

Generating fractal terrain - The key concept behind fractals is self-similarity - When a small region of a fractal is magnified, it looks similar to the whole region from which it was taken - Terrain has this property (loosely defined), which is why fractal algorithms are commonly used to generate "realistic" landscapes - The property of scale is important for field work, spatial correlation occurs at all scales and how we choose to describe it will depend on the organism (or process) being studied and the crudeness of the tools available. - We typically classify the variation in the landscape we see into large scale variation, which we might try to explain with regression type variables (e.g. elevation), and small scale variation, which we try to explain using a model of spatial dependency (e.g. kriging).	patial data as a process We observe data generated from some underlying process we are trying to understand These data may be observational (e.g. bird counts in a forest) or the researcher may have had a hand in the outcome (e.g. designed experiment where different treatments were applied to various locations) We decide on a statistical model that we believe captures the effects we are interested in We estimate its parameters and possibly try to interpret them
The spatial correlation in the data may be partly (or completely) due to our not having suitable variables to explain why observations closer together are more similar Sometimes the spatial correlation is due to interactions among the organisms themselves (e.g. root competition, aggregation), so additional covariates (predictor variables) would not help	We have formal models for describing spatial correlation We choose one consistant with the spatial pattern of our observations The data observed are not unique to that statistical model The data are one realization of this statistical model Looking at many realizations helps to better understand what kinds of sample data this model can generate

Variogram If we look at the distribution of pairs of observations by distance apart, we find that there are far fewer pairs of observations separated by large distances Thus, our estimates $\hat{\gamma}(h)$ for h large will not be as good as $\hat{\gamma}(h)$ for h smaller - If our data are not evenly spaced, we may find the same problem for h very small, there may only be a few pairs that represent the smallest distances This means that some regions of the semivariogram have better support than others	Variogram To create the semivariogram, we break h up into many distance groups (e.g. 0-0.2, 0.2-0.4, 0.4-0.6, etc.) and calculate $\hat{\gamma}(h)$ for each distance group. Then we can plot the average value of h for that distance group against $\hat{\gamma}(h)$ - We can also plot $\hat{\gamma}(h)_{i}$ for each pair of observations, this may help us decide if the average value for each h is a reasonable estimate of what the "mean" should be - In practice, we have software that does this, though we may make decisions about how large an interval each distance group should be, and what our largest h should be (since beyond a certain h results will be rather flaky as there aren't many pairs of observations for very large h)
Variogram ($\hat{\gamma}(h)$ vs. h)	Variogram: What have we learned? - The variogram nicely displays the similarity of neighboring observations, and how differences between observations increase with increasing distance - Even with $n=676$ observations, the empirical semivariances do not follow the true semivariances beyond $h=0.5$ units (distance between the two furthest observations is 1.4 units) - These data were generated from a known model (where we know the true parameters), yet there are still problems with the variogram - We could regenerate data sets from this model until we created one that produced a nice variogram, but one cannot do that for "real" data

Variogram: What have we learned? - The box plots show how variable the individual semivariance estimates are for each distance class - The variogram is an imperfect tool, but in practice it works well - There are robust procedures for estimating the variogram	Variogram-what model to use? - Software for modeling spatial data will have many different models that one can use to capture the spatial autocorrelation - These models differ in how the strength of the correlation between observations diminishes as distance between them increases - The data for this example were generated using an exponential model - Many of the models produce very similar results (and you might need a lot of data to be able to discriminate between models) - It is more important to try to capture the spatial dependencies with some model, even if you aren't sure it is the "right" model, then to ignore the spatial dependencies completely.
Three common variogram models	Variogram-estimation of model parameters - Once we have decided on a model for the data, we need to estimate its parameters - Many variogram models have parameters (or combinations of parameters) that can be interpreted as the range, sill, and nugget (these terms show geostatistics' mining origin) - The range is the minimumn distance separating observations that are (nearly) spatially independent - The sill is the value of $\gamma(h)$ when $h=$ range - A nugget effect occurs if, as h (the distance between observations) goes to zero, $\gamma(h)$ does not approach zero - The partial sill = sill - nugget

Variogram models

Image by Jay Ver Hoef

әэие!иепиәә

Predictions \& variances-perspective view - Left plot: krigged surface (note how smooth it is!) - Right plot: kriging variances (variance is zero where data were taken unless there is a nugget effect)	Predictions \& variances-typical output Relative prediction and variance values coded by intensity (black = large values, white = low values)
Universal Kriging-estimation strategy - We often have other information about the landscape we are modeling, such as covariates or factors (e.g. treatment effects), in which case we have a mixed model - If we can subtract out these effects, then we can use the strategy just discussed to model the spatially correlated residuals - For the most common geostatistical models, mixed models software can estimate all the parameters of the model (covariates, factors, spatial covariance parameters) - Unfortunately, there are deficiencies in the software (limited spatial models, lacking good diagnostics)	Universal Kriging-trend and noise Left plot: trend (covariate + two-level factor) (note: covariate effect not easy to see because it, in part, tilts the plane surface) - Right plot: trend + noise (noise = spatially correlated residuals)

