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Abstract

Accelerated marker-assisted selection and genomic selection breeding systems require genotyping data to select the best parents for
combining beneficial traits. Since 1935, the Pee Dee (PD) cotton germplasm enhancement program has developed an important genetic
resource for upland cotton (Gossypium hirsutum L.), contributing alleles for improved fiber quality, agronomic performance, and genetic
diversity. To date, a detailed genetic survey of the program’s eight historical breeding cycles has yet to be undertaken. The objectives of
this study were to evaluate genetic diversity across and within-breeding groups, examine population structure, and contextualize these
findings relative to the global upland cotton gene pool. The CottonSNP63K array was used to identify 17,441 polymorphic markers in a
panel of 114 diverse PD genotypes. A subset of 4597 markers was selected to decrease marker density bias. Identity-by-state pairwise
distance varied substantially, ranging from 0.55 to 0.97. Pedigree-based estimates of relatedness were not very predictive of observed
genetic similarities. Few rare alleles were present, with 99.1% of SNP alleles appearing within the first four breeding cycles. Population
structure analysis with principal component analysis, discriminant analysis of principal components, fastSTRUCTURE, and a phylogenetic
approach revealed an admixed population with moderate substructure. A small core collection (n<20) captured 99% of the program’s
allelic diversity. Allele frequency analysis indicated potential selection signatures associated with stress resistance and fiber cell growth.
The results of this study will steer future utilization of the program’s germplasm resources and aid in combining program-specific beneficial
alleles and maintaining genetic diversity.

Introduction
The Pee Dee (PD) cotton germplasm enhancement program in
Florence, South Carolina, was formalized in 1935 as part of the
USDA Agricultural Research Service’s goal to revitalize Sea Island
cotton (Gossypium barbadense L.) cultivation (Harrell 1974). Over time,
the PD program transitioned into a long-term Upland cotton
(Gossypium hirsutum L.) breeding effort focused mainly on the im-
provement of fiber strength and other quality traits, insect resis-
tance, and other key agronomic traits (Campbell et al. 2011).
Complex intercrossing, mating schemes, and germplasm recycling
have led to the development of unique breeding materials and culti-
vars throughout the history of the program. Sources of genetic diver-
sity for the PD program include obsolete cultivars of G. barbadense, G.
hirsutum, and the triple hybrid series composed from G. hirsutum,
Gossypium arboreum L., and Gossypium thurberi Tod (Beasley 1940).
Germplasm releases from the PD program have been distributed
and utilized across many public and private cotton breeding pro-
grams, especially as a source for combined fiber length and strength
(Calhoun et al. 1997; Bowman and Gutierrez 2003).

From 1935 to 2000, the PD program completed eight breeding
cycles, generating dozens of elite lines released as cultivars and/

or germplasm lines in each cycle (Campbell et al. 2011). Group

one started with the crossing of founding parents to generate

new intercrossed, recombinant lines with interspecific sources of

fiber length and strength alleles. Groups two, three, and four

were developed through the progressive intercrossing and subse-

lection of materials generated in the first three cycles. Groups

five and six represented a change in breeding objectives as efforts

were made to develop host plant resistance to the boll weevil

(Anthonomus grandis Boh.). Group seven began another change in

the PD program, where materials from outside of the breeding

program were incorporated as breeding parents in an effort to

bring new sources of genetic variation for increased yield poten-

tial. Group eight resulted from a combination of intercrossing of

materials developed in prior breeding cycles, along with the intro-

duction of more breeding parents from outside the PD program.

The program’s history is summarized graphically in Figure 1.
A retrospective accounting of the breeding resources produced

from the program following 65 years of breeding was undertaken

to better understand the breeding history of the PD program and

to aid us in efforts to accelerate present breeding efforts. In 2009,

data from a multi-site-year field experiment were combined with
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80 polymorphic simple sequence repeat (SSR) markers to charac-

terize the phenotypic and genetic variability across these eight

breeding groups (Campbell et al. 2009). They found variation for
multiple fiber quality and yield components, including fiber

length, fiber strength, fiber fineness, and lint percent, among

others. However, the study was limited by the low density of mo-

lecular markers and genotyping techniques available at the time.

Modern genotyping technologies, like the CottonSNP63K array
(Hulse-Kemp et al. 2015), have enabled a host of new experiments

and discoveries in cotton.
Population structure and diversity, assessed by the scoring of

genome-wide genetic markers such as single nucleotide polymor-

phisms (SNPs), is crucial to generating an unbiased picture of the

genomic landscape before undertaking genome-wide association
studies or genomic selection (Hamblin et al. 2011). A wide range

of methods are available for evaluating population structure,

ranging from the classic phylogenetic model, which uses nucleo-

tide substitution or genetic similarity to group similar individuals

(Odong et al. 2011), to other more complex models of population
differentiation (Bourgeois et al. 2017). Principal component analy-

sis (PCA) has long been used to correct for population structure in

further genomic analyses (Price et al. 2006). Other methods, such

as discriminant analysis of principal components (DAPCs) and

fastSTRUCTURE, enable the visualization and evaluation of

complex stratification in such panels as nested association map-

ping or breeding populations (Jombart et al. 2010; Raj et al. 2014;

Huang et al. 2015; Maurer et al. 2015; Deperi et al. 2018).
Marker-trait association experiments have resulted in the dis-

covery of dozens of quantitative trait loci (QTL) underlying di-
verse traits including salt tolerance, fiber quality, and wilt

resistance (Gapare et al. 2017; Sun et al. 2018; Abdelraheem et al.

2020). Efforts to characterize the genetic diversity and population

structure in the US upland cotton gene pool have also been un-
dertaken. Tyagi et al. (2014) used a set of 122 polymorphic SSR

marker, which were sufficient to distinguish 378 cultivars and

breeding lines originating from the western, southwestern, mid-

south, and eastern US cotton growing regions. They observed

similar correspondence between PCA, STRUCTURE, and allele
frequency methods, noting an overall low level of genetic diver-

sity relative to other crop species. Hinze et al. (2017) evaluated

germplasm from the upland cotton core collection, with a focus

on comparing a catalogue of phenotypic traits to SNP genotypes

from the CottonSNP63K array. Multidimensional scaling analysis
revealed overlap between germplasm originating from the United

States and other places in the world, and a moderate ability to

distinguish germplasm by US cotton growing region. However,

they did not observe meaningful clustering within improved up-

land cotton germplasm with the fastSTRUCTURE method.

Figure 1 The historical relationships between PD breeding groups. The first four groups share a common gene pool primarily established in the first two
breeding groups and focused on the improvement of fiber and agronomic characteristics. Groups five and six focused on the development of host plant
insect resistant breeding material and saw the introduction of new genetic diversity and background incorporated from group three. Groups seven and
eight were formed from the combination of older, high-quality material from the first four groups and new elite upland cultivars released from other
breeding programs.
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The goal of this study was to evaluate genetic diversity across
and within PD breeding groups and relate these findings to the
worldwide improved upland cotton germplasm. We hypothesized
that this closed (largely inbreeding) breeding program, with long
breeding cycles, complex intermating, and repeated shuffling of
potentially unique alleles would provide an interesting popula-
tion genetics model for studying the effects of genetic drift and
artificial selection. Hence, the objectives of this study were to
evaluate genetic diversity across and within PD program breeding
groups by utilizing genome-wide SNP markers from the
CottonSNP63K array, examine population structure, and contex-
tualize these findings relative to the global upland cotton gene
pool.

Materials and methods
Description of plant genotypes and genotyping
Representative plant genotypes from each of eight PD breeding
groups were selected for examination, covering 96 released
breeding lines and cultivars. Seeds were requested from the US
National Cotton Germplasm Collection in College Station, TX
(https://npgsweb.ars-grin.gov/gringlobal/site?id¼1), and grown in
a greenhouse in Florence, SC, during Winter 2018. Newly emerged
leaves were collected in 1.5 ml centrifuge tubes and immediately
placed on ice. Leaf tissue was stored at �80�C until processing for
DNA extraction. Frozen leaves were lysed in a tissue homogenizer
with two added glass beads. Genomic DNA extraction was per-
formed using the DNeasy Plant Mini Kit (Qiagen Inc,
Germantown, MD, USA) according to manufacturer instructions.
Sample DNA concentration was measured using a NanoDrop
Spectrophotometer (Thermo Fisher Scientific Inc, Waltham, MA,
USA). A vacuum centrifuge was used to concentrate samples
with concentration below 100 ng/ml. Samples of 25 ml were loaded
onto a 96-well plate and shipped on dry ice overnight to the
Texas A&M Institute for Genomic Sciences and Society (College
Station, TX, USA). Upon receipt, samples were quality checked
using the PicoGreen assay (Ahn et al. 1996), and adjusted to a
DNA concentration of 50 ng ml�1. The standardized DNA samples
were hybridized with the CottonSNP63K array, a custom Infinium
iSelect HD Genotyping Assay (Illumina Inc., San Diego, CA), de-
veloped by Hulse-Kemp et al. (2015). Marker probe sequences
were mapped (further detail in Supplementary Methods) to the
UTX_v2.1 reference genome (Chen et al. 2020), and any SNPs that
could not be mapped were excluded.

The experimental dataset also included 18 PD genotypes from
Hinze et al. (2017) available on CottonGen (Yu et al. 2014). The en-
tire experimental dataset therefore included a total of 114 PD
genotypes (Supplementary Table S1: Pee Dee Genotypes). The fi-
nal report file from Illumina GenomeStudio was filtered using
plink 1.9 (Chang et al. 2015) retaining only (1) SNPs listed as func-
tional polymorphic (Hulse-Kemp et al. 2015), (2) minor allele fre-
quency (MAF > 2.5%), and (3) call rate (CR > 90%) to generate
Dataset One. Putative linkage disequilibrium (LD) blocks were
discovered with the “–indep-pairwise” command in plink 1.9 and
used to generate Dataset Two, with SNPs culled until neighboring
SNPs were only moderately correlated (r2 < 0.8).

The SNP data of 249 improved upland cotton samples geno-
typed on the CottonSNP63K array were downloaded from the ar-
ray project page on CottonGen. A total of 249 improved upland
cotton lines (non-PD lines) were included in the analysis, as well
as 114 PD lines (96 from the present study and 18 from
CottonGen). Markers were filtered to include those with MAF >

2.5% and CR > 90%.

Population structure analysis
Breeding group designations were selected based on parentage
and the breeding history of the PD program (Campbell et al. 2011).
These group designations were used a priori for population struc-
ture analyses. Two PCA variants, classic PCA from plink 1.9
(Chang et al. 2015) and double-centered PCA (DC-PCA) from the
R script in Gauch et al. (2019), were applied to identify a consen-
sus between individual clustering. Biplots of individuals for the
SNP � Individual interaction were generated for Datasets One
and Two with individuals color coded by the prior breeding group
number. To test for differences between-breeding groups, DAPCs
was performed on Dataset Two with the R package adegenet
(Jombart et al. 2010).

Population structure was also evaluated with the maximum
likelihood tree in MEGA X (Kumar et al. 2018). Phylogenetic analy-
sis was carried out and branches with <50% bootstrap support
were collapsed into polytomies. The tree was plotted as a phylo-
gram with the “plot.phylo” function in the R package ape (Paradis
and Schliep 2019).

To test for the number of groups and group membership of
each genotype, the “chooseK.py” function in fastSTRUCTURE was
used for k¼ 1–10 (Raj et al. 2014). To identify DAPC clusters, the
“find.clusters.genlight” command was used, with 40 PCs retained.
These identified clusters from DAPC were retained and plotted in
a Sankey diagram to examine the relationship between the three
classification methods.

Core collection analysis
Core collection analysis was performed using GenoCore at 80%,
95%, and 99% SNP allele coverage levels (Jeong et al. 2017). The
core collection analysis was compared with a random SNP allele
sampling method and one that includes breeding group number
designations. The probability of discovering each allele was cal-
culated as (1 �MAF) ^(c). The 50th percentile of the Poisson bino-
mial distribution was used to determine the expected value for
the number of alleles observed after seeing the cth individual. A
breeding-group informed algorithm was also employed, which
cycled between an individual within each breeding group rather
than selecting completely at random. The number of alleles ob-
served was plotted as a function of the number of individuals
sampled to determine if the growth in diversity was approaching
an asymptote.

The minimum number of SNPs needed to separate out individ-
uals in the PD program was found using a custom R script. The
algorithm we used identified the two SNPs with the highest pair-
wise distance, and then successively added the most different
SNP until each individual could be distinctly identified. This set
of SNPs was then tested for discrimination capacity among the
improved upland cotton germplasm from CottonGen.

Signatures of selection in the PD program
To test for putative signatures of selection in the PD program ver-
sus other improved Upland cotton genotypes, a marker-specific
Bayes factor (BF), analogous to Wright’s FST, was estimated for
each marker with the function in BayEnv2 (Coop et al. 2010;
Gunther and Coop 2013). Samples were classified as PD or World
(non-PD). The log10 of resulting BFs were plotted in a Manhattan
plot with a threshold of log10(BF) > 2, and allele frequency plots
for the each of the significant markers were generated. Putative
regions under selection were determined as chromosomal seg-
ments containing at least one significant marker. A list of genes
and their gene ontology (GO) terms in these regions was
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identified using the GFF3 annotation file for the annotation of the
UTX_v2.1 reference genome assembly (Chen et al. 2020). The list
of genes was subjected to gene enrichment analysis with the
weight-count method (P< 0.05) and ranked by Fisher’s exact test
with the R package topGO (Alexa and Rahenfuhrer 2020).

Data availability
The SNP data from all 96 newly genotyped individuals is provided
in Supplementary Tables S3 and S4 will be made publicly avail-
able at CottonGen database (cottongen.org). All Supplemental
materials are accessible at https://github.com/USDA-ARS-GBRU/
PeeDeeCottonBreedingProgram_Diversity.

Results
Dataset One, the filtered set of markers without market density
correction, contained 17,441 markers (Supplementary Table S3:
Dataset 1 SNPs) anchored to a position on the UTX_v2.1 refer-
ence genome (Chen et al. 2020). During filtering, an initial set of
38,869 known polymorphic markers across any Gossypium spp.
had 19,952 markers excluded with MAF < 2.5%, 280 markers
excluded with CR < 90%, and 1196 markers excluded due to no
determined reference genome position. After thinning to ac-
count for marker redundancy due to high LD, Dataset Two
reduced this number to 4597 markers (Supplementary Table S4:
Dataset 2 SNPs). The marker density across 15 of the 26 chro-
mosomes differed significantly between Datasets One and Two
(Supplementary Figure S1A). In Dataset One, the number of
markers ranged from 1629 on chr A08 to 247 on chr A02. After
reducing SNPs to account for variable marker density, the num-
ber of markers per chromosome was more uniform, ranging
from a maximum of 268 SNPs on chr D05 to 116 on chr A02
(Supplementary Figure S1B).

Of the 9194 alleles (2 alleles for each of 4597 SNPs) present in
at least 2 of the 114 individuals in Dataset Two, 95% were intro-
duced (first detected in at least one individual) in group one. The
remaining 5% were introduced as follows: 2.9% in group two,
1.1% in group three, 0.5% in group four, and <0.4% in each of
groups five through eight. This indicated that most of the genetic
diversity present in the PD germplasm pool was introduced in the
first few cycles of breeding development. Almost all SNP alleles
were present in at least two groups. However, group eight con-
tained five unique SNP alleles, two of which flanked a haploblock
present in the denser set of variants in Dataset One, correspond-
ing to a 408 kb region of chr A05 (109.48–109.89 Mb) containing 17
group unique alleles. Heterozygosity varied substantially be-
tween genotypes (Supplementary Table S5: Heterozygosity of 114
PD Genotypes), meaning few SNPs were completely fixed in any
breeding group. Of the 9194 alleles in Dataset Two, 457 alleles
were fixed (present in at least one copy in every genotype) in
breeding group one, 764 in group two, 854 in group three, 702 in
group four, 816 in group five, 561 in group six, 569 in group seven,
and 273 in group eight.

Both datasets exhibited similar distributions of identity-by-
state (IBS) scores. The mean pairwise genetic distance was highly
similar, 0.661 in Dataset One and 0.665 in Dataset Two. Pairwise
IBS genetic distances ranged in Dataset Two from 0.553 for
Sealand-3 (AHK) and Sealand-542 (AHK), the two most dissimilar
individuals, to 0.967 for PD 762 and PD 948, the two most similar
individuals. Comparison of the additive genetic relationship ma-
trix derived from these two datasets, which is analogous to IBS
distance except it ranges from around zero to a maximum of two,
also indicated high concordance (Supplementary Figure S2 and

Supplementary Table S6: IBS and IBD Estimates). When com-
pared with the generalized numerator relationship matrix from
NumericwareN (see calculation in Supplementary Methods and
input in Supplementary Table S7: NumericwareN Input), which is
the comparable estimate from pedigree data, the values calcu-
lated from Dataset Two were in higher agreement (R2 ¼ 0.20)
than those of Dataset One (R2 ¼ 0.13) with the pedigree-based
scores (Supplementary Figure S3). Average within group genetic
similarities were generally higher (i.e., pair of genotypes were
more similar) than between group comparisons (Table 1).

Both classic PCA and DC-PCA as well as DAPC all showed simi-
lar results across the two datasets with the exception of classic
PCA on Dataset One (Figure 2). Classic PCA and DC-PCA sup-
ported the same relationship between-breeding groups in
Dataset Two. To mitigate the effect of variable marker density
across the chromosomes, further analyses on the PD genotypes
was performed with only Dataset Two.

Both fastSTRUCTURE and phylogenetic analysis were consis-
tent across both datasets, so the output from Dataset Two is dis-
cussed here. The results from fastSTRUCTURE supported the
existence of multiple groups (k¼ 6), and 55 of 114 individuals
were classified at the �80% level of probability (Figure 3). De novo
group assignments, either through DAPC or fastSTRUCTURE,
supported the original eight groups with the novel groups repre-
senting a superset, or overlap, of the historical breeding groups
(Figure 4). The consensus phylogenetic tree also identified the
same subgroups as fastSTRUCTURE and DAPC (Figure 5).

Allele richness was plotted for the three core collections and
two sampling methods (Figure 6). The core collections from
GenoCore grew in allele richness much more quickly than the
random sampling or sampling by breeding group methods did,
and the breeding group method was only moderately better than
sampling individuals randomly. These results show that 80%,
95%, and 99% of alleles can be captured by selecting three, nine,
and nineteen individuals, respectively, from the PD breeding pro-
gram (Supplementary Table S8. Core Collections for 80%, 95%,
and 99% Alleles Covered). Similarly, a set of 19 SNPs provided
enough information to uniquely identify each PD genotype
(Supplementary Table S9. List of Minimum Number of SNPs to
Discriminate PD Genotypes). This set of SNPs was able to discrim-
inate between 229 improved upland cotton entries from
CottonGen, while another 20 individuals could not be discrimi-
nated between.

We noted that generally, PD genotypes clustered together rela-
tive to other improved upland cotton genotypes (Supplementary
Figure S4). To explore the genetic differentiation of the PD

Table 1 Identity-by-state genetic distance for between- and
within-breeding group comparisons, corrected for variable
marker density

Breeding group

Breeding
group

1 2 3 4 5 6 7 8
1 0.673 0.680 0.669 0.667 0.636 0.633 0.650 0.646
2 — 0.687 0.672 0.671 0.637 0.636 0.647 0.642
3 — — 0.686 0.689 0.663 0.659 0.668 0.662
4 — — — 0.702 0.665 0.663 0.679 0.672
5 — — — — 0.682 0.698 0.662 0.658
6 — — — — — 0.713 0.659 0.657
7 — — — — — — 0.685 0.672
8 — — — — — — — 0.676

A higher number indicates that the individuals compared are more similar
to each other, and lower numbers indicate individuals between groups are
more different.
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Figure 2 Comparison between two PC estimation methods before and after correcting for variable marker density. (A–D) The SNP � individual biplots of
the PC coordinates for individuals, colored by breeding group, in PC1 (horizontal axis) and PC2 (vertical axis); (E) the discriminant analysis of PCs results
for Dataset Two. (A) Plink PCA with 17,441 SNPs, (B) DC-PCA with 17,441 SNPs, (C) plink PCA with 4597 SNPs out of strong LD (R2< 0.8), (D) DC-PCA with
4,597 SNPs out of strong LD (R2< 0.8), and (E) discriminant analysis of PCs of 4597 SNPs out of strong LD.

Figure 3 The Q plot for six fastSTRUCTURE subpopulations. Membership probability plot for probability of group assignment, sorted by the likeliest
group assignment for each individual. The most likely number of populations (k), as determined by the model complexity that maximizes marginal
likelihood, is 6. The individual names are given along the bottom of the horizontal axis, with the breeding group number given above it in the same color
scheme as other figures.
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germplasm (PD Group) from other improved G. hirsutum cultivars
(World Group), a BF was calculated to compare genetic differenti-
ation relative to the background level of genetic differentiation
between the groups at each of 20,566 polymorphic SNPs
(Supplementary Table S10: SNPs for PD vs World). The BF was
log10-transformed and plotted for each SNP, with allele frequen-
cies at six example SNPs for the eight breeding groups and world
group plotted (Figure 7). Thirty-six of the SNP markers were

significant (BF > 10) for the test for selection. These SNPs were lo-
cated at 32 genetic locations distributed across 13 chromosomes
(Supplementary Table S11: Markers Under Selection). The regions
near the significant SNPs contained 118 genes (Supplementary
Table S12: Genes in Selection Windows) enriched for GO terms re-
lated to response to stimuli, translation, actin, and glutathione
metabolic process (Table 2 and Supplementary Table S13:
Matchup Between Genes and GO Terms).

Figure 4 Overlap between three group designation methods. Sankey diagram showing how individuals in each of the prior breeding groups (center) are
classified in fastSTRUCTURE (left) and in DAPC (right). In both DAPC and fastSTRUCTURE, the number of populations or clusters (k¼ 6 for
fastSTRUCTURE, k¼ 3 for DAPC) is less than the number of breeding groups (k¼ 8).

Figure 5 Unrooted consensus phylogenetic tree for 114 PD genotypes. Bootstrap values are given for branches with >50% support based on 1000
replicates and all other branches are collapsed into polytomies. Branch length is proportional to the evolutionary distance between sub-branches.
Highlighted clades correspond to populations discovered with fastSTRUCTURE.
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Discussion
Between-breeding group genetic variation
PD breeding groups one through four have common parentage
composed of �12 diverse founders (Culp et al. 1979). Most of the
allelic diversity was introduced in these first four breeding
groups, accounting for 99.5% of the total SNP alleles in Dataset
Two. Most later introductions into the program also originated
from the United States, meaning they probably came from the
same original gene pool as the PD founders. Hence, recent diver-
sity was mostly associated with new combinations of the same
alleles.

We hypothesized that within-breeding group genetic variation
would be lower than between-breeding group variation, since
members of a breeding group tended to have similar parents and
selection regimes (Table 1). Given the IBS distance scores calcu-
lated from Dataset Two, individuals within each group were on
average more similar to one another than to members of any
other group. Interestingly, individuals in each of three groups
(groups one, three, and five) were more similar to individuals in
the respective subsequent group (groups two, four, and six) than
they were to each other, perhaps indicating additional subselec-
tion and/or drift among genotypes in these groups across genera-
tions. These pairs of breeding groups (one and two, three and
four, and five and six) also clustered together in DAPC (Figure 4).
Based on average genetic distance, breeding groups one through
four separated out together, groups five and six together, and
groups seven and eight represented out groups (Supplementary
Figure S5). The breeding groups were also conserved in a phyloge-
netic model (Figure 5) and admixture-based model from
fastSTRUCTURE (Figure 3).

In terms of genetic diversity, our results are consistent with
other prior studies. The average IBS genetic distance of genotype
pairs in this study (�0.66) was similar to other recent studies
[�0.67 for Hinze et al. (2017) and �0.80 for Tyagi et al. (2014)], nei-
ther of whom performed a corrective procedure to account for
variable marker density across the genome. Because of ascertain-
ment bias in the construction of genetic arrays or marker sets,
additional processing is necessary to reduce bias that may not be
present in whole genome datasets (Albrechtsen et al. 2010;

Moragues et al. 2010; Lachance and Tishkoff 2013; Malomane
et al. 2018). Another study which assayed 100 SSR loci found an
average IBS genetic distance of 0.80 within the New Mexico Acala
breeding program (Zhang et al. 2005). Differences in IBS genetic
distance estimates reflect changes in the number and types of ge-
netic markers used, population sizes, distribution of markers,
type of genotypes used in the study (i.e., obsolete vs elite), and dif-
ferences in how rare alleles change genetic distance. Overall, the
change corresponded to a reduction in SNP overrepresentation in
low recombination pericentromeric regions; the difference in di-
versity relative to the worldwide germplasm also reflected the re-
moval of monomorphic SNPs when calculating pairwise IBS
values.

Pairwise genetic distance alone was inadequate to fully cap-
ture the genetic diversity present within- and between-breeding
groups. Both methods of PCA (classic PCA and DC-PCA) for
Datasets One and Two captured underlying genetic structure by
summarizing the differences between individuals at the SNP �
individual interaction level (Price et al. 2006; Gauch et al. 2019). In
all four cases, once flipped for sign changes in PC1, the primary
dimension of PC showed a gradient of separation between the
earlier groups, one through four, in one extreme (Figure 2). The
host-plant insect resistant breeding groups, five and six, were in
the other extreme; and the most recent groups, seven and eight,
were in the middle. The primary dimension, PC1, explained be-
tween 10.6% and 13.1% of the variance included in the first 40
PCs. The second dimension, PC2, was the same for all plots ex-
cept for the classic PCA of Dataset One. In all other plots, the
newer groups, seven and eight, clustered together on one pole
and the other six groups in the other pole.

The outliers for the plink PCA plots, without marker density
correction, in PC2 included PD 3246 (AC 239/FJA 348), PD 9232
(“Coker 421”/PD 2164), PD 93034 (PD 5285/PD 5485), PD 93004
(Brown Accession/PD-3) and Sealand 3 (resel. “Sealand”: “Coker
Wilds”/“Bleak Hall”) at the furthest extreme, and PD 93001
(Brown Accession/PD-3) and PD 5576 (“Deltapine 41”/PD 3246)
near the center of the two large clusters. PD 93001 and PD 93004
are brown lint cottons. PD 3246 is the pollen donor for the original
cross for PD 5576 and is also a full sib of PD 2164, one of the

Figure 6 Collector’s curve for three different-sized core collections from and random sampling of SNP alleles. The horizontal lines indicate represent
80%, 95%, and 99% allele coverage, respectively.
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parents of PD 9232. There were other individuals in the study

with highly similar parentage and selection strategies, suggesting

that common pedigrees and brown lint do not alone explain

these outliers. Therefore, we considered the possibility that there

is a genomic feature shared between these individuals that is ob-

scuring genome-wide variability in the plink PCA plot of Dataset

One.
The loadings for variant weights in PC2 of plink PCA for

Dataset One (Supplementary Figure S6) revealed significant con-

tribution (27.8% of total variant loadings) from a run of 911

markers in high LD on chromosome A08 (16.46–79.48 Mb). After

removing SNPs in Dataset One based on putative haploblocks,

this segment was reduced in Dataset Two to include only 21

markers. Pedigree analysis indicated a possible common breeding

program origin for this chromosomal segment from “Hopi

Moencopi” via C-6-5, a California breeding line used early in the

development of the PD program (Supplementary Figure S7).
Another potential origin was Coker Wilds or Bleak Hall (G. barba-

dense) via Sealand. Interestingly, the pericentromeric region of

chr A08 has been noted as exhibiting low recombination fre-

quency (Shen et al. 2017; Chen et al. 2020), which may be due to

gametic incompatibility associated with multiple large scale

inversions in this region of chr A08 (Yang et al. 2019). Others have

recently evaluated the extent of G. barbadense introgession in

Figure 7 Identifying loci under selection in the PD Breeding Program. (A) The log10 BF from BayEnv2 for genetic differentiation between the114 PD from
the 249 other improved upland cotton genotypes, estimated for 20,566 SNPs. (B) Allele frequency for six significant SNPs in PD breeding groups one
through eight (1–8) or other genotypes (W) are given on the vertical axis. The red numbers in (A and B) indicate significant SNPs that are near genes
annotated with significant GO terms.
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upland cotton (Brown et al. 2019; He et al. 2020). However, our
analysis did not allow for an investigation of G. barbadense intro-
gression due to our filtering of SNPs based on MAF in upland cot-
ton, and our choice to exclude SNPs that could not be mapped to
the v2.0 G. hirsutum reference genome.

The two individuals near the center of the two major clusters
in plink PC2 for Dataset One, PD 93001 and PD 5576, were hetero-
zygous for >90% of these 911 markers, indicating a potential re-
gion of fixed heterozygosity. These regions accounted for a 70%
and 27% increase in observed heterozygosity for PD 93001 and
PD 5576, respectively, between Datasets One and Two
(Supplementary Table S5: Heterozygosity of 114 PD Genotypes).
Five other individuals from the improved germplasm set (“Coker
315,” “Reba P279,” “Acala 5,” “Lockett BXL,” and “Deltapine 16”)
shared this region of heterozygosity. All other individuals were
>95% homozygous in this region, except for “Sicala-3-2” and
“Namcala” which had a high number of no-calls in this region. In
total, 51 of the 249 improved upland cotton samples from
CottonGen are homozygous for the minor haplotype
(Supplementary Table S14: Individuals by A08 Haplotype).

The other three PCA biplots showed a much clearer picture of
the interrelatedness of individuals in terms of the entire genome
(Figure 2). Examination of variant weights did not indicate highly
weighted genomic regions, a potential indicator of bias as the
case had been with plink PCA of Dataset One, suggesting that
polymorphism across the genome was responsible for separation
between individuals (Supplementary Figure S6). Plots of addi-
tional dimensions of PCA did not reveal any obvious population
structure relative to the original breeding group classifications
(data not shown).

One possible biological interpretation of these results is that
PC1 and PC2 captured two allele frequency gradients (Novembre
and Stephens 2008). The primary axis, PC1, may have captured
alleles associated with high frequency in breeding groups five
and six, perhaps associated with the genetic background of their
parents. In this model, the earlier breeding groups may have had
low levels of this genetic background, the newest groups seven
and eight had moderate levels, and groups five and six had the
highest amount. This genetic background may be associated with
the insect resistance in groups five and six, or with highly im-
proved fiber quality characteristics in breeding groups one
through four, moderate fiber quality characteristics in groups
seven and eight, and poor fiber quality in groups five and six.
Campbell et al. (2011) showed that groups five and six had a drag
in fiber quality, perhaps at the expense of host plant resistance
features. Similarly, the secondary axis, PC2, may have involved
the SNP alleles associated with elite, modern cultivars, with indi-
viduals from groups seven and eight having the highest fre-
quency of these alleles. From a historic perspective this finding
makes sense, since the program’s breeders focused on plant pro-
ductivity, fiber quality, and host plant resistance during different
time periods.

Another possibility is that the plink PCA plots of Dataset One
reveals the “true” population structure and the other three plots
are examples of PCA “arch distortion.” Arch distortion results
from the projection of a single gradient onto the first two, domi-
nant dimensions of PCA (Gauch et al. 2019). For example, perhaps
PC1 and PC2 in the other three PCA plots are simply capturing
the same information as PC1 in the other two plots. However,
these three plots do not have the characteristic closed arch at the
bottom of the plot, and both dimensions have plausible biological
interpretations.T
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Three other methods reflected the same basic relationships
between breeding groups, including DAPC and fastSTRUCTURE
which resulted in the identification of de novo genotype clusters
(Figure 4). It is worth considering, however, that a significant
number of outliers existed in each analysis. In fastSTRUCTURE,
59 of the 114 genotypes could not be classified into a single popu-
lation at a probability �80%, providing evidence for the existence
of significant admixture among groups (Figure 3). In DAPC, there
were multiple individuals that plotted far away from other mem-
bers of the breeding group (Figure 2E). In the phylogenetic ap-
proach the ability to resolve branches was fairly low, and most
branches collapsed into polytomies due to low (<50%) bootstrap
support, except for in cases with simple, unidirectional breeding
schemes with noncyclic pedigrees (Figure 5). For example, unique
clades containing the majority of fastSTRUCTURE populations
one, three, and four were obvious. Within-clade genetic variation
was still relatively high, with branch lengths (proportional to ge-
netic distance) > 0.1 usually present between sister lines, indicat-
ing that gene flow across generations has contributed to the
construction of multiple (10 clades with >3 member individuals),
small (each clade < 20), diverse populations within the entire
breeding program. For this reason, we explored outliers in our
analysis to examine how these individuals could inform our un-
derstanding of the program’s breeding history.

Between individual genetic variation
Datasets One and Two exhibited strong agreement (R2 ¼ 0.77;
Supplementary Figure S2) in the additive genomic relationship
matrix (GRM), showing that between-individual comparisons
were not significantly affected. However, when fit to the pedi-
gree-based relationship estimate (Supplementary Figure S3), pair-
wise comparisons calculated from Dataset Two (R2 ¼ 0.19) fit the
expected value better than those for Dataset One (R2 ¼ 0.09).
Because the procedure we performed for Dataset Two reduced
the high weight from redundant alleles, the dispersion of the
GRM was higher in Dataset One (SD ¼ 0.044) than Dataset Two
(SD ¼ 0.036), likely contributing to better fit to the pedigree-based
scores by reducing the distance of each data point from the line
of best fit. The between-individual relationships were maintained
even after reducing the number of SNPs by a factor of four, and
they more closely reflected the pedigree expectations after apply-
ing this correction.

For some genotype pairs we hypothesized a high level of ge-
netic similarity; however, some reselection pairs of lines, pub-
lished as separate germplasm releases purportedly from the
same gene pool, were more genetically distinct than other
completely unrelated pairs. For example, “PD-3” and PD-3-14, re-
leased as a reselection of PD-3, had a pedigree-based kinship
�1.00 but a genetic distance of 0.76, indicating they were only
somewhat more different from each other than the average pair
of genotypes (Supplementary Table S6: IBS and IBD Estimates).

Relationships between individuals could usually be inter-
preted as the consequence of shared ancestry. In the
fastSTRUCTURE membership probability plot (Figure 3), popula-
tion one included three of the Sealand germplasm lines, resulting
from the interspecific cross between Coker Wilds and Bleak Hall,
a G. barbadense cultivar. Population two is composed entirely of
founding lines and intercrosses between them. Population three
includes mostly early crosses between founding lines and elite
introductions “Coker 421,” “MO-DEL,” and “AU-56.” Population
four includes PD 695, PD 875, and 18 selections from their prog-
eny, all sharing a common grandparent LA Frego 2, an insect-re-
sistant frego-bract line. Population five includes a subtree of the

entire PD pedigree centered around the cultivar PD-3, all six of its
descendants included in this study and two of its ancestors, and
PD 6992, an outlier for this group with a low probability of true
membership (43.9%). Population six was the most diverse group,
including germplasm releases resulting from crosses with elite
materials from the Delta Experiment Station, McNair, Deltapine,
and Stoneville breeding programs, as well as a line developed in
China, “Jimian-8” (May 1999).

Clearly, there is genetic redundancy in the PD breeding pro-
gram, as there is in all breeding programs. To reduce the redun-
dancy in terms of individuals, we generated three core collections
with GenoCore (Jeong et al. 2017) at differing SNP coverage (80%,
95%, and 99%) and compared them with the collector’s curves
generated by randomly sampling the population and sampling by
breeding group (Figure 6). Collector’s curves, or species-accumu-
lation curves, are used in ecology to evaluate the rate at which
diversity increases as a function of the number of individuals
sampled (Ugland et al. 2003; McGill et al. 2006). The random allele
sampling method took examining 68 individuals to reach 99% al-
lele coverage at least half the time, compared with 64 for the
method for sampling by breeding group. Comparatively, the
GenoCore algorithm was able to guarantee 99% allele coverage
after only 19 individuals. That is to say, a core collection of <20
individuals is large enough to capture nearly all of the SNP diver-
sity present in the PD program. Core collections of size three and
nine, respectively were large enough to capture 80% and 95% of
the SNP diversity, demonstrating that there is a quickly decreas-
ing rate of gain for adding additional individuals to the core col-
lection. Breeding groups were not equally represented in any of
the core collections, with earlier releases from breeding groups
one through four representing a significant majority in all three
collection sizes, representing 100%, 78%, and 63% of the 80%,
95%, and 99% SNP coverage collections. Groups seven and eight
were only included in the 99% coverage core collection, probably
due to the presence of more recently introduced allelic diversity
from elite germplasm sources. Therefore, our findings show that
older germplasm from the PD program is a better resource for al-
lelic diversity than newer germplasm due to a higher number of
minor alleles present together in the genome of a few obsolete
breeding lines and cultivars.

The results of our core collection analysis differ from another
core set reported by Tyagi et al. (2014). Their analysis, which used
SSR markers on a set of 375 accessions and PowerMarker soft-
ware, was dominated by rare SSR alleles, which made generating
a core collection much more difficult. They found that a core set
of 18 individuals was necessary to capture 80% of allelic diversity,
reaching 95% only after including 53 individuals. Our results
were significantly different, in that the PD core collection grew in
allelic richness much more quickly, benefitting from a few indi-
viduals that had a significant combination of multiple rare
alleles.

PD versus world germplasm
Following our analysis of the genetic variation within the PD
germplasm, we identified genomic segments that distinguished
PD genotypes from other improved G. hirsutum cultivars and
breeding lines. Generally, PD genotypes tended to cluster together
based on pairwise genetic distance (Supplementary Figure S4).
For SNP loci passing filtering (CR > 90%, MAF > 2.5%), 3.5% of
alleles were absent entirely from surveyed PD genotypes despite
being present in the other improved G. hirsutum cultivars and
breeding lines, whereas only 0.05% were private to the PD pro-
gram, indicating that most of the SNP diversity present in the
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improved Upland cotton gene pool can be found in the PD pro-
gram as well. However, this result is worth considering carefully
since the number of individuals between the two groups (nPD ¼
114, nWORLD ¼ 272) was significantly different.

Thirty-five putative selection windows were identified across
14 chromosomes, ranging from a single SNP with nonsignificant
SNPs 25 bp away to a larger region spanning 291 kb in length, and
these concentrated in the telomeric regions of each respective
chromosome (Figure 7). Most of the SNPs under selection were
common in the PD genotypes (�50% frequency) and at low fre-
quency (<5%) in the other improved G. hirsutum germplasm.
Minor alleles for each of the 35 significant SNPs (P< 0.05) were
present in every PD breeding group with low preference towards
one breeding group over the others. Therefore, these chromo-
somal segments may be associated with the genetic background
of the PD genotypes, regional adaptation, or the cumulative
results of efforts to improve fiber quality traits, especially fiber
strength (Harrell 1974; Campbell et al. 2011).

We further explored these regions by subjecting the genes in
the putative selection window to gene enrichment analysis using
GO biological process annotations. We identified 10 significant
GO terms (Fisher’s exact test P< 0.05) in five chromosomal
regions associated with four categories of biological function: (1)
response to auxin, (2) glutathione metabolic process, (3) actin nu-
cleation, and (4) cellular localization and translation.

There were four genes in the enrichment set annotated with
the GO term “response to stimulus” localized to a single 50 kb seg-
ment of chromosome D02 (near 71.394 Mb). Although the role of
auxin is ubiquitous across an array of morphological and immu-
nological traits in plants, other genes in this enrichment set may
provide evidence of how the PD programs breeding history has
changed allele frequency in these particular regions. Gene ex-
pression studies in multiple plant species have exposed the po-
tential for crosstalk between auxin biochemical pathways and
other biotic and abiotic stress pathways (Lekshmy et al. 2017).
These four genes were annotated as auxin-responsive protein
small auxin up RNA (SAUR)-like, coding for small polypeptides
(�140 amino acids) with an auxin-inducible motif. Other mem-
bers of the SAUR gene family colocalized with fiber length and
strength QTL (Li et al. 2017), and an association with fiber
strength has been found nearby on D02 (qFS-Chr14-1.E1.XZV-RIL;
Shang et al. 2016). The minor alleles for these SNPs are found at
about 40% frequency across PD breeding groups and is at <5%
frequency in other improved cotton germplasm.

Two adjacent genes on chromosome D03 (6.39–6.40 Mb) under
selection were annotated with glutathione metabolic process.
These two genes (D03G045000 and D03G045100) have not been
previously identified as having a specific role in any gene path-
ways in cotton. The minor alleles at the nearby significant SNP
was more prevalent in the earlier breeding groups than later
breeding groups, suggesting a role in early germplasm develop-
ment. Genes in the glutathione metabolic pathway in cotton
have been found to associate with resistance to wilt caused by
Verticillium dahliae and mediate salt stress (Meloni et al. 2003; Li
et al. 2019).

A pair of tandem-repeat “formin-like protein 20” genes, anno-
tated with the GO term “actin nucleation,” were located near a
significant SNP on chr A11 (at 3.35 Mb). Genes that affect the ac-
tin network that forms the cellular skeleton have been character-
ized as expressing in cotton fiber development and elongation (Li
et al. 2005), and another gene that influences the actin network in
cotton has been located in a selective sweep during domestica-
tion (Fang et al. 2017). Further work is needed to identify genes

that influence cotton fiber formation and to determine if this lo-
cus is important for fiber production.

Five genes with the GO term “intracellular transport” and
eleven with “translation” were also identified on chromosomes
A11, D02, D03, and D09. Most of these genes have not been well
characterized in cotton, although a few seem to be involved with
host plant resistance. Seven of the eleven “translation” genes
were annotated as involved in the “ribosome” pathway. One of
the genes, A11G030881, a homolog of the Arabidopsis ERF1 gene
has been found to play a role in resistance to Verticillium wilt (Xu
et al. 2011). One of the “intracellular transport” genes,
A11G032100, is annotated as “vesicle transport v-SNARE 11-like,”
a member of family of genes that controls the transport of pre-
cursor molecules during gossypol production (Lang and Jahn
2008; Ting 2014). Gossypol levels are under genetic control and
are thought to play a role in cotton host plant insect resistance
(Liu et al. 2015).

Final remarks
Overall, we found evidence for sustained genetic diversity
throughout eight breeding cycles of the PD program. Genetic sig-
natures demarcating shifting breeding goals were evident after
controlling for variable marker density across the genome associ-
ated with genotyping array ascertainment bias. We also found
SNP alleles with increased frequency in the PD program relative
to in other improved upland cotton germplasm, with nearby
genes enriched for biological functions including response to
auxin, glutathione biosynthesis, translation, and cellular locali-
zation, implicating genetic drift for QTLs underlying host plant
resistance. An additional locus under selection was found for ac-
tin nucleation, which may be a site that participated in fiber im-
provement in the PD program. The results of this study
contribute to the growing body of knowledge regarding the breed-
ing history of upland cotton in the southeastern United States
and the world. In addition, our findings in this study inform fu-
ture breeding efforts based on PD program materials by establish-
ing the basis for ongoing development of marker-assisted
selection and genomic selection. The PD cotton germplasm en-
hancement program, an 85þ-year-old cotton improvement ex-
periment, serves as a model system to study population genetics
in the context of continued cotton improvement over the course
of multiple breeders, breeding goals, and sources of genetic mate-
rial.
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