
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Climate-driven prediction of land water storage anomalies: An outlook for
water resources monitoring across the conterminous United States
Clement D.D. Sohoulande⁎, Jerry Martin, Ariel Szogi, Kenneth Stone
USDA-ARS Coastal Plain Soil, Water and Plant Conservation Research Center, 2611 west Lucas Street, Florence, SC 29501, USA

A R T I C L E I N F O

Keywords:
Climate
Water resources
GRACE satellite
Multivariate model
Lag signals
Conterminous US

A B S T R A C T

The conterminous United States (CONUS) extends over a region of contrasting climates with an uneven distribution of
freshwater resources. Under climate change, most predictions concur on critical disturbances in the terrestrial hydro-
logical cycle with consequences on freshwater resources availability. In the case of the US, an exacerbation of the
contrast between dry and wet regions is expected and could drastically affect local ecosystems, agriculture practices,
and communities. Hence, efforts to better understand long-term spatial and temporal patterns of freshwater resources
are needed to plan and anticipate responses. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and
GRACE Follow-On (GRACE-FO) satellite observations provide estimates of large-scale land water storage changes with
an unprecedented accuracy. However, the limited lifetime and observation gaps of the GRACE mission have sparked
research interest for GRACE-like data reconstruction. Hence, this study developed a predictive modeling approach to
quantify monthly land liquid water equivalence thickness anomaly (LWE) using climate variables including total
precipitation (PRE), number of wet day (WET), air temperature (TMP), and potential evapotranspiration (PET). The
approach builds on the achievements of the GRACE mission by determining LWE footprints using a multivariate
regression on principal components model with lag signals. The performance evaluation of the model with a lag signals
consideration shows 0.5 ≤ R2 ≤ 0.8 for 41.2% of the CONUS. However, the model’s predictive power is unevenly
distributed. The model could be useful for predicting and monitoring freshwater resources anomalies for the locations
with high model performances.

1. Introduction

Worldwide, the long-term availability of freshwater resources has
become a major concern as many countries have experienced a decline
of per capita available water while the demand is continuously in-
creasing (Grafton et al., 2013; Shiklomanov and Rodda, 2004). With the
ongoing climate change, many indicators presage significant dis-
turbances in the future hydrological cycle leading to an exacerbation of
the freshwater resources decline (du Plessis, 2019; Oki and Kanae,
2006; Held and Soden, 2006). As freshwater resources are unequally
distributed in time and space across the globe, a further decline of the
existing resources is likely to affect human communities and disturb
local ecosystems. In the conterminous United States (CONUS), the un-
equal distribution of freshwater resources is very pronounced and
aligns with the contrasting climate which ranges from arid in the
southwest to humid in the southeast and the northeast. Across the
country, freshwater resources are used in various sectors including
agriculture (i.e. irrigation, livestock), aquaculture, energy production,
mining, industries, recreation, and domestic supply. Among these

sectors, agriculture sustainability concerns often rise because of a high
reliance on irrigation. For instance, irrigation water withdrawal in the
US during 2015 has been estimated as 118 billion gallons accounting
for 42% of the total freshwater withdrawal (Dieter et al., 2018). Since
1960, the annual irrigation water withdrawal in US has been con-
tinuously above 110 billion gallons (Dieter et al., 2018). As con-
sequences of this continuous pressure on water over the last six dec-
ades, evidences of freshwater resources depletion (e.g. groundwater
decline) are being widely reported across the US (Multsch et al., 2016;
Holzer and Galloway, 2005). This situation has raised concerns re-
garding the sustainability of US agriculture and the need to adapt water
resources management plans in response to climate variability.

The components of terrestrial freshwater resources include surface
water, glaciers, soil water, and groundwater. Understanding the holistic
pattern of these components is critical to envision an effective water
management at large-scale. Satellite images such as those from the
Gravity Recovery and Climate Experiment (GRACE) and GRACE
Follow-On (GRACE-FO) missions enable large-scale understanding of
earth surface processes. Indeed, the GRACE satellite mission was
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launched in March 2002 and has continuously collected detailed mea-
surements of Earth's gravity field anomalies for about 15 years (March
2002 to October 2017). GRACE data have been used to estimate the
land water storage anomalies at a monthly basis with an accuracy of
1.5 cm equivalent water height (Famiglietti and Rodell, 2013; Scanlon
et al., 2012). Even though this capacity of GRACE to provide compre-
hensive measurement of land water storage anomalies (Landerer and
Swenson, 2012) is an undeniably prominent achievement, the data gaps
and short-time frame of GRACE observations is a limitation for long-
term appreciation of land water storage patterns. The need to re-
construct GRACE-like land water storage changes outside GRACE mis-
sion periods has led researchers to investigate data-driven modeling
approaches using climate inputs (Li et al., 2020; Yin et al., 2019;
Humphrey and Gudmundsson, 2019; Nie et al., 2016). For instance,
Humphrey et al. (2017) reported a grid-point land water storage data
reconstruction for the period 1985 to 2015 using a statistical model
based on precipitation and temperature. Likewise, Yin et al. (2019)
attempted to reconstruct long-term GRACE-like data for a period prior
to 2002 using precipitation, runoff, and evapotranspiration. Recently,
Li et al. (2020) evaluated various analytical approaches for land water
storage change retrieval at basin scale using precipitation, land surface
temperature, sea surface temperature, and climate indices. While these
studies contributed significantly to the understanding of GRACE-like
water storage anomalies, more research efforts are needed to reach an
unified predictive approach. Indeed, the perspective of forecasting
these anomalies is relevant for water resources planning. For instance,
an accurate estimate of past and future land water storage anomalies at
a given location, could be used to plan or improve water resources
management strategies. Hence, the aim of the present study is to pro-
pose a potentially predictive framework of land water storage anoma-
lies using climate variables with an inclusion of lag signals.

This study builds on the achievement of the fifteen-year GRACE
satellite mission by developing a predictive method for retrieving
monthly land water storage signals from climate variables. The use of
climate inputs for GRACE-like anomalies estimate assumes that the
temporal change of land water storage is governed by land–atmosphere
exchange (Sadeghi et al., 2020; Crow et al., 2017). Individually, climate
variables exert an influence on the terrestrial water cycle such that for
certain regions of the globe, these variables are the main drivers of the
water balance (Mueller Schmied et al., 2016; Milly, 1994). Thus, in this
study, large-scale monthly land water storage anomalies are assumed to
be primarily determined by climate variables. In addition to reporting
the method and results, this paper analytically discusses the outcomes
and lays the ground for potential considerations in freshwater resources
management across the CONUS.

2. Data and method

2.1. Data

In accordance with the study’s scope which is to develop a modeling
framework to predict land water storage anomalies, 15 years remote

sensing and climate datasets were used. The remote sensing dataset
consisted of the liquid water equivalence thickness anomalies (LWE)
derived from GRACE satellite mission measurement of earth gravity
field variation (Swenson, 2012; Landerer and Swenson, 2012). LWE is a
measurement of the variation of the vertical extent of land water sto-
rage including snow, surface water (i.e. rivers, lakes, reservoirs), soil
moisture and groundwater. GRACE’s LWE anomalies are estimated in
centimeters of equivalent water thickness and released as monthly
gridded time-series with a spatial resolution of 1° in both latitude and
longitude. At a given grid, the monthly GRACE land water storage de-
viations were estimated relative to a baseline temporal average of the
period 2004–2009 (Cooley and Landerer, 2019). As GRACE satellite’s
science mission spanned from March 2002 to October 2017, continuous
monthly LWE estimates were processed and released separately by
three mandated institutions including the Center for Space Research
(CSR), the Geo Forschungs Zentrum (GFZ), and the Jet Propulsion La-
boratory (JPL). The 15 years monthly gridded time series data released
by CRS, GFZ, and JPL were collected from the National Aeronautics and
Space Administration (NASA) database (www.nasa.gov). As re-
commended by Sakumura et al. (2014), the ensemble average of the
three LWE datasets (i.e. CRS, GFZ, and JPL) was computed to limit
uncertainties.

Along with the ensemble averaged LWE dataset, the study used
monthly climate data including total precipitation (PRE), number of
wet days (WET), average air temperature (TMP), and the potential
evapotranspiration (PET). The climate data were collected from the
University of East Anglia’s Climatic Research Unit (CRU) datasets
(Harris et al., 2014). Especially, the CRU’s time series version 4.03
datasets were considered and the 0.5° × 0.5° gridded time series of
PRE, WET, TMP, and PET were retrieved for the time span 2002–2017,
matching the remote sensing data availability period. To generate
monthly timeseries of PRE, WET, and TMP, the CRU uses two major
sources of historical climate data including the World Meteorological
Organization (WMO) and the National Oceanographic and Atmospheric
Administration (NOAA) databases (Harris et al., 2014). However, the
CRU’s PET time-series were estimated using the Food and Agricultural
Organization’s Penman–Monteith method (Harris et al., 2014; Ekstrom
et al., 2007). As the study focused on the CONUS regions, only the grids
encompassed by the region were considered for the study. To match the
grid resolution of the climate data, the LWE data were rescaled to a
0.5° × 0.5° resolution. Table 1 presents an overview of all the data.

2.2. Method

In general, the terrestrial water balance is influenced by climatic,
anthropogenic, geologic, pedologic, topographic, and ecological factors
(Mueller Schmied et al., 2016; Oki and Kanae, 2006; Milly, 1994).
These factors affect differently the hydrosphere, such that in many re-
gions of the globe, the variations of land water storage are mainly
driven by a few dominant factors. This is true with climate factors
which are known to play a major role in the terrestrial water cycle
(Mueller Schmied et al., 2016; Kunstmann et al., 2008). The present

Table 1
Overview of the data used in the study.

Data Designation Time-period Resolution Source

Temporal Spatial

Liquid Water Equivalent Thickness Anomaly (cm) LWE April 2002-June 2017* monthly 1.0 × 1.0° GRACE satellite images
Total precipitation (mm) PRE April 2002-June 2017 monthly 0.5 × 0.5° CRU database
Number of wet days WET April 2002-June 2017 monthly 0.5 × 0.5° CRU database
Average air temperature (°C) TMP April 2002-June 2017 monthly 0.5 × 0.5° CRU database
Average daily potential evapotranspiration (mm/day) PET April 2002-June 2017 monthly 0.5 × 0.5° CRU database

* GRACE data for the following months were not included: June-July 2002, June 2003, January and June 2011, May and October 2012, March and August-
September 2013, February 2014, July and December 2014, October-November 2015, April 2016, September-October 2016, February 2017.
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study proposes a multivariate model for predicting monthly land water
storage variations based on climate variables. The monthly climate
variables include PRE, WET, TMP, and PET. A general challenge with
multivariate models is the risk of redundancy in the explanatory vari-
ables (Todeschini et al., 2004). In the present case, the interplays of
climate variables are factual and need to be understood in order to
enhance the variables representation in a multivariate model. Hence,
the analytical approach used in the study included (i) trend analyses of
LWE anomalies, (ii) marginal correlation analysis between LWE and
individual climate variable with and without lag time consideration,
(iii) multivariate modeling of land water storage changes. All the ana-
lyses were conducted for individual 0.5° × 0.5° grid encompassed by
the CONUS territory (3452 grids in total).

The trend analyses were conducted on the 15 years monthly gridded
time-series of LWE. The objective was to investigate regional patterns of
land water storage anomalies across the CONUS. For the analysis, the
Mann-Kendall monotonic trend (Hamed, 2008) was tested for in-
dividual grid. Indeed, each grid j is associated with a time-series

=LWE LWE date LWE date{[ , ], ..., [ , ]}j j i i j n n, , where 1 ≤ i ≤ n, LWEj,i is
the measured land water storage anomaly of j at datei comprised be-
tween April 2002 and June 2017. Kendall’s τ values (Bolboaca and
Jäntschi, 2006) were estimated at grids level and the significance at p-
value = 0.05 was determined to classify each grid as ‘positive trend’,
‘negative trend’, or ‘no trend’. Given a random grid j associated with the
time-series LWEj, the corresponding Kendall’s τ (j) is calculated using
the equation (1) where nc and nd are respectively the numbers of con-
cordant and discordant pairs, t and u the number of ties within LWE and
dates.
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Marginal correlation analyses were separately conducted by cou-
pling the time series of LWE anomalies with each climate variable (i.e.
PRE, WET, TMP, PET). Time lags of 0, 1, 2, 3 months were considered
between LWE and each climate variable X. For a random grid j, the
coefficient of determination R j( )lag

2 was estimated with lag times
=lag {0, 1, 2, 3} using the equation (2) where LWE¯ j and X̄j are re-

spectively the average land water storage anomaly and the average
climate variable value for the grid j.

= =
+

= =
+

R j
LWE LWE X X

LWE LWE X X
( )

( ¯ )( ¯ )

( ¯ ) ( ¯ )
lag

i

n
j i j j i lag j

i

n
j i j

i

n
j i lag j

2 1
, ,

2

1
,

2

1
,

2
(2)

The objective of the marginal correlation analysis was to evaluate
lag signals and for eventual inclusion in the modeling approach. The
proposed model was a multivariate regression on principal components
(Sousa et al., 2007; Jolliffe, 1982). Indeed, analytical methods devel-
oped to investigate the GRACE-like LWE retrieval include multilinear
regressions, artificial neural network, autoregressive model, etc. (Yin
et al., 2019; Yang et al., 2018; Humphrey et al., 2017; Nie et al., 2016).
Recently, Li et al. (2020) compared several of these climate-based
analytical methods for GRACE data reconstruction and concluded on
the robustness of the multilinear regression on principal components.
This study sought to fill an information gap by exploring the joint in-
clusion of critical land–atmosphere components such a PRE, WET, TMP,
PET along with their related marginal lag effects. The modeling fra-
mework developed in the study included two stages which were both
carried at grid level. The first stage is an application of principal
component analysis (PCA) on the four climate variables represented by
their time-series. For each grid, the PCA application generated four
principal components (PCs) which were orthogonal but captured the
essential variance imbedded in the original four climate variables (i.e.
PRE, WET, TMP, and PET). Hence, PCA was used here to eliminate
redundant effects among the four explanatory climate variables (Abdi

and Williams, 2010). The second stage of the model framework was an
application of a multivariate regression on PCs’ scores for estimating
LWE anomalies. For a grid j, Equation (3) presents the model where
PC1j, PC2j, PC3j, PC4j are the principal components; j, j, j, j and j
are the parameters of the model.

= + + + +LWE PC PC PC PC1 2 3 4j i j j i j j i j j i j j i j, , , , , (3)

At this stage, the inclusion of lag time signals was evaluated to
propose a potentially predictive framework for LWE with PCs’ scores as
inputs. The performances of the model with and without lag signals
inclusion were evaluated at grids level by calculating indicators such as
R2, and the root mean squared errors (RMSE). The RMSE is given by
equation (4) where LWEj i, and LWEj i, are respectively the observed and
simulated land water storage anomaly for grid j at date i.
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3. Results

3.1. Trends of land water storage anomalies

Average LWE anomalies have been calculated for the 15 years
monthly land water storage changes estimated by GRACE satellite
mission. Fig. 1a presents the spatial distribution of these average values
across the CONUS. Overall the average land water storage anomalies in
the CONUS, gradually change from North to South and East to West.
Specifically, Fig. 1a shows northward positive average land water sto-
rage anomalies while negative anomalies are observed in the south-
western part of the US. These tendencies may be linked with the results
of the Mann-Kendall trend analysis reported in Fig. 1b which shows a
demarcation of three zones of LWE anomalies trends. These include a
zone of positive trend in the north, a zone of negative trend in the
southwest and both zones separated by a transitional zone with no
significant trend. The patterns observed in both Fig. 1a and b are
consistent and they confirm the uneven distribution of freshwater re-
sources across the CONUS. A persistence of the decreasing trend in the
southwest and an increasing trend in the north and the east coast is
likely to accentuate the regional water resources contrast. On the long
run, such contrast could have a profound impact on human activities
and the environment.

3.2. Lag signals analysis

The marginal inter-relations between LWE anomalies and each of
the explanatory variables (i.e. PRE, WET, TMP, and PET) were eval-
uated using correlation analyses. The outcomes are presented as box-
plots of R2 values (Figs. 2b, d, 3b, d) along with maps showing the
spatial distribution of the highest lag signals (Figs. 2a, c, 3a, c). Espe-
cially, Fig. 2 reports the analyses related to the couples (LWE, PRE) and
(LWE, WET), while Fig. 3 reports the analyses of (LWE, TMP) and (LWE,
PET). The lag time signals analyses show some similitudes between the
couples (LWE, PRE) and (LWE, WET) in Fig. 2, and the couples (LWE,
TMP) and (LWE, PET) in Fig. 3. Specially for the couples (LWE, TMP)
and (LWE, PET), the two-month lag time signals are the strongest
(Fig. 3b and d). For instance, the inclusion of a two-months lag time,
raises the median of R2 values from 0.07 to 0.37 for (LWE, TMP), and
from 0.02 to 0.38 for (LWE, PET). Similitudes are also noticeable in
Fig. 3a and c which display the spatial distribution of the R2 with the
two-month lag time. In the case of the couples (LWE, PRE) and (LWE,
WET) the disparity among the lag signals (Fig. 2b and d) are not as
remarkable as it is in Fig. 3b and b. However, a closer appraisal shows a
higher median and interquartile range for the one-month lag signals,
particularly in Fig. 2d. Fig. 2a and c present the spatial distribution of
the R2 with one-month lag for the couples (LWE, PRE) and (LWE, WET)
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respectively. Overall, the lag time analyses suggest predictive re-
lationships between LWE anomalies and the climate events during the
previous months. These signals can henceforth be considered when
developing a predictive framework for land water storage anomaly
estimates.

3.3. Predictive model for land water storage anomalies

Two scenarios of multivariate regression on PCs were applied to the
climate variables for estimating land water storage anomalies. The first
scenario assumed no lag time between the explanatory variables and
the response (i.e. LWE), while the second scenario emphasized the in-
clusion of lag time between the explanatory variables and the response.
In accordance with the lag signals analysis, the second scenario

considered one-month lag time for PRE and WET, two-month lag time
for TMP and PET. For each of the scenarios, the model performances
were evaluated by calculating the RMSE and the R2 values of individual
grid. The results of this evaluation are reported in Table 2 and Fig. 4.
Table 2 presents the percentage areas of the CONUS associated with
different ranges of R2 and RMSE values for each scenario. With no lag in
the model, 7.7% of the total area has R2 ≥ 0.5 while the inclusion of lag
signals increases this percentage to 41.2%. This remarkable increase, as
portrayed by Fig. 4a and b, indicates a significant improvement of the
ability of the model to estimate land water storage anomalies. This
tendency corroborates with the RMSE analysis which showed a re-
markable increase of accuracy (Fig. 4c and d) as the percentage of areas
with RMSE < 0.05 shifts from 43.4% to 66.4%. Hence, the multi-
variate regression on PCs performed better with the inclusion of lag

Fig. 1. Overview of the average (a) and trend (b) of the monthly liquid water equivalence thickness anomalies (LWE) across the conterminous United States. The
monotonic Mann-Kendall trends were tested at p-value = 5%.
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signals. Interestingly, the lag signal inclusion also shows the opportu-
nity of predicting closely the land water storage anomalies at a given
month based on the knowledge of PRE and WET from the previous
month, and TMP and PET from two months prior. The model perfor-
mance of the model varies across the CONUS. This aspect is presented
in Fig. 5 which shows the spatial distribution of the performance in-
dicator values (R2 and RMSE) for both modeled scenarios (i.e. no lag,
with lag).

A juxtaposition of Fig. 5a and b shows an improvement of the lag
signals inclusion on the model performance. Likewise, a comparison
between Fig. 5c and d shows an expansion of areas with lower RMSE
which indicates an enhancement of the model estimates. In addition,
relevant spatial patterns are noticeable in the scenario with lag signals
inclusion. For instance, in Fig. 5b, grids with high model performances
(e.g. 0.5 ≤ R2 ≤ 0.8) are collocated. This collocation offers the pos-
sibility to delineate regions where this model could be used for pre-
dicting and monitoring water resources anomalies.

3.4. Testing the model’s predictive capacity

The model’s predictive capacity was tested for all the CONUS grids
using the period 2002–2014 for calibration and the period 2015–2017
for validation. The calibration procedure consists in estimating the
parameters j, j, j, j and j in Equation (3). The estimated parameters
are thereafter used in the model to predict GRACE-like LWE anomalies
for the validation period. The model performance during the calibration

and the validation stage were analyzed and reported in Fig. 6a and b
which present boxplots of performance indicators at the validation
stage based on ranges of R2 and RMSE at the calibration stage. Hence, in
Fig. 6a, the boxplots corresponding to the grids with R2 ≥ 0.50 at ca-
libration, show medians close or above 0.50. This result sustains the
predictive capacity of the model for the grids with high model perfor-
mance values. In Fig. 6c and d, the performance indicators of the model
when calibrated based on the period 2002–2014 (subset of the data
availability period), were compared to those based on the period
2002–2017 (entire data availability period). The results show that the
calibration period 2002–2014 is representative to the period
2002–2017. However, such a configuration may not be the case when a
shorter subset the satellite records time period is used to calibrate the
model for GRACE-like LWE anomalies predictions. Owing to the sta-
tistical uncertainties related to the lack of data, the use of large time
periods data for calibration is desirable for a robust computational
model setting (Lee et al., 2019).

4. Synthesis and discussion

The study unveiled salient patterns of freshwater resources across
the CONUS. The Mann-Kendall trend analysis of the 15 years GRACE’s
LWE anomalies revealed three major zones in the CONUS including a
zone with an increasing trend in the north, a zone with a decreasing
trend in the southwest, and a transitional zone with no significant trend
(Fig. 1b). The decreasing trend of LWE anomalies observed in the

Fig. 2. Analysis of the lag time effect on the coefficient of determination (R2) between GRACE satellite derived monthly liquid water equivalence thickness anomalies
LWE and the monthly total precipitation (PRE) and the monthly number of wet days (WET). (a) Presents the spatial distribution of R2 between LWE and PRE with
one-month lag; (b) presents the boxplots or R2 between LWE and PRE with different lag times. (c) Presents the spatial distribution of R2 between LWE and WET with
one-month lag; (d) presents the boxplots or R2 between LWE and WET with different lag times.
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southwest is consistent with previous studies which reported evidences
of freshwater resources decline in the southwest US (Sohoulande, 2017;
Scanlon et al., 2012; Holzer and Galloway, 2005). In the long term, a
persistence of the declining trend could affect human society and dis-
turb local ecosystems as all organisms require water for their survival
(Oki and Kanae, 2006). This could be perceived as an alert to envision
plans for freshwater resources sustainability. For instance, with the high

dependency of US agricultural sector on groundwater withdrawal
(Dieter et al., 2018), food security could be compromised as the po-
pulation grows while water resources decline. Hence, the sustainability
of human society depends on freshwater availability in time and space.
At a given location, the land water storage includes snow, surface
water, soil moisture, and groundwater. The fluctuation of land water
storage is often a result of multiple interplays between biophysical
factors (Bosilovich et al., 2017; Wang et al., 2012). Understanding these
interplays is important for modeling the land water storage. At large
scales, GRACE’s LWE anomalies are good estimates of the monthly
variation of the vertical extent of land water storage (Cooley and
Landerer, 2019; Famiglietti and Rodell, 2013). As intended, 15 years
monthly GRACE’s LWE and climate data have been used to develop a
potentially predictive framework for land water storage anomalies.

The study evaluated the marginal relationships between the
monthly GRACE’s LWE anomalies and each of the climate variables
PRE, WET, TMP, and PET. The overall results show low R2 values, but
lag signal analyses unveil a substantial increase of R2 values particu-
larly for the couples (LWE, TMP) and (LWE, PET). For instance, with a
two-month lag time, the median of R2 reached 0.37 for (LWE, TMP),
and 0.38 for (LWE, PET). In view of the spatial scale, the lag signals are
probably the result of complex biophysical interplays which can be
portrayed as the delayed effect of rain on surface flow (Muthanna et al.,
2008) or vegetation (Sohoulande et al., 2015). The lag signals have
been integrated in a multivariate regression on PCs model (Sousa et al.,
2007; Jolliffe, 1982) for estimating land water storage anomalies. The

Fig. 3. Analysis of the lag time effect on the coefficient of determination (R2) between GRACE satellite derived monthly liquid water equivalence thickness anomalies
(LWE) and the monthly average air temperature (TMP) and the monthly average potential evapotranspiration (PET). (a) Presents the spatial distribution of R2

between LWE and TMP with two-months lag; (b) presents the boxplots or R2 between LWE and TMP with different lag times. (c) Presents the spatial distribution of R2

between LWE and PET with two-months lag; (d) presents the boxplots or R2 between LWE and PET with different lag times.

Table 2
Comparing the performance of the multiple regression on principal component
model with and without lag time between the climate variables (predictors) and
the LWE anomalies (predictand).

Percentage Area by R2 ranges (%) Percentage Area by RMSE ranges (%)

R2 No lag
in
model

Lag in
model

Δ* RMSE No lag
in
model

Lag in
model

Δ*

0.0–0.1 5.9% 0.0% −5.9% 0.00–0.01 0.0% 0.0% 0.0%
0.1–0.2 30.5% 6.0% −24.6% 0.01–0.02 0.8% 0.9% 0.1%
0.2–0.3 19.7% 20.3% 0.6% 0.02–0.03 2.8% 4.2% 1.4%
0.3–0.4 22.8% 15.3% −7.4% 0.03–0.04 15.5% 29.0% 13.5%
0.4–0.5 13.4% 17.2% 3.8% 0.04–0.05 24.3% 32.3% 8.0%
0.5–0.6 7.1% 22.6% 15.5% 0.05–0.06 33.3% 29.2% −4.2%
0.6–0.7 0.6% 18.6% 18.0% 0.06–0.07 19.0% 4.5% −14.6%
0.7–0.8 0.0% 0.0% 0.0% 0.07–0.08 4.2% 0.0% −4.2%

* Δ is the difference computed as Percentage Area (Lag in model) –
Percentage Area (No lag in model).
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Fig. 4. Analysis of the area coverage changes within ranges of R2 and RMSE as affected by the inclusion of lag time into the multivariate regression on PCs model.

Fig. 5. Spatial patterns of the multivariate regression on PCs model across the conterminous United States. a and c present the model performance (i.e. R2 and RMSE
distribution) without lag time consideration, b and d present the performance with lag time consideration in the model.
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modeling framework has two steps: the first step is a principal com-
ponent analysis on climate variables (i.e. PRE, WET, TMP, and PET); the
second step is a multivariate regression carried on the principal com-
ponents. Li et al. (2020) asserted the robustness of the multivariate
regression on PCs for GRACE-like water storage change retrieval at
basin levels. The PCA eliminates redundant signals among the targeted
climate variables. The resulting PCs are orthogonal variables (Abdi and
Williams, 2010) and are henceforth used as inputs in lieu of the original
explanatory climate variables. For individual 0.5° × 0.5° grid encom-
passing the CONUS, the parameters of the model have been estimated
for two distinct scenarios, one with no lag and another with lag signals.
The grid-wise evaluation of the model across the CONUS shows dif-
ferent performance levels (Fig. 5). However, the inclusion of lag signals
has clearly enhanced the model performance. In addition, the spatial
patterns of the performance indicators (i.e. R2 and RMSE) suggest po-
tential usage of the model for land water storage monitoring. Indeed,
acceptable performances (i.e. R2 ≥ 0.5) were noted for approximatively
41.2% of the CONUS. For the corresponding grids, one can assume that
the temporal change of land water storage is explained by climate
variables’ fluctuations. The predictive capacity of the model was tested
for all the CONUS grids using the time slices 2002–2014 and
2015–2017 for calibration and validation respectively. The model
performance at validation sustained its potential use as a predictive
tool. However, the use of long data period for model calibration is
desirable as it reduces statistical uncertainties in the simulations (Lee

et al., 2019). Hence, the model could be recommended for parts of the
CONUS shown in Fig. 5b by the green areas with R2 ≥ 0.50. As an
example, Fig. 7 illustrate a comparison of the model simulations to
GRACE’s LWE at a random location (i.e. Latitude 36.25°, Longitude
−82.25°) with high model performance R2 = 0.65). For such a loca-
tion, the multivariate regression on PCs with an inclusion of lag signals
can valuably complement GRACE’s LWE measurements. Thus, the
model could be used to provide estimates of land water storage
anomalies for months with no satellite records of earth gravity field
change (e.g. periods preceding GRACE satellite mission). Likewise, the
model could serve to fill gaps within the satellite records time periods.

Overall, the study shows that the joint inclusion of PRE, WET, TMP,
PET along with their related marginal lag effects could help achieve
acceptable estimates of GRACE-like land water storage anomalies. The
multivariate regression on PCs with lag signals show an uneven pre-
dictive power across the CONUS. This result corroborates with previous
studies focus on GRACE-like data retrieval which also highlighted the
variability of data-driven analytical models’ performance across study
regions (Li et al., 2020; Yin et al., 2019; Yang et al., 2018). In general,
computational models imbed three categories of uncertainties including
physical, modeling, and statistical (Lee et al., 2019; Harmel et al.,
2010). The physical uncertainties are associated to measurements,
while the modeling uncertainties are intrinsic to the model itself and
the statistical ones are inherent to the lack of data (Lee et al., 2019).
These uncertainties are undeniably represented in this study and could

a b

c d

2
2

2

2

R2 = 0.93 R2 = 0.93

Fig. 6. Testing the predictive capacity of the multivariate regression on PCs model with lag time consideration using the period 2002–2014 for calibration and
2015–2017 for validation. All the CONUS grids are addressed. a and b report boxplots of R2 and RMSE at validation stage based on ranges of performances at
calibration. c and d compares the performance indicators of the model when calibrated based two different periods (i.e. 2002–2014, 2002–2017).
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somewhat explain the spatial variability of the model performance
across the CONUS. For instance, Landerer and Swenson (2012) assessed
the accuracy of gridded GRACE estimates of terrestrial water storage
and reported spatial variations in the accuracy of GRACE measure-
ments. Likewise, the spatial accuracy of the climate inputs is arguable
since the gridded CRU datasets are generated using NOAA stations
which are unevenly distributed across the CONUS (Sohoulande et al.,
2019; Harris et al., 2014). In this context, the model performance is
likely to vary from grid to grid confirming the tendency in Fig. 5. Be-
sides the bias associated to the input data and the modeling procedure,
the noted spatial variability of the model performance could also be
explained by the geophysical, ecological, or anthropological config-
urations of the study region. For instance, Sadeghi et al. (2020) re-
ported that GRACE-based retrieval of surface soil wetness is more ef-
fective in the wet region of the CONUS compared to arid regions. This
contrast seems to be true in the present case study (Fig. 5b) as the re-
trieval of GRACE-like LWE appeared less effective in the arid region
(Southwest CONUS) compared to the wet region (East coastal and
Northwest CONUS). Regardless this uneven spatial distribution of the
model’s predictive power, a value of the model could be its potential
use for predicting with a month in advance the land water storage
anomalies. Such predictions of land water storage variations can be
useful to plan the enhancement of water resources allocation and
management.

5. Conclusion

The study provides insight into the spatial patterns of land water
storage anomalies across the CONUS. Using 15 years GRACE satellite

mission data, a multivariate regression on PCs model has been em-
ployed to evaluate the predictability of monthly land water storage
anomalies based on climate variables. Inclusion of lag signals in the
model has enhanced its performance and offers an option for predicting
land water storage variations based on climate information. Even
though, the model performed unequally across the CONUS, the out-
comes are consistent and lead to the following conclusions:

(i) Lag signals of climate variables such as monthly precipitation,
number of wet days, air temperature, and evapotranspiration ex-
plain more than 50% of the variance (i.e. R2 ≥ 0.5) of land water
storage changes for at least 41% of the CONUS territory.

(ii) When climate data are available, the multivariate regression on PCs
with lag signals inclusion can complement satellite measurements
of earth gravity field variations by providing estimates of land
water storage anomalies for months outside the satellite mission
periods.

Overall, the outcomes corroborate previous studies which related
temporal changes in local water balance with the fluctuation of climate
variables such as precipitation, temperature, and evapotranspiration
(Crow et al., 2017; Wang et al., 2012; Milly, 1994). For certain loca-
tions, the low model performance illustrates the limitation of relying
only on climate variables and a single model to predict land water
storage change. In view of this drawback and the limitations noted in
previous studies focused on GRACE-like LWE anomalies reconstruction
(Li et al., 2020; Yin et al., 2019; Humphrey et al., 2017) additional
research is needed to achieve a spatially uniform model performance.
Perhaps, future studies could capitalize all the scientific contributions

R2 = 0.65R2 = 0.49

a

b c

Fig. 7. Comparing the multivariate regression on PCs model performance for the 0.5° × 0.5° grid at Latitude = 36.25, Longitude = −82.25.
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by investigating a multi-model approach including anthropogenic,
geologic, pedologic, topographic, and ecological variables in addition
to the climate ones.
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