury,
which is of practical significance.

Given that the spectral variation pattern differs significantly
between the recoverable and unrecoverable situations, two
separate models for quantifying the dicamba rates were estab-
lished. Despite the compositions of the SFs corresponding to

the recoverable and unrecoverable situations being different,
both selected SF sets include original wavebands, Der & Con
features and Vis. It should be noted that features of blue edges
(i.e. 403nm, 409nm, A,, SD,) and red edges (i.e. 684nm, A,
DEP.5.750- WIDss 750) regions were included in both SF sets. These
SFs are associated with plant stress. Some Vis, such as PRI TCARI
and MCARI, were sensitive to the destruction of chlorophyll and
carotenoid pigment systems. The PSRI that was sensitive to the
Car/Chl ratio was associated with plant senescence. The Gl was
sensitive to biochemical constituents and leaf area index (LAI).
Therefore, all the VIs mentioned above deliver information about
the variation in the biochemical or biophysical status of the
dicamba-treated plants. It should also be noted that the addi-
tion of Ht significantly enhanced the detecting accuracy of the
dicamba dosage levels. This might be because the plant height,
plant greenness, and plant biochemical and biophysical status
of as reflected by spectral features are mutual complementary
information that can reflect the influence of dicamba treatment
on plants.

Among the three modeling algorithms, the superior perfor-
mance of RF might be related to its ability to handle high data
dimensionality and multicollinearity.”® The high classification
accuracy for the recoverable situation (maximal OA>0.9) sug-
gested the possibility of the spectral differentiation of the dicamba
treatment levels. However, the relatively low classification accu-
racy (maximal OA = 0.63 at 1 WAT, maximal OA = 0.69 at 3 WAT) of
the unrecoverable situation might be because of the saturation
effect of the biophysical changes of the severely damaged sam-
ples. This effect can be confirmed by the leveling-off pattern of
the biophysical parameters within 0.2-1.0X (Fig. 9). It is is more
important from a practical perspective that knowing the dicamba
treatment levels under the recoverable situation. Some remedial
measures, such as water drip washing or additional fertilization,
can be implemented at an early stage.

This research concludes that (i) the spectral response of soybean
injury caused by dicamba sprays can be clearly captured by HSI,
(ii) the recoverable and unrecoverable damage situations due to
the herbicide can be accurately differentiated by the recoverabil-
ity spectral indices HDRI and HDNI developed, and (iii) using opti-
mal spectral feature sets, the dicamba spray rates under recover-
able and unrecoverable situations can be determined. The abil-
ity of HIS to demonstrate the difference between the recover-
able and unrecoverable situations of dicamba-treated soybean
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Figure 9. The relationship between dicamba spray rates, soybean yield and biophysical parameters.
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plants as well as characterizing the herbicide rates revealed a
potential for monitoring and assessing herbicide crop damage via
unmanned aerial vehicle, agricultural airplane or high-resolution
satellite. More experiments and research on these applications are
expected in future.
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