

Introduction 0000	Methods 000000	$\substack{\text { Results } \\ \text { Oooooo }}$	Conolusions
Invasive Species			
Characteristics of Invasive Species [notes]			

$$
\begin{aligned}
& \text { The idea with this figure is that it represents growth in the } \\
& \text { population size for an organism over time. } \\
& \text { The growth curve shown is very generalized, of course } \\
& \text { there are all manner of more complex forms of population } \\
& \text { growth. The basic idea is that after introduction, population } \\
& \text { size grows rapidly until resources become limiting. } \\
& \text { As the population size approaches the carrying capacity } \\
& \text { (i.e., saturation) other forms of dynamical behavior could } \\
& \text { ensue (e.g., stability, periodicity, chaos). }
\end{aligned}
$$

> - Studying total population size is useful, but we want to make inference about the population size at numerous locations over time.
> - These plots with multiple growth curves representing the growth in population size at each location of interest are informative, but it's difficult to see the interaction between locations (that is, the movement of organisms between locations).
> - A sequence of maps is helpful here, such as those in the results section of this presentation.

Introduction $\bullet 0000$	Methods 000000		Condusions
Invasive Species			
Characteristics of Invasive Species			

- Invasive: quickly spreads and becomes abundant. Can be naturally introduced or imported.
Successful Invasions:
Successful Invasions:

 훙
 Local Invasion

■ Multiple growth curves for various locations:

Introduction 000000 0000000000	Methods ○00000	Results 000000000000	Conclusions
Invasive Species			
Characteristics of Invasive Species (cont'd) [notes]			

[^0]

Eurasian Collared-Dove
(ECD):
\square Invaded Europe in
1930's.
\square Introduced to Florida
mid-1980's.
\square Count data collected
through N. Amer.
Breeding Bird Survey,
documenting invasion.
\square Imperfect detection.
\quad Imperfect detection.
Mevin B. Hooten
Predicting the Spread of Invasive Species
Impacts of exotic species:

1 Cause or transmit disease (e.g., West Nile Virus and Avian
Flu).
■ Disrupt native food webs (e.g., Peacock Bass and the exotic zooplankton, Daphnia lumholtzi.

Ornithology 64:477-489.
There are several good references for this species:
Hengeveld, R. (1993) What to do about the North
American invasion by the Collared-Dove? Journal of Field
■ Romagosa, C., and R. Labisky. (2000) Establishment and dispersal of the Eurasian Collared-Dove in Florida. Journal of Field Ornithology 71:159-166.

[^0]: - Obviously these are some of the more prominent examples in the media.
 - The point of this slide is to provide some justification for wanting to study these processes in more detail in order to better understand them and thus make better management decisions.

