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Introduction

Gibbs sampling (GS) is a method of numerical integration that allows inferences to be

made about joint or marginal densities, even when those densities cannot be evaluated directly. 

The GS algorithm is based on generation, in sequence, of variables from all of the full conditional

densities.  The full conditional density is the density of a variable given all other parameters in the

model.  For example, if GS is used to estimate the distributions of f(a|y), f(b|y), or f(a,b|y), then

the full conditional distributions, f(a|b,y) and f(b|a,y), would be required.  In order to use GS to

evaluate any of these densities, an arbitrary starting value for one of the variables would be

chosen, and then values would be drawn from the full conditional densities in the sequence

a  ~ f(a|b ,y) and n  n-1

b  ~ f(b|a ,y),n  n

where ~ indicates that the variable is a random variable from the distribution specified, and the

superscript refers to the sequence of the value in the GS chain.  If the sequence is repeated enough

times, the distribution of the a and b samples will be from the distributions f(a|y) and f(b|y), and

the a,b sample pairs will be drawn from the f(a,b|y) distribution.

In the case of the problem of estimation of VC, the joint density of interest is the

distribution of f ixed effects, random effects, and VC, all given the data.  The marginal densities of

interest in this problem are the distributions of f ixed effects, random effects, or VC, given the

data.

A general set of Fortran programs was developed for estimation of variance components

with animal models using GS.  The programs are called Multiple Trait Gibbs Sampling in Animal

Models (MTGSAM).  The program interface is similar to that used in the MTDFREML programs

(Boldman et al., 1993) and shares a substantial amount of Fortran programs.  The programs

support multiple-trait models with an arbitrary number of covariates, fixed effects, second animal

genetic effects, and random effects for each trait.  The programs manage data with any

combination of missing observations.  Genetic effects and uncorrelated random effects related to

animal or second animal effects (e.g., direct or maternal permanent environmental effects) are

generated as a block to increase the rate of convergence.  The programs generate means and
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samples from the GS chain for estimating variance components, variance ratios, heritabiliti es,

fixed and random effects, and contrasts.  In order to guarantee valid parameter estimates, proper

Bayesian prior distributions may be required for variance components.  The programs generate the

Gibbs samples but will not perform burn-in or convergence analysis and will not generate

posterior distributions.  Therefore, the user is expected to have an understanding of these aspects

of Gibbs sampling.  Some of these features may be added over time, as better algorithms are

developed.

Chapter 1 gives instructions about how to compile and execute the programs.  Chapter 2

presents some small numerical examples.  Chapter 3 presents some of the theoretic results related

to Gibbs sampling.  Chapter 4 discusses some of the computational strategies employed to help if

modifications of the programs are needed.

 MTGSAM Fortran Files

MTGSNRM This program computes A  and recodes identification numbers for animal, sire,-1

and dam.  This program is nearly identical to MTDFNRM, the analogous program
used by MTDFREML.  The program uses subroutines in MTGSSUB.

MTGSPREP This program allows the user to specify the traits to be analyzed and to specify the
model for each trait.  The program then reads the original data file and generates a
new data file with recoded levels of f ixed and random effects, and information
used to build the mixed model equations.  Note that any animal that appears in the
data file must be included in the pedigree supplied to MTGSNRM.  This program
is similar to MTDFPREP, the analogous program used by MTDFREML.  The
program uses subroutines in MTGSSUB.

MTGSRUN This program generates Bayesian posterior distributions and means using a Gibbs
sampling algorithm.  Means for variance components, fixed and random effects,
heritabiliti es, correlations, and contrasts can be calculated.  The program generates
files containing Gibbs samples with a user specified burn-in period and interval
between samples.  The program uses subroutines in MTGSSUB and MTGSRSB.

MTGSSUB A set of general subroutines used by all of the main programs.

MTGSRSB A set of subroutines used only by MTGSRUN.
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MTGSAM Data Files

File Format Description MTGSNRM MTGSPREP MTGSRUN1 2 2 2

MTGS21 U reordered IDs O I I
MTGS22 U non-zero A  elements O - I-1

MTGS23 F inbreeding information O - -

MTGS41 F model information - O I
MTGS42 U recoded data - O I
MTGS43 U animal summary - O I
MTGS44 U blocking information - O I
MTGS45 F covariate and fixed level labels - { O} { I}
MTGS46 F uncorrelated random level labels - { O} { I}

MTGS60 F rename for input file for new run - - { I/} O
MTGS61 U,D samples from GS chain - - O
MTGS62 U,D parameters of GS densities - - O
MTGS63 F data needed to analyze 61 & 62 - - O

MTGS71 F posterior means of covariates - - { O}
     and fixed effects

MTGS72 F posterior means of animal effects - - { O}
MTGS73 F posterior means of uncorrelated - - { O}

     random effects

MTGS81 F log file for MTGSNRM O - -
MTGS82 F log file for MTGSPREP - O -
MTGS83 F log file for MTGSRUN - - O

MTGS90 U checkpoint file - - { I/} O
MTGS91 U checkpoint file - - { I/} O
MTGS92 U checkpoint file - - { I/} O

MTGS99 U scratch file - - I/O/D
File format: F = formatted, U = unformatted, D = direct access1

File type: I = input, O = output, D = deleted at end of run, {} indicates that the use of this file2

varies with the specific run.



MTGSNRM

MTGS21
MTGS22
MTGS23
MTGS81

pedigree file
free format

MTGSPREP
data file
free format

MTGS41
MTGS42
MTGS43
MTGS44
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MTGS46
MTGS82

[MTGSRUN

[[

MTGS60
MTGS61
MTGS62
MTGS63
MTGS71
MTGS72
MTGS73
MTGS83
MTGS90
MTGS91
MTGS92

4
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CHAPTER ONE:  User Notes for MTGSAM

Introduction

Multiple Trait Gibbs Sampling for Animal Models, denoted as MTGSAM, is a set of

programs to estimate Bayesian posterior means and distributions for (co)variance components,

fixed and random effects, and contrasts using Gibbs sampling with animal models.  The interface

of the programs are similar to the MTDFREML (Multiple Trait Derivative-Free Restricted

Maximum Likelihood) programs.  These two programs share a significant amount of Fortran

source code, especially for the numerator relationship and data manipulation programs.

The MTGSAM programs can be used for a single trait analysis or for any number of traits. 

The programs allow any combination of missing observations for the multiple trait models. 

Posterior mean estimates for "fixed" and random effects and for contrasts can also be calculated. 

The size of analyses that can be run depends on the number of traits and animals in the analysis,

and on computer speed and memory.

Animal models can incorporate additive genetic effects not only for animals with records,

but also for parents and other relatives without records included in the pedigree file.  One

additional correlated random effect, (e.g., maternal genetic) and any number of uncorrelated

random effects can be used for each trait in the analysis.  Fixed effects and covariates are specified

separately for each trait.

Computing Considerations

All programs are written in FORTRAN 77. The programs were developed on 486 and

Pentium microcomputers using a Microsoft Fortran Powerstation compiler, but should run with

minor modifications on any platform with a FORTRAN compiler.  At least 16 MB of memory is

advisable, especially for the MTGSRUN program.  Requirements for hard disk space will vary

with the amount of information requested in MTGSRUN.  If only posterior means are requested

and no sampling information is written, then the disk requirements are minimal.  If the number of
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Gibbs samples or elements written in each sample increase, the disk space will i ncrease as well .  If

only variance component information is written, and the number of Gibbs samples is relatively

small , several MB of disk space should be suff icient.  If the "solutions" are written in each Gibbs

sample or the number of samples written is relatively large, the amount of disk space can be quite

large (hundreds of MB).

Currently, all programs have interactive input/output defined to standard FORTRAN 77

units of 5 (input from keyboard) and 6 (output to screen).  Two areas that may need modification

on platforms other than PC's are the input/output file connections and the timing routines. 

Currently, the Fortran OPEN statement is used to open files and connect to the appropriate unit

numbers.  The files used by the program all have names of the type MTGS##, where ##

corresponds to the unit number of the appropriate MTGSAM program.  For example, IUN81 (unit

81 in MTGSNRM) corresponds to file MTGS81.  The compiler or system dependent timing

subroutines are in the file MSTIME.  This file contains two subroutines: DOSTIM and DOSDAT,

which return the system time and date, respectively.  These calls correspond to the Microway

NDP Fortran compiler calls for timings and MSTIME should be eliminated when using that

compiler.  These timing subroutines can be changed for other compilers or platforms, or

commented out (C in column 1 of the source code).

The file GSPARAM.FOR contains maximum parameter definitions for arrays in programs

MTGSPREP and MTGSRUN.  The INCLUDE statement brings GSPARAM.FOR into

MTGSPREP and MTGSRUN to provide consistent parameter definitions.  In the PC

environment, the INCLUDE statement looks like :

 INCLUDE 'GSPARAM.FOR'

In MVS/TSO environments, the INCLUDE statement is :

INCLUDE 'QCAROL.GSPARAM.FOR'

In CMS environments, a library must be created that contains the INCLUDE source code.  A

possible exec to create the library containing the INCLUDE source code is:

/* An exec to use INCLUDE statement in MTGSAM  * /
TRACE RESULTS
"MAC GEN LIB1 GSPARAM"
"GLOBAL MACLIB LIB1"
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The GSPARAM file must have a filetype of COPY in the CMS environment.  After the library is

created on CMS, the INCLUDE statement in MTGSPREP or MTGSRUN has the form:

INCLUDE(GSPARAM)

Check the system documentation for variations of this code if problems arise. Alternatively, the

source code in GSPARAM.FOR could be placed directly into MTGSPREP and MTGSRUN

programs replacing the INCLUDE statement.  Note that if GSPARAM.FOR is changed, both

MTGSPREP and MTGSRUN must be recompiled, i.e., the programs must have the same

parameter definitions.

MTGSAM Programs

The three MTGSAM programs:  1) form the inverse of the relationship matrix, 2) prepare

data to set up of the weighted least squares part of MME and 3) set up and solve the MME for

solutions for fixed and random effects using Gauss-Seidel iteration (GSI)  and/or estimate

posterior means and generate Gibbs samples for (co)variance components, fixed and random

effects, contrasts of f ixed and random effects.  The following programs and subroutines are

needed:

MTGSNRM Forms non-zero elements of A  using an ASCII free formatted-1

pedigree file using the rules of Quaas (1976).  Program reorders
animal, sire and dam identification (for animal model) or
alternatively, sire, sire of sire and maternal grandsire of sire
identification (for sire models).  The program also generates
inbreeding coeff icients for animals, sires and dams.

MTGSPREP From an ASCII data file, forms coeff icients for MME according to
model specifications supplied to the program.

MTGSRUN From coeff icients of MME formed in MTGSPREP there are two
options in MTGSRUN.  First the program can be used to obtain
solutions to the MME using user supplied values for (co)variance
components using Gauss-Seidel iteration.  The second option is to
run some rounds of Gauss-Seidel iteration followed by Gibbs
sampling.  The Gibbs sampler can be used to obtain Bayesian
estimates of posterior means of (co)variance components,
heritabiliti es, and correlations; covariates, fixed, and random
effects; and contrasts.  The Gibbs samples may also be saved to files
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to allow construction of univariate or multivariate posterior density
estimation.

GSPARAM.FOR Fortran code for INCLUDE statement that contains parameter
statements for maximum limits for variables such as maximum
number of animals and fixed effects.  If the user chooses not to use
the INCLUDE statement, these source statements can be placed
directly into source code for MTGSPREP and MTGSRUN where
the INCLUDE statement is located.

MTGSSUB A file containing a suite of general purpose Fortran subroutines
needed in the MTGSAM programs.  Routines were written by C.
Van Tassell , K. Meyer (1988), K. Boldman (Boldman et al., 1993),
and P. VanRaden.  Some subroutines were also obtained (and some
modified) from STATLIB and NETLIB.

MTGSRSB A set of subroutines used only by MTGSRUN.  Subroutines written
by C. Van Tassell .

Setting up A   (MTGSNRM)-1

Pedigree information may be in a file separate from the data when animals without records

need to be included in the relationship matrix.  The file is assumed to be in free format, i.e., all

variables are separated by spaces.  The source code can be easily modified to accommodate

formatted read statements if animal identification numbers are not separated by spaces.  The

pedigree file needs to include numeric fields for:

� Animal ID, sire ID and dam ID (optionally sire ID, sire of sire ID and maternal
grandsire of sire ID for sire models).

� If both parents of an animal without a record are unknown, that animal does not
need to be in the pedigree file as an animal because it does not provide ties.

� If a sire ID or dam ID is missing, the missing parent ID must be coded as a 0.

� If an animal has missing parent(s), and if the missing parent is needed to code for a
maternal or paternal correlated random effect, the missing parent must be coded
with a unique number other than 0.

� The largest ID the program can accommodate is the maximum integer the compiler
can handle (2  - 1 = 2,147,483,647 for most Fortran compilers).  If IDs are larger31

than this or include characters, IDs must be recoded prior to running MTGSNRM.
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In the parameter statement of MTGSNRM, the maximum number of animals (MAXAN )

in the relationship matrix can be changed.  MAXAN represents both animals with records and

base animals.

To Run MTGSNRM:

1.  Compile and link MTGSNRM and MTGSSUB (subroutines).
2.  Run MTGSNRM.  This program will calculate A .  The program asks :-1

a) Do you want to calculate A  using animal, sire, and dam  (0) or sire, sire of-1

sire, and maternal grandsire of sire (1) rules?
b) Maximum animal ID in pedigree file (for data verification only).
c) Minimum animal ID in pedigree file (for data verification only, 0 will work).
d) Name of free formatted file containing pedigree information, e.g.,

ANIMAL.PED.
e) Number of integer fields in pedigree file.
f) Position of animal (or sire) ID in vector of integers.
g) Position of sire (or sire of sire) ID in vector of integers.
h) Position of dam (or MGS of sire) ID in vector of integers.

Note that the columns specifed in questions g and h can correspond to a vector of zeros if

one choosed to ignore relationships among animals.  The number of animals in A  will appear on-1

the screen and in file MTGS81.  This number is needed later for MTGSPREP - write it down. 

The MTGSNRM program produces three output files :

MTGS21 This file contains the number of animals, followed by vector of original
animal IDs sorted in ascending order in binary format.  The location in the
file corresponds to the recoded ID, i.e., position i is the original ID
corresponding to recoded ID i.

MTGS22 This file contains the non-zero lower-half-stored elements of coeff icients 
of A  in binary format.  Note that the elements are NOT summed.  The-1

format of the file is i, j, a .i,j

MTGS23 This file contains the number of animals, followed by one line for each
animal in the pedigree in the following format:

Recoded ID Original ID Inbreeding Coeff icient

Animal Sire Dam Animal Sire Dam Animal Sire Dam

MTGS81 This is the log file of information from the execution of MTGSNRM.  The
information includes number of animals in A , number of non-zero-1

elements, and inbreeding information.
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 Setting up MME (MTGSPREP)

The data file for MTGSPREP must have integer variables first, including animal ID,

numerical identities for fixed effect levels, and numerical identities for random effects (e.g., dam

ID for maternal or permanent environment effects), followed by real variables, which include

covariates and trait measurements.  The data file should be in free format with at least one space

separating variables.  If the data is not in free format, the source code can be modified for a

formatted read of unit IUN31.

Models can be different for each trait in the analysis.  The number of f ixed effects,

covariates or uncorrelated random effects are usually not limiti ng for a trait.  An INCLUDE file,

GSPARAM.FOR, contains maximums for several variables used in the programs.  The limits

must be large enough to accommodate the data set.  If not, error messages or wrong results will be

obtained.  Limits that can be changed in GSPARAM.FOR are :

MAXTRT maximum number of traits in the analysis
MAXINTR maximum number of integer variables on each record
MAXR8 maximum number of real variables on each record
MAXCOM maximum lines of comments for output description of analysis
MAXCOV maximum number of covariates per trait
MAXNFR maximum number of regression coeff icients per trait
MAXFIX maximum number of f ixed effects per trait
MAXNFL maximum number of levels for each fixed effect
MAXAN IM maximum number of animals
MAXRAN maximum number of uncorrelated random effects per trait
MAXNRL maximum number of levels for each uncorrelated random effect
MAXCNT maximum number of contrasts to monitor
MAXCCOEF maximum number of contrast coeff icients for each contrast
NZEC maximum number of non-zero elements in half-stored coeff icient matrix,

note that A  is not added to MME-1

NZEA maximum number of non-zero elements in full-stored A  matrix-1

NZE larger of NZEC or NZEA - usually NZEC

Fields in the data file can be used for more than one trait and can have more than one

name within or across traits.  For example, for weaning weight in beef cattle, when additive,

maternal and permanent environmental random effects are in the model, the dam ID field can be

used to indicate both maternal genetic and permanent environment effects. More than one

uncorrelated random effect can be specified for each trait in the analysis.  Within trait,
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uncorrelated random effects will , of course, be uncorrelated.  However, if the same uncorrelated

random factor (i.e., in the same column in the data set)  is used across traits, a covariance can be

estimated.  Uncorrelated factors which occur in the same column across traits are considered to be

in the same uncorrelated random "group," i.e., factors coded in the same column may have non-

zero correlations, but groups coded in different columns are assumed to have zero correlations.

The MME set up by MTGSPREP have the following order :

covariate(s) trait 1
!

covariate(s) trait n
fixed effect(s) trait 1

!
fixed effect(s) trait n
additive genetic animal effect trait 1

!
additive genetic animal effect trait n
additional correlated random effect trait 1 (e.g., maternal genetic)

!
additional correlated random effect trait n
uncorrelated random effect(s) for trait 1

!
uncorrelated random effect(s) for trait n

The number and types of equations in the MME depend on specific models and data. 

Equations in the above list that do not apply to a specific analysis do not appear. All models will

have additive genetic animal effects.  Uncorrelated animal effects will result from a pedigree file

with all sires and dams missing.  Genetic variances cannot be estimated if A = I for an animal

model although a sire model can be used with A = I.

To run MTGSPREP

1. Compile and link MTGSPREP and MTGSSUB (subroutines).  GSPARAM.FOR must
be available.

2. Run MTGSPREP.  The program reads MTGS21 and asks the following questions:
a) Name of data file (IUN31), e.g., ANIMAL.DAT
b) Description of analysis (up to 6 lines, terminated with a * in column 1 after last

comment line)
c) Number of integer variables in each line of data file
d) Number of real variables in each line of data file
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e) Number of traits in the analysis 
Questions f-y are repeated for each trait with the exceptions of q) and r)

f) Name of trait
g) Position for trait in li st of real variables
h) Missing value designation for trait (e.g., 0,0.0, -999.9, etc.)
i) Number of covariates
Questions j-l will be repeated for each covariate in a trait

j) Name for first covariate
k) Position of f irst covariate in li st of real variables
l) Type of covariate (linear, quadratic, etc)

m) Number of f ixed effects
Questions n-p will be repeated for each fixed effect in a trait

n) Name of f ixed effect
o) Position of f ixed effect in li st of integer variables
p) Write levels of f ixed effect to unit 82 (MTGS82): 1 yes; 0 no

Questions q-r will be asked only for the first trait
q) Position of animal ID in li st of integers (same for each trait)
r) Number of animals in A   (from MTGSNRM)-1

s) Is there a second animal (e.g., maternal genetic) effect (1 yes; 0 no)
If there is a second animal effect for the trait, answer questions t) and u)

t) Name of second animal effect 
u) Position of second animal effect in li st of integer variables 

v) Number of uncorrelated random effects (e.g., PE, litter)
Questions w-y will be repeated for each uncorrelated random effect in a trait

w) Name of uncorrelated random effect 
x) Position of uncorrelated random effect in li st of integers 
y) Write levels of uncorrelated random effects to unit 82 (1 yes; 0 no)

Question z will be asked if there is at least one covariate or fixed effect
z) Save original labels to match with mean estimates for covariates and

fixed effects in MTGSRUN (1 yes; 0 no)
Question aa will be asked if there is at least one uncorrelated random effect

aa) Save original labels to match with mean estimates for uncorrelated
random effects in MTGSRUN (1 yes; 0 no)

If the option to write levels of f ixed effects or uncorrelated random effects to unit 82

(MTGS82) is 1, summary statistics for each level will be written to the output log.  With many

levels  of a fixed effect or uncorrelated random effect, answer no (0) to avoid a large output log.

On DOS or UNIX based systems, after gaining familiarity with the program, users may 

want to put the analysis information in a file for the program to read, which is easier than entering

the data interactively.  However, please enter the data interactively to become familiar with the
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questions the first few times.  If a mistake is made answering questions interactively, the program

must be started from the beginning.  To run the program using such an input file execute the

program using the form: 

mtgsprep.exe < input.fil

where mtgsprep.exe is the executable form of the MTGSPREP Fortran file and input.fil contains

the same entries that would be entered interactively.  If running the programs from a batch or

script file it may be useful to use the command:

 mtgsprep.exe < input.fil > output.fil

where output.fil i s a file containing the prompts usually written to the terminal.  An alternative

approach is to change the file definition section for unit 5 in MTGSPREP to a physical file rather

than keyboard input (i.e., change the value for IUN5 and add an open statement for that file). 

MTGSPREP produces the following files :

MTGS41 Information on model to be used in MTGSRUN.  Information includes :

� number of traits, effects, animals, regression coeff icients, equations,
number of uncorrelated random effects, number of columns that
contain uncorrelated random effects, number of f ixed effects,
column of animal ID in data set, whether the original labels for
fixed effects and covariates were written to a file, and whether the
original labels for uncorrelated random effects were written to a file

� name of each trait, number of covariates by trait; power of each
covariate

� number of f ixed effects by trait; number of levels for each fixed
effect

� starting equation number for direct effects by trait

� presence of second animal (e.g., maternal genetic) effects by trait

� column of second animal ID in data set

� starting equation number for second animal effects by trait

� number of uncorrelated random effects by trait

� number of levels for each uncorrelated random group, column of
uncorrelated random group in data set (if no. uncorrelated random
effects > 0)

� starting equation number of uncorrelated random effects,
uncorrelated random group number, and column positions from
original data of each uncorrelated random effect by trait (if no.
uncorrelated random effects > 0)
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� name of each uncorrelated random effect by trait (if no. uncorrelated
random effects > 0)

MTGS42 Recoded data for MTGSRUN in binary format.  The file includes the
coeff icients of the "design" matrix W = [X Z], equation numbers, and the
data deviated from the mean.  To use the undeviated data search for the
string 'DATA DEVIATION' in the program and comment out the
appropriate write statement (a C in the first column of the line) and remove
the comment for the line which writes the raw data.

MTGS43 Summary for each animal by record in binary format.  The data include
number of columns of W and number of observations written to MTGS42,
a code representing the pattern of missing observations, and codes to
determine if each trait is present or missing.

MTGS44 Blocking information used in MTGSRUN for related random effects coded
in the same column as the animal or second animal ID for a trait.  Data
include animal ID, number of blocked equations, and equation numbers for
effects to be blocked.

MTGS45 Original abels for covariates and fixed effects if requested for merging with
posterior means in MTGSRUN.

MTGS46 Original labels for uncorrelated random effects if requested for merging
with posterior means in MTGSRUN.

MTGS82 Program log that includes summary statistics and order and information
about the mixed model equations.

Prior to running MTGSPREP, make sure that any output files to be saved from a previous

MTGSPREP run are renamed or copied elsewhere.  MTGSPREP will delete or overwrite output

files written in earlier runs.

Estimating Variance Components or Solving MME (MTGSRUN)

The main function of MTGSRUN is to generate Gibbs samples for variance components

and fixed and random effects under a flexible set of options.  The program gives the user the

option of using Gauss-Seidel iteration (GSI) to generate solutions to the MME using starting

values for the variance components.  The program can be used to obtain solutions only for the

MME with appropriately chosen responses to the questions posed by MTGSRUN.  If Gibbs

sampling is requested (with or without GSI) the user has the option to specify the numbers of
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rounds of Gibbs sampling ,burn-in, interval between Gibbs samples, and frequency of

checkpointing.  Checkpointing is the process of saving all necessary variables to files so that the

program can be restarted at some intermediate step if the program is halted (accidentally or

intentionally).

The first question to be asked by MTGSRUN is:

TYPE OF ANALYSIS:
   1)  New analysis
   2)  Continuation of Gauss-Seidel iteration using last solutions
   3)  Continuation of a previous analysis stopped prematurely
   4)  Continuation of a previous analysis stopped when completed

Option 1 is chosen to start any analysis,  option 2 is used if further rounds of GSI are need

to obtain a solution for the MME, option 3 is used if a Gibbs sampling analysis has been stopped

for some reason and the analysis is to be continued, and option 4 allows additional rounds of

Gibbs sampling if after preliminary analysis it is decided that more Gibbs samples are needed. 

The use of checkpointing allows all of these continuations to be used with littl e or no loss of

accuracy.  The continuation of a halted analysis should return the same analysis as run without

interruption.  The addition of rounds after completion may cause (minor) rounding differences in

the posterior means of parameter estimates, but the sampled values should be identical to those

run in one analysis.  Any analysis must be initialized using option 1.  Option 2 should be used

only when no Gibbs sampling has been done following previous rounds of GSI.  It is often useful

to run analyses in off peak hours (e.g., nights and weekends).  Option 3 gives users the option of

running an analysis as computing resources permit, by using this option and checkpointing at

appropriate intervals.  Finally, the last option allows an analysis to be continued if it is decided

that the initial Gibbs sampling chain length is insuff icient.

Solving the MME using Gauss-Seidel iteration

The MME can be constructed and solved using a blocked Gauss-Seidel algorithm.  The

blocked algorithm updates all animal and second animal effects as well as blocked uncorrelated

random effects simultaneously.  An uncorrelated random effect is considered "blocked" if the

code for that effect appeared in the same column as the animal ID or in the same column as the

second animal effect for that trait (if one exists).  All other effects (covariates, fixed effects, and
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uncorrelated random effects not blocked) are updated one equation at a time.  The program uses

starting values of zeros for all fixed and random effects.  Iterations are repeated until either a

maximum number of iterations is reached or until the convergence criterion is met.  The

convergence criterion used is:

where n is the number of equations, and s is solution to equation i in round j of iteration.
j

i

Generating Gibbs samples

The main purpose of this set of programs is to generate values from a Gibbs sampler.  The

theory related to Gibbs sampling is given in Chapter 3, including discussion of the Bayesian

variance component model, prior distributions, and derivation of the Gibbs sampling algorithm. 

A Bayesian variance component model is assumed, although in some situations it is possible to

use flat priors for the variance components, and in that case the estimates should be similar to

REML estimates.  For a discussion of prior distributions including when it is safe to use flat priors

for variance components see Chapter 3.

To run MTGSRUN

1. Compile and link MTGSRUN, MTGSSUB (general subroutines),  and MTGSRSUB
(subroutines used by MTGSRUN).  GSPARAM.FOR must be available.  

2. Run MTGSRUN.  The program reads MTGS41, MTGS42, MTGS43, and MTGS44. 
The program needs MTGS45 and/or MTGS46 if merging of solutions and labels is
requested.
a) Enter option for analysis: 1, new analysis; 2, continuation of Gauss-Seidel iteration

using last solutions; 3, continuation of a previous analysis stopped prematurely, or
4, continuation of a previous analysis stopped when completed.

OPTION 1 QUESTIONS

b) Enter description of the analysis  terminated with a * in column 1 of the line
following the last comment.  The maximum number of lines of comments is
defined in GSPARAM.FOR.

c) Press enter to continue following user information.  If an input file is used to for
responses to questions be sure to insert a blank line in that file.
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d) Input the mean of the prior distribution for additive and second animal (i.e., the Go

matrix) (co)variances.  A matrix description of the (co)variance components is
displayed which depends on the model chosen in MTGSPREP.  The order of the
genetic effects are animal effects first in order of traits followed by second animal
effects, where appropriate.  The row and column labels include an A or M for
animal or second animal effect, respectively, followed by the trait number.  For
example, for a two trait model with second animal effects for only the first trait, the
following information would be displayed:

A1 A2 M1
A1:  1
A2:  2  4
M1:  3  5  6

Enter matrix position and values for priors.

For example, for F , an entry is :2
a1

1 100.D0 <return>    [1  100. <return> or 1 100 <return> also work].

For F ;A1A2

  2 -25.D0 <return>.

The matrix is initialized to zero.  A prior is needed for each component to be
estimated (0 is a valid estimate for covariances).  Type -1  0.d0 <return> to show
the position numbers again.  Once all priors are entered, end the input by typing 0
0.d0 <return> [0 0 <return> also works].

e) The mean of the prior distribution will redisplay and verification is requested,
enter: 0  if the values are not correct, 1  if the values are correct, or 2  to display the
values again.  If there are incorrect values only those values need to be re-entered,
because the covariance matrix will not be initialized again.

f) Enter the shape parameter for this covariance matrix.  The prior distribution for the
covariance matrix is assumed to be an inverted Wishart distribution.  The shape
parameter corresponds to the degree of freedom parameter for the corresponding
Wishart distribution.  For a proper prior distribution the shape parameter must be at
least 2 more than the order of the covariance matrix.  To hold the covariance
matrix constant use a value of -1 for the shape parameter.  To use a "flat" prior
enter a value of 0 for the shape parameter (see Chapter 3 to check if this is safe!).

g) Press enter to continue following user information (insert a blank line in input file).
h) The program will display any random effects coded in the same column in the

original data set that appear in more than one trait.  The user is given the
opportunity to specify groups of traits which should have covariances restricted to
zero.  The trait and random effect names (as entered in MTGSPREP) are given. 
The user should answer with 0 if there are no covariances that need to be restricted
and 1 if groups of traits are to be specified.  An example of information provided
by MTGSRUN follows:
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                             RANDOM #
TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME

        1 Weaning Weight         1 Mat Perm Env
        4 Yearling Weight         1 Mat Perm Env

Are there covariances among these random factors that should be ZERO?
   0 = No (Covariances among all effects can be non-zero)
   1 = Yes (Some covariances need to be restricted to zero)

Questions i and j repeated for each set of uncorrelated random effects to be split i nto
groups.

i) Group numbers are requested for each combination of trait and random effect
name.  Groups must be consecutive starting with 1.

j) Group numbers will be redisplayed with trait and random effect name. 
Verification of group numbers is requested: 1=yes; 2=no

Questions k-m are repeated for each group of uncorrelated random effects (groups
correspond to column used to code for the effect in the original data, or the number
assigned to groups of uncorrelated randoms in a column as done in question i) .

k) Input mean of the prior distribution for uncorrelated random effect
(co)variances for the group of uncorrelated random effects.  A listing by group
describing the trait and uncorrelated random effect with a code will be listed. 
Finally, a matrix description of the (co)variance components is displayed using
those codes. An example of information provided by MTGSRUN follows:

RANDOM #
CODE TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME

       I1      1 Weaning Weight 1 Mat Perm Env
       I2      4 Yearling Weight 1 Mat Perm Env

Enter the expected values for the residual covariance matrix.  I's correspond to
the codes listed above.

I1 I2
I1:  1
I2:  2  3

Enter matrix position and values for priors.
l) The mean of the prior distribution will redisplay and verification is requested,

enter: 0  if the values are not correct, 1  if the values are correct, or 2  to display
the values again.  If there are incorrect values only those values need to be re-
entered, because the covariance matrix will not be initialized again.

m) Enter the shape parameter for this covariance matrix.  For a proper prior the
shape parameter must be at least 2 more than the order of the covariance
matrix.  To hold the covariance matrix constant use a value of -1 for the shape
parameter.  To use a "flat" prior enter a value of 0 for the shape parameter (see
Chapter 3 to check if this is safe!).
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If two or more traits are included in an analysis answer questions n-q.
n) Press enter to continue following user information (insert a blank line in input

file).
o) The user is given the opportunity to specify groups of traits which should have

residual covariances restricted to zero.  The trait number and name are given. 
The user should answer with 0 if there are no covariances that need to be
restricted and 1 if groups of traits are to be specified.

Questions p and q are asked if question o) is answered yes, that is if residual effects
are to be split i nto groups.

p) Group numbers are requested for each trait. Groups must be consecutive
starting with 1.

q) Group numbers will be redisplayed.  Verification of group numbers is 
requested: 1=yes; 2=no

Questions r-t are repeated for each group of residual effects (groups correspond to
traits in the original data, or the number assigned to groups of traits as done in question
p) .

r) Input mean of the prior distribution for uncorrelated random effect
(co)variances for the group of uncorrelated random effects.  A listing by group
describing the trait and uncorrelated random effect with a code will be listed. 
Finally, a matrix description of the (co)variance components is displayed using
those codes. An example of information provided by MTGSRUN follows:
The residual effects coded in group 1 are represented in 3 trait(s) as follows:

 CODE TRAIT #  TRAIT NAME
    R1      1 Pelvic Width              
    R2      3 Ovulation Rate
    R3      4 Milk Production

Enter the expected values for the residual covariance matrix.  R's correspond to
the codes listed above

R1    R2    R3 
R1  1
R2 :  2  4
R3 :  3  5  6

Enter matrix position and values for priors.
s) The mean of the prior distribution will redisplay and verification is requested,

enter: 0  if the values are not correct, 1  if the values are correct, or 2  to display
the values again.  If there are incorrect values only those values need to be re-
entered, because the covariance matrix will not be initialized again.

t) Enter the shape parameter for this covariance matrix.  For a proper prior the
shape parameter must be at least 2 more than the order of the covariance
matrix.  To hold the covariance matrix constant use a value of-1for the shape
parameter.  To use a "flat" prior enter a value of 0 for the shape parameter (see
Chapter 3 to check if this is safe!).
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u) Enter the number of rounds of Gauss-Seidel iteration to be done before starting
Gibbs sampling (Enter 0 for none).

v) Enter the convergence criterion for the Gauss-Seidel iteration.  This value is the
sum of squared changes insolutions divided by the sum of squared solutions.  Use a
relatively large value for warm up for Gibbs sampling (e.g., 1.D-3).  Use  a
relatively small value for solutions to MMEs (e.g., 1.D-10).

w) Enter the length of the Gibbs sampling chain, including the burn-in period.
Questions x-ae  are asked only if the number of rounds of Gibbs sampling is greater
than zero.

x) Enter the length of the 'burn-in' period.  This is the number of rounds of Gibbs
sampling ignored before including data in means estimates or writing values to
files.

y) Enter the frequency of writing data (variance components, contrasts, etc) to
MTGS61 and MTGS62.

z) Enter the frequency of checkpointing.  This is the frequency of writing criti cal
information to allow a restart if stopped prematurely.

aa) Write all fixed and random effects at the same frequency as the variance
component information?  0, no; 1, yes.

ab) Write a set of contrasts out at the same frequency as the variance component 
information?  0, no; 1, yes.

Questions ac-ae are asked if question ab is answered yes.
ac) Enter the number of contrasts to be monitored.
Questions ad-ae are asked for each contrast.

ad) Enter the number of elements in each contrast, e.g., 2.
Question ae is asked for each element in a contrast.

ae) Enter the equation numbers and coeff icients in order for the
contrast, e.g., 4 1. <return> 5 -1. <return>.

af) Enter two random number seeds.  The first must be in the range 0 to 31328, and the
second must be in the range 0 to 30081.

OPTION 2 QUESTIONS

The program will read information from the checkpoint files.  All of the user respones

from the previous analysis (entered with option 1) will be restored.  Only the values for

the variables affected by the following questions will be affected.  

If there have been rounds of Gibbs sampling completed in the previous analysis after

(or without) Gauss-Seidel iteration then the following information will be given and

question b) will be asked:
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Rounds of Gibbs sampling were completed after Gauss-Seidel iteration in the

previous analysis.  Do you want to continue Gauss-Seidel iteration from the current

Gibbs sampling fixed and random solutions or restart the analysis?

** ALL PREVIOUS GIBBS SAMPLING DATA WILL BE LOST IF YOU

CONTINUE OR RESTART!! **

b) Enter: 0 to stop the analysis
1 to restart the analysis
2 to proceed with Gauss-Seidel using final Gibbs sampling 'solutions'
3 to continue Gibbs sampling

If question b is not asked or if it is answered with option 2, the following questions c
and d will be asked.

c) Enter the number of additional rounds of Gauss-Seidel iteration to be done
before starting Gibbs sampling.

d) Enter the new convergence criterion for the Gauss-Seidel iteration.  See
question v under option 1 for information.

OPTION 3 QUESTIONS

There are no questions asked after the question for option number.

OPTION 4 QUESTIONS

If the previous analysis has been completed the program will ask question b.  If the

previous analysis was incomplete, it will reset the option to 3 and continue that

anaylysis.

b)  Enter the number of additional rounds of Gibbs sampling to be done.

Convergence

Measurement of convergence in Gibbs sampling is more diff icult than with a likelihood

based procedure.  The main problem is that the convergence of a distribution must be evaluated,

not the convergence to a single point as is the typical animal breeding problem (e.g., prediction of

breeding values or estimation of variance components).  There are several simple diagnostics

which may be helpful.  One alternative is to generate samples from multiple chains and compare

the estimated means for parameters across chains or to estimate the parameters distribution for

each chain and compare those estimates using a "fat tip pen test."  The fat tip pen test is a

subjective evaluation of the distributions to determine if the estimates are approximately equal,
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i.e., does the line drawn by a fat tip pen cover both of the estimated distributions.  If so, there is a

reasonably good chance that the estimates are converged.  The drawback of using multiple chains

is that the burn-in period for each chain must be discarded and may correspond to significant

increases in computing time for the same number of useful samples drawn from the Gibbs

sampler.

Starting or Restarting MTGSRUN

On DOS or UNIX based systems, after gaining familiarity with the program, users may 

want to put the analysis information in a file for the program to read, which is easier than entering

the data interactively.  For restarts, users can copy MTGS60 to a restart input file.  MTGS60

contains the original answers to the interactive questions except for the (co)variances, which are

the mean estimates obtained at the end of the previous run.  Please enter the data interactively to

become familiar with the questions the first few times.  If a mistake is made answering questions

interactively, the program must be started from the beginning.  To run the program using such an

input file execute the program using the form: 

mtgsrun.exe < input.fil

where mtgsrun.exe is the executable form of the MTGSRUN Fortran file and input.fil contains the

same entries that would be entered interactively.  If running the programs from a batch or script

file it may be useful to use the command:

 mtgsrun.exe < input.fil > output.fil

where output.fil i s a file containing the prompts usually written to the terminal.  An alternative

approach is to change the file definition section for unit 5 in MTGSRUN to a physical file rather

than keyboard input (i.e., change the value for IUN5 and add an open statement for that file).
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CHAPTER TWO: Illustrations for MTGSAM

This chapter demonstrates models and analyses that can be run using MTDGSAM.  The

examples presented are based on the mouse data distributed with DFREML (Meyer, 1991). Data

are available on diskette or by anonymous FTP.   The data files are distributed with example

single and multiple trait MTGSAM analyses.  The format of the pedigree file, MOUSE.PED,

includes three fields: animal, sire, and dam.  The data file, MOUSE.DAT, contains ten fields of

data - seven integer and three real.  The integers correspond to: animal, sire, dam, generation, sex,

litter size, and litter number.  The three real fields represent: litter size (for use as a covariate),

body weight, and feed intake.

 The purpose of this section is to ill ustrate interactive sessions with the programs and the

types of output generated as well as what to examine and expect from the output.  All analyses

demonstrated here were run on a Pentium class microcomputers with 64 MB of memory (although

the analyses should run on systems with much less power and memory).

MTGSNRM

MOUSE.PED was the file used by MTGSNRM to produce the non-zero A  elements used-1

in MTGSRUN.  Two of the most important lines to note in the output file, MTGS81, are the

number of pedigree lines read and the total number of different animals which is needed in

MTGSPREP.
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Results in MTGS81:

Started 10:49:39.96 on 04/06/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PROGRAM "MTGSNRM" - Calculate A-1 and recode animal for IDs for Gibbs sampling
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 OPTION FOR CALCULATION OF A-1
     FOR ANIMAL   SIRE    DAM     TYPE ....    0
     FOR ANIMAL   SIRE    MGS     TYPE ...     1
 OPTION CHOSEN FOR THIS ANALYSIS                 =              0 see note 1
  
 MAXIMUM ID                                      =          41615
 MINIMUM ID                                      =              1
 PEDIGREE FILE OPENED, IUN33                     = mouse.ped
  
 FILE FOR IDS AND INBREEDING COEFFICIENTS OPENED
   THIS FILE WILL CONTAIN ANIMAL, SIRE, AND DAM
   RECODED AND ORIGINAL IDS FOLLOWED BY THE
   INBREEDING COEFFICIENT FOR EACH
  
 NO. INTEGER FIELDS PER RECORD IN IUN33          =              4
 ANIMAL ID IN POSITION ......                                   1
 SIRE ID IN POSITION ........                                   2
 DAM (MGS) ID IN POSITION ...                                   3
 NO. OF GENETIC GROUPS FOR CALCULATION OF W      =              0
  
 The current time is:  10:49:40.29
  
 NO. OF PEDIGREES READ                           =            309 see note 2
 NO. OF DIFFERENT ANIMALS                        =            329 see note 3
 INCLUDES NO. OF GENETIC GROUPS                  =              0
  
 END OF FIRST PASS
 The current time is:  10:49:40.45
  
 END OF SORT
 The current time is:  10:49:40.45
  
 FIRST 10 REORDERED IDs          1         215 see note 4
 FIRST 10 REORDERED IDs          2         403
 FIRST 10 REORDERED IDs          3         615
 FIRST 10 REORDERED IDs          4         701

Note 1: The answers highlighted in gray were answers to the interactive
question asked by MTGSAM.  Check to make sure that they are
correct

Note 2: Does this agree with your data?  This number should equal number
of data lines in pedigree file.  Animals can be repeated in data
file.

Note 3: This is the number of animals plus the number of base animals. 
Make sure that the number of base animals is at least 0.  The
number of base animals is the number of different animals minus
the number of pedigrees read.

Note 4: Reordered animal identification numbers with original animal
identification.  These animal IDs should be reasonable given the
data set.
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 FIRST 10 REORDERED IDs          5         814
 FIRST 10 REORDERED IDs          6         904
 FIRST 10 REORDERED IDs          7        1314
 FIRST 10 REORDERED IDs          8        1602
 FIRST 10 REORDERED IDs          9        1701
 FIRST 10 REORDERED IDs         10        1813
  
 ID VECTOR WRITTEN IN ORDER TO IUN21
 The current time is:  10:49:40.51
  
 SIRE AND DAM IN PEDIGREE REORDERED IN IVECS AND IVECD
 The current time is:  10:49:40.56
  
 CALCULATION OF A-1 FROM ANIMAL  SIRE  DAM  (IOPT =   0)
  
 NON-ZERO HS ELEMENTS FOR NRM INVERSE            =           1241
 LOG DETERMINANT OF NRM                          =  -210.71674289
 NUMBER OF INBRED ANIMALS                        =              0
  ... WITH AVERAGE INBREEDING COEF               =      .00000000
 TOTAL NO. OF ANIMALS INCLUDING BASE 
       AND GENETIC GROUPS                        =            329 see note 3
  
 The current time is:  10:49:40.73
 The elapsed time was: 00:00:00.44

Variance Component Estimation

Single Trait Model

The data for mouse body weight were analyzed with a model including additive (direct)

genetic effect, correlated second animal genetic effect and one uncorrelated random effect.  The

data include 284 observations for body weight in mice.  Additive direct genetic effect of animal,

maternal genetic effect of second animal (the dam) and a maternal permanent environmental

effect are in the model.  Three fixed effects were: generation, sex and litter size.

MTGSPREP

For this example, the option to write levels of information to MTGS81 for all fixed effects

was enabled and for the uncorrelated random effects was disabled.  The complete list of answers

to the interactive questions follow.

mouse.dat name of data file
Mouse data from Karin Meyer
Single trait analysis of body weight
* end of comments
7 number of integers on each line of data file
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3 number of reals on each line of data file
1 number of traits in analysis
body weight name of trait 1
2 position of trait in vector of real values
0.0 value of missing observation for trait 1
0 number of covariates
3 number of f ixed factors
generation name for fixed factor 1
4 position of f ixed factor 1 in vector of integers
1 write summary of f ixed factor 1 levels to log file (MTGS82)
sex name for fixed factor 2
5 position of f ixed factor 2 in vector of integers
1 write summary of f ixed factor 2 levels to log file (MTGS82)
litter size name for fixed factor 3
6 position of f ixed factor 3 in vector of integers
1 write summary of f ixed factor 3 levels to log file (MTGS82)
1 position of animal effect in vector of integers
329 num. of animals in relationship matrix (from MTGSNRM)
1 include second animal effect
maternal genetic name of second animal effect
3 position of second animal effect in vector of integers
1 number of uncorrelated random factors
maternal perman env name of uncorrelated random factor
3 position of uncorrelated random factor in vector of integers
0 do not write summary of uncorrelated random factor to log
1 write summary of f ixed factor 1 levels to log file (MTGS82)
1 write labels for uncorrelated random factors to MTGS46

Results in MTGS82:

Started 13:30:31.47 on 04/06/1995
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                PROGRAM "MTGSPREP"  - Setup MME for Gibbs sampling
                         Last revised ALPHA VERSION     
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 Data set description :
    Mouse data from Karin Meyer
    Single trait analysis     

 No. of data lines in Unit 31            =            284 see note 5
 No. of integer variables per record     =              7
 No. of real variables per record        =              3
 No. of traits                           =              1
 No. of valid records                    =            284
 No. of animals with valid records       =            284
 No. of animals in A-1                   =            329
 Order of MME                            =            712
Note 5:  Does this correspond to the data?
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 Results for trait  1  - Body Weight           (position  2 ) see note 6

 No. of records =    284  (missing value:      .0000   No. missing =     0 )
 Trait   Mean       SD        CV       Min       Max     Std Min    Std Max
   1    24.0687  3.30236     13.72   14.600    34.500     -2.87       3.16

 No. of covariates =      0

 No. of fixed effects =      3
  1:     3 levels for  generation                    (MME rows:     1 -     3)
    Level     Value        No.        %       Mean
       1          1         93      32.75    23.724    see note 6
       2          2         84      29.58    23.063    
       3          3        107      37.68    25.158    
  2:     2 levels for  sex                           (MME rows:     4 -     5)
    Level     Value        No.        %       Mean
       1          1        150      52.82    22.656    see note 6
       2          2        134      47.18    25.650    
  3:     7 levels for  litter size                   (MME rows:     6 -    12)
    Level     Value        No.        %       Mean
       1          1         11       3.87    26.609    see note 6
       2          2         41      14.44    23.722    
       3          3         25       8.80    24.864    
       4          4         36      12.68    24.028    
       5          5         96      33.80    24.265    
       6          6         45      15.85    24.333    
       7          7         30      10.56    21.973    

 No. of animals in A-1 =   329                       (MME rows:    13 -   341)

 No. of 2nd animal effects =     1 see note 7
  1:   329 levels for  maternal genetic              (MME rows:   342 -   670)

 No. of uncorrelated random effects =     1 see note 8
  1:    42 levels for  maternal perman env           (MME rows:   671 -   712)

------------------------------------------------------------------------------
Summary of data and mixed model equations

------------------------------------------------------------------------------
Trait    1 - Body Weight          No. of records =    284  (No. missing = 0 )

 Trait   Mean       SD        CV       Min       Max     Std Min    Std Max
   1    24.0687  3.30236     13.72   14.600    34.500     -2.87       3.16

 Order of MME =     712

Note 6: Are these characteristics of your data reasonable?
Note 7: An equation is created for the second animal effect for all

animals
Note 8: An equation is created for each level of an uncorrelated random

effect
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see note 9
 Number of fixed effects =      3
 Trait      No.      Name               Position    Levels         Rows
    1        1     generation               4          3          1 -      3
    1        2     sex                      5          2          4 -      5
    1        3     litter size              6          7          6 -     12

 Number of animal effects (# traits) =      1
 Trait      No.      Name               Position    Levels         Rows
    1        1     Animal w/ full A-1       1        329         13 -    341

 Number of second animal effects =      1
 Trait      No.      Name               Position    Levels         Rows
    1        1     maternal genetic         3        329        342 -    670

 Number of uncorrelated random effects =      1
 Trait      No.      Name               Position    Levels         Rows
    1        1     maternal perman env      3         42        671 -    712
------------------------------------------------------------------------------

 Files written:
   MTGS41 (ascii): Model information
   MTGS42 (binary): Recoded W=X:Z elements
   MTGS43 (binary): W summary for each animal
   MTGS44 (binary): Blocking information by animal
   MTGS45 (ascii): labels for covariates and fixed effects
   MTGS46 (ascii): labels for uncorrelated random effects
 The elapsed time was: 00:00:00.54

Note 9: Check number of levels and positions of fields in integer vector
for possible input errors and order of MME

MTGSRUN

Answers to the interactive questions asked by MTGSRUN:

1 type of run - new analysis
Mouse data from Karin Meyer                                                     
Single trait analysis of body weight                                           
*
 blank line needed for press enter prompt
1  4.0 genetic (co)variance means
2  0.5 genetic (co)variance means
3  1.5 genetic (co)variance means
0  .00 done entering values
1 genetic priors are correct
9 genetic (co)variance priors shape parameter
  blank line needed for press enter prompt
1  1.5 independent random (co)variance means
0  .00 done entering values
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1 ind Rand priors are correct
9 ind Rand (co)variance priors shape parameter
1  2.0 residual (co)variance priors
0  .00 done entering values
1 residual priors are correct
9 residual (co)variance priors shape parameter
100 rounds of Gauss-Seidel iteration
1.E-04 convergence criteria for Gauss-Seidel
200 rounds of Gibbs sampling (includes burn-in)
100 rounds of burn-in before Gibbs sampling
10 frequency of writing Gibbs samples
50 frequency of check-pointing
0 write out all solutions? (Y=1,N=0)
0 write out user specified contrasts
29193  21661seeds for random number generator

Note that the number of rounds of Gibbs sampling is VERY SMALL and is used here just for

demonstration purposes.  The burn-in and frequency of writing samples are also chosen only for

demonstration purposes.

Results in MTGS83:

------------------------------------------------------------------------------
                "MTGSRUN" - Multiple trait Gibbs sampling program
                         Last revised ALPHA VERSION     
------------------------------------------------------------------------------
  
 Started 08:01:39.81 on 04/14/1995

 Mouse data from Karin Meyer
 Single trait analysis of body weight

 This is a new analysis - not a continuation

 The prior distribution of genetic variances and covariances was an
 inverted Wishart distribution with shape parameter:   9 and with
 expected value:

           A1           M1 
 A1 :   4.0000    
 M1 :   .50000       1.5000    

 The prior distribution of variances and covariances for the random
 factors coded in column   3 and represented in   1 trait(s) was an
 inverted Wishart distribution with shape parameter:   9 and 
 with expected value: 
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           I1 
 I1 :    1.5000    

 The I's correspond to the codes below

                                     RANDOM #
  CODE  TRAIT #  TRAIT NAME          W/IN TRT  RANDOM EFFECT NAME
   I1      1     Body Weight             1     maternal perman env

 The prior distribution of variances and covariances for the residual
 effects was an inverted Wishart distribution with shape parameter:   9
 and with expected value:

           R1 
 R1 :    2.0000    

 The R's correspond to the codes below

  CODE  TRAIT #  TRAIT NAME
   R1      1     Body Weight         

 There was a maximum of     100 rounds of Gauss-Seidel iteration done 
 before starting Gibbs sampling.

 A value of .10000D-03 was used to determine convergence of 
 Gauss-Seidel iteration

 There were    100 rounds burn-in run before using the Gibbs
 sampling done before using the results

 There were    200 total rounds of Gibbs sampling including the burn-in period

 Results were written out every    10 rounds.

 Checkpointing information was written out every     50 rounds.

 The two random number generator seeds used were: 29193 and 21661

 Gauss-Seidel iteration converged in round     13
 with a convergence criteria of  .849214D-04

 For the genetic and independent random effect and residual
 (co)variance components several estimates are provided.  The first
 column contains the posterior mean of the expected value of the
 component.  The second is the posterior mean of the observed values.
 The final column contains the posterior mean of the observed values
 for heritability (genetic effects) or fraction of phenotypic variance
 (independent randoms and residual) on the diagonal and correlations
 below the diagonal.  For phenotypic (co)variance components only the
 posterior means of the observed components and the correlations are
 given.

 If a (co)variance has been held constant, only the values and the
 means of the observed "heritabilities" and correlations are given.
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 GENETIC (CO)VARIANCE COMPONENT ESTIMATES

 A correspond to direct effects, M to second animal (e.g., maternal) effects
 For example, M3 is second animal genetic effect for trait 3

            A1    M1 
   A1 :      1
   M1 :      2     3

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     4.3072971277831         4.2662797793787         .382937737008567800
  2     1.7888933877744         1.7707084304743         .630660694294524500
  3     1.8796056518771         1.8795230673661         .169380671693390900

 INDEPENDENT RANDOM EFFECT (CO)VARIANCE COMPONENT ESTIMATES

 The random factors coded in column   3 are represented in   1
 trait(s) as follows:

                                     RANDOM #
  CODE  TRAIT #  TRAIT NAME          W/IN TRT  RANDOM EFFECT NAME
   I1      1     Body Weight             1     maternal perman env

 I's correspond to the codes listed above

            I1 
   I1 :      1

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     1.1976811419801         1.2080489869830         .110473240469843800

 RESIDUAL (CO)VARIANCE COMPONENT ESTIMATES

 The residual effects are represented in   1 trait(s) as follows:

  CODE  TRAIT #  TRAIT NAME
   R1      1     Body Weight         

 R's correspond to the codes listed above

            R1 
   R1 :      1

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     1.9305686899210         1.9370950692461         .179021126890384100

 PHENOTYPIC (CO)VARIANCE COMPONENT ESTIMATES

 CODE  TRAIT #  TRAIT NAME
   P1      1     Body Weight  
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 P's correspond to the traits listed above

            P1 
   P1 :      1

  VC      POST MEAN OF OBSERVED VC      POST MEAN OF OBSERVED CORR
  ==     ==========================     ==========================
   1          11.06165533344822           1.00000000000000000000

Multiple Trait Model

The data for mouse body weight and feed intake were analyzed with a multiple trait animal 

model.  The model for body weight included additive (direct) genetic effect and one uncorrelated

random effect.  The data include 284 observations for body weight.  Additive direct genetic effect

of animal and a litter effect are in the model.  One covariate and one fixed effect were fit.  Litter

size was included as a covariate and generation was considered a fixed effect.  The model for feed

intake also included direct genetic effect and one uncorrelated random effect.  There were two

fixed effects included: litter size and generation.

Note that litter size is included as a covariate  for one trait and a fixed effect for the other. 

The use of factor as a covariate and fixed effect is possible because there are two fields set for the

same effect - one in the vector of integers and one in the vector of real values.  If the same effect

is not to be used for two traits in the same analysis the same field can be used as a covariate in one

analysis and a fixed effect in a second analysis by placing the field in a location where it can be

included in the real values for the first analysis and as an integer in the second analysis.

MTGSPREP

For this example, the option to write summary information to MTGS81 for levels of  fixed

factors  was enabled for all fixed effects.  The option was enabled for the uncorrelated random

effect for body weight and disabled for feed intake.  The complete list of answers to the interactive

questions follow.

mouse.dat name of data file
Mouse data from Karin Meyer
Multiple trait analysis of 
Body Weight and Feed Intake
* end of comments
7 number of integers on each line of the data file
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3 number of reals on each line of the data file
2 number of traits in the analysis
Body Weight name of trait 1 Trait 1
2 position of trait 1 in vector of real values *    
0. value of missing observation for trait 1 *    
1 number of covariates for trait 1 *    
Litter Size name of covariate 1 *    
1 position of covariate in vector of real values *    
1 maximum power of covariate *    
1 number of f ixed effects for trait 1 *    
Generation name of f ixed effect 1 *    
4 position of f ixed effect 1 in vector of integers *    
1 write summary of f ixed effect 1 levels to log file (MTGS82) *    
1 position of animal effect in vector of integers *    
329 number of animals in relationship matrix (from MTGSNRM) *    
0 include second animal effect for trait 1: 1=yes; 0=no *    
1 number of uncorrelated random effects for trait 1 *    
Litter name of uncorrelated random effect *    
7 position of uncorrelated random effect in vector of integers *    
1 write summary of uncorrelated random effect to log file (MTGS82) *    
Feed Intake name of trait 2 Trait 2
3 position of trait 2 in vector of reals *  *
0. value of missing observation for trait 2 *  *
0 number of covariates for trait 2 *  *
2 number of f ixed effects for trait 2 *  *
Litter Size name of f ixed effect 1 *  *
6 position of f ixed effect 1 in vector of integers *  *
1 write summary of f ixed effect 1 levels to log file (MTGS82) *  *
Sex name of f ixed effect 2 *  *
5 position of f ixed effect 1 in vector of integers *  *
1 write summary of f ixed effect 2 levels to log file (MTGS82) *  *
0 include second animal effect for trait 1: 1=yes; 0=no *  *
1 number of uncorrelated random effects for trait 1 *  *
Litter name of uncorrelated random effect *  *
7 position of uncorrelated random effect in vector of integers *  *
0 do not write sum. of uncorr. random effect to log file (MTGS82) *  *
1 write labels for covariates and fixed effects to MTGS45
1 write labels for uncorrelated random effects to MTGS46
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Results in MTGS82:

 Started 11:36:13.52 on 04/14/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                PROGRAM "MTGSPREP"  - Setup MME for Gibbs sampling
                         Last revised ALPHA VERSION     
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 Data set description :
    Mouse data from Karin Meyer
    Multiple trait analysis of
    Body Weight and Feed Intake

 No. of data lines in Unit 31            =            284
 No. of integer variables per record     =              7
 No. of real variables per record        =              3
 No. of traits                           =              2
 No. of valid records                    =            568
 No. of animals with valid records       =            284
 No. of animals in A-1                   =            329
 Order of MME                            =            755

------------------------------------------------------------------------------

 Results for trait  1  - Body Weight           (position  2 )

 No. of records =    284  (missing value:      .0000   No. missing =     0 )
 Trait   Mean       SD        CV        Min         Max     Std Min    Std Max
   1    24.0687  3.30236    13.72      14.600      34.500    -2.87       3.16

 No. of covariates =      1
  1:     1 regression coefficients for Litter Size  (MME rows:     1 -      1)

 Statistics for covariates:
 Cov.    Mean       SD        CV        Min         Max     Std Min    Std Max
  1    4.47887  1.64829      36.80     1.0000     7.0000     -2.11       1.53

 No. of fixed effects =      1
  1:     3 levels for  Generation                    (MME rows:     2 -     4)
    Level     Value        No.        %       Mean
       1          1         93      32.75    23.724    
       2          2         84      29.58    23.063    
       3          3        107      37.68    25.158    

 No. of animals in A-1 =   329                       (MME rows:    14 -   342)

 No. of 2nd animal effects =     0

 No. of uncorrelated random effects =     1
  1:    42 levels for  Litter                        (MME rows:   672 -   713)
    Level     Value        No.        %       Mean
       1          1          8       2.82    23.800    
       2          2          7       2.46    23.014    
       3          3          5       1.76    22.880    
       4          4          7       2.46    24.129    
       5          5          8       2.82    21.687    
       6          6          8       2.82    18.300    
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       7          7          7       2.46    25.471    
       8          8          7       2.46    27.186    
       9          9          7       2.46    23.514    
      10         10          8       2.82    28.375    
      11         11          7       2.46    22.943    
      12         12          6       2.11    23.467    
      13         13          8       2.82    23.750    
      14         14          8       2.82    24.212    
      15         15          4       1.41    25.400    
      16         16          8       2.82    19.113    
      17         17          6       2.11    27.317    
      18         18          8       2.82    23.850    
      19         19          6       2.11    24.750    
      20         20          6       2.11    25.067    
      21         21          4       1.41    21.925    
      22         22          6       2.11    21.033    
      23         23          5       1.76    24.180    
      24         24          8       2.82    23.537    
      25         25          7       2.46    22.386    
      26         26          8       2.82    19.462    
      27         27          7       2.46    24.843    
      28         28          7       2.46    25.429    
      29         29          8       2.82    25.175    
      30         30          8       2.82    22.950    
      31         31          7       2.46    25.457    
      32         32          8       2.82    23.450    
      33         33          6       2.11    23.983    
      34         34          2        .70    32.650    
      35         35          7       2.46    26.757    
      36         36          5       1.76    25.160    
      37         37          6       2.11    25.167    
      38         38          7       2.46    26.414    
      39         39          7       2.46    24.443    
      40         40          6       2.11    24.317    
      41         41          8       2.82    26.688    
      42         42          8       2.82    25.063    

------------------------------------------------------------------------------

 Results for trait  2  - Feed Intake           (position  3 )

 No. of records =    284  (missing value:      .0000   No. missing =     0 )
 Trait   Mean       SD        CV        Min         Max     Std Min    Std Max
   2    64.2556  5.93258     9.23     46.900      82.100     -2.93       3.01

 No. of covariates =      0

 No. of fixed effects =      2
  1:     7 levels for  Litter Size                   (MME rows:     5 -    11)
    Level     Value        No.        %       Mean
       1          1         11       3.87    58.355    
       2          2         41      14.44    61.578    
       3          3         25       8.80    65.020    
       4          4         36      12.68    61.531    
       5          5         96      33.80    65.286    
       6          6         45      15.85    66.242    
       7          7         30      10.56    66.433    
  2:     2 levels for  Sex            name           (MME rows:    12 -    13)
    Level     Value        No.        %       Mean
       1          1        150      52.82    61.392    
       2          2        134      47.18    67.461    
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 No. of animals in A-1 =   329                       (MME rows:   343 -   671)

 No. of 2nd animal effects =     0

 No. of uncorrelated random effects =     1
  1:    42 levels for  Litter                        (MME rows:   714 -   755)

------------------------------------------------------------------------------
             Summary of data and mixed model equations
------------------------------------------------------------------------------

 Trait    1 - Body Weight      No. of records =    284  (No. missing =     0 )
 Trait    2 - Feed Intake      No. of records =    284  (No. missing =     0 )

 Trait   Mean       SD        CV        Min         Max     Std Min    Std Max
   1    24.0687   3.30236    13.72     14.600      34.500    -2.87       3.16
   2    64.2556   5.93258     9.23     46.900      82.100    -2.93       3.01

 Order of MME =     755

 Number of covariates =      1
 Trait      No.      Name               Position    Coeff.         Rows
    1        1     Litter Size              1          1          1 -      1

 Number of fixed effects =      3
 Trait      No.      Name               Position    Levels         Rows
    1        1     Generation               4          3          2 -      4
    2        1     Litter Size              6          7          5 -     11
    2        2     Sex            name      5          2         12 -     13

 Number of animal effects (# traits) =      2
 Trait      No.      Name               Position    Levels         Rows
    1        1     Animal w/ full A-1       1        329         14 -    342
    2        1     Animal w/ full A-1       1        329        343 -    671

 Number of uncorrelated random effects =      2
 Trait      No.      Name               Position    Levels         Rows
    1        1     Litter                   7         42        672 -    713
    2        1     Litter                   7         42        714 -    755

------------------------------------------------------------------------------

 Files written:
   MTGS41 (ascii): Model information
   MTGS42 (binary): Recoded W=X:Z elements
   MTGS43 (binary): W summary for each animal
   MTGS44 (binary): Blocking information by animal
   MTGS45 (ascii): labels for covariates and fixed effects
   MTGS46 (ascii): labels for uncorrelated random effects

 The elapsed time was: 00:00:00.66
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MTGSRUN

Answers to the interactive questions asked by MTGSRUN.

1 type of run - new analysis
Mouse data from Karin Meyer
Multiple trait analysis of
Body Weight and Feed Intake
*                                                                               

blank line needed for press enter prompt
1        7.87 animal effect prior value (σ )2

A1

2        2.50 animal effect prior value (σ )A1,A2

3        9.99 animal effect prior value (σ )2
A2

0        0 end of genetic (co)variance input
1         values are correct: 0=no, 1=yes, 2=redisplay
9 genetic (co)variance priors shape parameter
  blank line needed for press enter prompt
0 covariances among groups of uncorr. randoms to restrict to zero? (0=no, 1=yes)
1        1.38 uncorrelated effect starting value (σ )2

C1

2       -1.58 uncorrelated effect starting value (σ )C1,C2

3        2.98 uncorrelated effect starting value (σ )2
C2

0        0 end of uncorrelated random (co)variance input
1         values are correct
9 uncorrelated random (co)variance priors shape parameter
  blank line needed for press enter prompt
0 covariances among groups of uncorr. randoms to restrict to zero? (0=no, 1=yes)
1        2.66 residual effect starting value (σ )2

R1

2        2.61 residual effect starting value (σ )R1,R2

3       11.13 residual effect starting value (σ )2
R2

0       0end of residual (co)variance input
1         values are correct
9 residual (co)variance priors shape parameter
200 rounds of Gauss-Seidel iteration
1.d-5 convergence criteria for Gauss-Seidel
500 rounds of Gibbs sampling (including burn-in)
100 rounds of burn-in before writing samples
20 frequency of writing Gibbs samples
10 frequency of checkpointing
0 write out all solutions with samples (0=no, 1=yes)
0 write out specified contrasts with samples (0=no, 1=yes)
8939 20902 seeds for random number generator
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Note that similar to the single trait example, the number of rounds of Gibbs sampling is VERY

SMALL  and is used here just for demonstration purposes.  The burn-in and frequency of writing

samples are also chosen only for demonstration purposes.

Results in MTGS83:

------------------------------------------------------------------------------
                "MTGSRUN" - Multiple trait Gibbs sampling program
                         Last revised ALPHA VERSION     
------------------------------------------------------------------------------

 Started 14:10:08.26 on 04/14/1995

 Mouse data from Karin Meyer
 Multiple trait analysis of
 Body weight and feed intake

 This is a new analysis - not a continuation

 The prior distribution of genetic variances and covariances was an
 inverted Wishart distribution with shape parameter:   9 and with
 expected value:

           A1           A2 
 A1 :   7.8700    
 A2 :   2.5000       9.9900    

 The prior distribution of variances and covariances for the random
 factors coded in column   7 and represented in   2 trait(s) was an
 inverted Wishart distribution with shape parameter:   9 and 
 with expected value: 

           I1           I2 
 I1 :    1.3800    
 I2 :   -1.5800       2.9800    

 The I's correspond to the codes below

                                     RANDOM #
  CODE  TRAIT #  TRAIT NAME          W/IN TRT  RANDOM EFFECT NAME
   I1      1     Body Weight             1     Litter              
   I2      2     Feed Intake             1     Litter              

 The prior distribution of variances and covariances for the residual
 effects was an inverted Wishart distribution with shape parameter:   9
 and with expected value:

           R1           R2 
 R1 :    2.6600    
 R2 :    2.6100       11.310    

 The R's correspond to the codes below
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  CODE  TRAIT #  TRAIT NAME
   R1      1     Body Weight         
   R2      2     Feed Intake         

 There was a maximum of     200 rounds of Gauss-Seidel iteration done 
 before starting Gibbs sampling.

 A value of  .100000D-04 was used to determine convergence of 
 Gauss-Seidel iteration

 There were    100 rounds burn-in run before using the Gibbs
 sampling done before using the results

 There were    500 total rounds of Gibbs sampling including 
 the burn-in period

 Results were written out every     20 rounds.

 Checkpointing information was written out every     10 rounds.

 The two random number generator seeds used were:  8939 and 20902

 Gauss-Seidel iteration converged in round    125
 with a convergence criteria of  .986327D-05

 For the genetic and independent random effect and residual
 (co)variance components several estimates are provided.  The first
 column contains the posterior mean of the expected value of the
 component.  The second is the posterior mean of the observed values.
 The final column contains the posterior mean of the observed values
 for heritability (genetic effects) or fraction of phenotypic variance
 (independent randoms and residual) on the diagonal and correlations
 below the diagonal.  For phenotypic (co)variance components only the
 posterior means of the observed components and the correlations are
 given.

 If a (co)variance has been held constant, only the values and the
 means of the observed "heritabilities" and correlations are given.

 GENETIC (CO)VARIANCE COMPONENT ESTIMATES
 A correspond to direct effects, M to second animal (e.g., maternal) effects
 For example, M3 is second animal genetic effect for trait 3
            A1    A2 
   A1 :      1
   A2 :      2     3

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     7.6128712242734         7.6244012978318         .625885316788609700
  2     2.6353199371560         2.6135917088905         .317260115589680000
  3     8.6969256552332         8.6940402984235         .361645393507590000

 INDEPENDENT RANDOM EFFECT (CO)VARIANCE COMPONENT ESTIMATES
 The random factors coded in column   7 are represented in   2
 trait(s) as follows:
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                                     RANDOM #
  CODE  TRAIT #  TRAIT NAME          W/IN TRT  RANDOM EFFECT NAME
   I1      1     Body Weight             1     Litter              
   I2      2     Feed Intake             1     Litter              

 I's correspond to the codes listed above
            I1    I2 
   I1 :      1
   I2 :      2     3

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     1.5107549042936         1.5015300872335         .123695539121797300
  2    -1.6584116514526        -1.6350729678939        -.752155531137562700
  3     3.2795626422993         3.2759175761303         .136756123538846000

 RESIDUAL (CO)VARIANCE COMPONENT ESTIMATES
 The residual effects are represented in   2 trait(s) as follows:

  CODE  TRAIT #  TRAIT NAME
   R1      1     Body Weight         
   R2      2     Feed Intake         

 R's correspond to the codes listed above
            R1    R2 
   R1 :      1
   R2 :      2     3

 VC    POST MEAN OF EXP VC     POST MEAN OF OBS VC    POST MEAN OF OBS CORR
 ==   =====================   =====================   =====================
  1     2.9159545081281         2.9374446952519         .250419144089593200
  2     2.5894656720673         2.5956383897162         .440715557884698400
  3     11.932969999529         11.919454743307         .501598482953563200

 PHENOTYPIC (CO)VARIANCE COMPONENT ESTIMATES

  CODE  TRAIT #  TRAIT NAME
   P1      1     Body Weight         
   P2      2     Feed Intake         

 P's correspond to the traits listed above
            P1    P2 
   P1 :      1
   P2 :      2     3

  VC      POST MEAN OF OBSERVED VC      POST MEAN OF OBSERVED CORR
  ==     ==========================     ==========================
   1          12.06337608031729           1.00000000000000000000
   2          3.574157130712805            .21073590131847460000
   3          23.88941261786115           1.00000000000000000000
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Contrasts

The multiple trait example will be used to demonstrate the use of contrasts.  Unlike the

MTDFREML program, when using the MTGSAM program the contrasts must be specified at the

beginning of an analysis.  This is because the contrast value is written out as the Gibbs samples

are written rather than obtained as a solution to the mixed model equations using the final

variance component estimates.  As a result, the contrasts account for uncertainty of other

parameters in the model when the distribution is estimated.  It is important that the contrast be

estimable.  There is no tool to determine expected values of solutions;  the MTDFREML

programs may be used to evaluate expectations and estimabilit y.  

Only the changes in the input data will be given.  The contast information is written to

MTGS83, and only the information additional to that previous given will be presented.  The

following lines replace the line on page 38, 42 with the label "write out specified contrasts with

samples."

1 write out specicified contrasts with samples: 0=no; 1=yes
4 number of contrasts
1 number of elements in the contrast 1
1 1. equation number of solution for contrast and coeff icient for element 1
2 number of elements in the contrast 2
4 1. equation number of solution for contrast and coeff icient for element 1
2 -1. equation number of solution for contrast and coeff icient for element 2
2 number of elements in the contrast 3
13   1. equation number of solution for contrast and coeff icient for that solution
12  -1. equation number of solution for contrast and coeff icient for that solution
1 number of elements in the contrast 4
14 1. equation number of solution for contrast and coeff icient for that solution
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CHAPTER THREE: Theoretical Considerations for
MTGSAM

Mixed Models

In matrix notation the general mixed model for an observation vector, y, is:

y = Xββ + Zu + e, where

ββ = vector of f ixed effects associated with records in y by X, and

u = vector of random effects associated with records in y by Z,

where i corresponds to the group of uncorrelated random effects which are common across traits

(e.g., maternal permanent environmental effects), D   describes the (co)variances among thosei

random effects across traits for an animal, R  is the matrix of (co)variances of residuals for the*
j

traits measured on an animal j ,  r  is the number of levels of random group i, n is the number ofi

animals, and ⊗  and ⊕  correspond to the direct product and direct sum operators, respectively (see

Searle (1982) for a description of these operators).  Note that for an animal with all traits

measured  , where R  is the t  × t  covariance matrix among residuals for block j of thej   j  j

residual effects and ρ is the number of blocks of residual effects.  The blocks correspond to

uncorrelated random effects for different traits that are coded in the same column in the original

data (e.g., permanent environmental effects in multiple traits).  The blocks for uncorrelated

random and residual effects can be divided by the user when GSPREP is run.  The division of the

blocks correspond to groups of traits that are not observed on the same animal, e.g., sex limited

traits such as milk production and scrotal circumference.



′ ′
′ ′ +

L
N
M

O
Q
P
L
N
M
M
O
Q
P
P

=
′
′

L
N
M

O
Q
P

− −

− − −

−

−

X R X X R Z

Z R X Z R Z u

X R y

Z R y

1 1

1 1 1

1

1ΣΣ
ββ$

$

I ri
ΣΣ ΣΣ= ⊕

=i i0

γ

′ = ′ ′ ′u u u u0 1 L γ

$ββ

$s

$ββ

43

Define ΣΣ  = G ⊗  A and ΣΣ  = D  ⊗  , then , where γ is the number of groups of0      i  i

uncorrelated random effects.  In addition, define , where u  corresponds to the0

genetic effects, and u  to the uncorrelated random effects in block i, for i > 0.i

In many animal breeding applications for a single trait analysis, u is a vector of breeding

values with V( u ) = G = AF , where A is the numerator relationship matrix and F  is the additive2          2
g          g

genetic variance (variance of breeding values) and R = IF .2
e

Henderson's Mixed Model Equations

Henderson's mixed model equations (e.g., 1950, 1963, 1975, 1984) simpli fy for many

situations the calculation of  and û.  In general form the MME are:

The equations will also be written as C =r .  Although R is of order the number of records,

R is usually assumed to be diagonal for single trait analyses, often IF , and block diagonal (blocks2
e

of order of number of traits) for multiple trait analyses, so that calculations with R  are easy. -1

Henderson et al. (1959) proved the  from these equations are BLUE as from generalized least-

squares and Henderson (1963) proved the û are BLUP.

Bayesian Var iance Components Model

Prior Distr ibutions

To fully specify the model for estimates of variance components additional assumptions

must be made.  First, the prior distributions for the effects in the model must be determined. 

These programs were developed using a "flat" prior distribution for the "fixed" effects, that is,

there is no prior knowledge about these effects.  Next, the random effects are assumed to be

normally distributed.  For the genetic effects there will be an additional assumption of a known

covariance structure among those random effects corresponding to the relationship matrix. 

Finally, the residual effects are assumed to distributed normally.  These assumptions are the same

as those used with most likelihood based methods.  In addition, these assumptions result in BLUE
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and BLUP solutions for fixed and random effects when variance components are known (Gianola

and Fernando,1986; Gianola, Im and Macedo, 1990).

The animal and second animal effects are assumed to have non-zero covariances that can

be estimated for all trait combinations.  Covariances among uncorrelated random effects specified

for different traits may be non-zero only if those effects are coded in the same column of the

original data set.  As seen in Chapter 2, the user can specify that some of these covariances are to

be restricted to zero.

The family of prior distributions for the (co)variance components are chosen mainly for

computational simplicity.  The inverted Wishart (IW) distribution is used for (co)variances.   The

Wishart density describes the distribution of sums of squares and cross-products of standard

normal random variables (RVs) (Odell and Fieveson, 1966), and if X is a Wishart RV, then X  is-1

an IW RV.  In the univariate case, this corresponds to an inverted Chi-square distribution. 

Although other distibutions could be used, the Gibbs sampling algorithm would be more complex.

If T is distibuted as an IW variable, i.e., T ~ IW(V,ν), then the form of the distribution is 

where,

(Johnson and Kotz, 1972).  The parameter ν is an integer variable and is referred to as the shape

parameter, corresponding to the degrees of freedom of the corresponding Wishart RV and

representing the degree of certainty for the prior distribution, and the matrix V describes the

variance-covariance structure of the variables.  Finally, m is the number of correlated random

vectors (dimension of V).  The mean of T is V /(ν - m - 1) (Johnson and Kotz, 1972).  In the–1

MTGSAM programs V is calculated such that the expected value of prior density of the genetic

(co)variance matrix is equal to the value entered interactively.  For example, for the genetic

(co)variance matrix, the mean value specified by the user is G , then V  = ν G , where0     0
-1  *

ν  = ν - m - 1.*
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Some previous Gibbs sampling work has been done using flat prior distributions for the

variance components (Wang et al., 1994, Jensen et al., 1995).  Work by Hobert (1994) indicates

that the joint distribution does not always exist when flat priors are used for the variance

components, resulting in spurious results from the Gibbs sampler.  Further work needs to be done

to determine when flat priors can safely be used for variance components.

Joint Posterior Density

The joint posterior desity can be written as the product of the prior and conditional

densities previously described.  The joint density of the parameters given the data and the prior

information is:

[3.1]

Next, several direct product and direct sum results are presented that are used to simpli fy the form

of the joint density (from Searle, 1982): 
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Applying these results, 

[3.2]

Considering one subvector, u  , this can be further partitioned into  subvectors as follows:i

.  Finally, define
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Then  can be rewritten as follows for i = 0:

Next, define

Then,  can be rewritten as follows for i > 0:
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Similarly, let e = P(y-Xββ-Zu), such that , where e  is the vector of residuals fori

block i of the residual (co)variance matrices and P is a permutation matrix that simply reorders the

elements of the vector so that the residuals are ordered by trait within animal within residual

block. The matrix P is simply an identity matrix with the columns (or rows) reordered; one

property of a permutation matrix is PP' = P'P = I.  Then, 

The number of traits represented in e  is t  and the number of animals represented is n .  It isi  i        i

assumed that a residual effect is present for all traits contained in a block if an animal is

represented in that block, although an animal is not assumed to be represented in all residual

blocks.  The impact of missing traits on this requirement will be discussed in the next section on

full conditional distributions.   Define e  as the residuals for the traits in block i and animal j andi,j

e  as element k of e .  Further definei,j,k     i,j
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Then, (y-Xββ-Zu)' R  (y-Xββ-Zu) can be rewritten as -1

Then finally,

[3.3]

Full Conditional Densities

The full conditional densities required for GS can be derived from the different versions of

the joint posterior density, i.e., [3.1], [3.2], and [3.3], by treating the known parameters as
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constants and reorganizing the remaining variables into the form of the kernel of a recognized

density.

Fixed and random effects

First, the conditional distribution of the "solutions" of the mixed model equations (i.e., the

"fixed" and random effects) will be obtained.  A useful result from the form of the mixed model

equations is: 

Then, the conditional distribution of the solutions, s = [ββ' u']' , can be written as

Constants with respect to s are added to complete the square for the quadratic form and the density

rewritten as

This is the kernel of a normal density, and therefore,
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[3.4]

A result for conditional normal distributions

A result that will be useful in obtaining conditional distributions for individual fixed or

random effects or for subvectors will be derived.  The conditional distribution for a group of

random variables can be derived using partitioned matrix results (Searle, 1982) and the form of

the conditional normal density (see Searle, 1971 for example).  The result will be derived for the

special case of the multivariate normal distribution having the form x ~ N(C r,C ).  The-1 -1

derivation will be done for the first group of elements in x, but this is done without loss of

generality, because the order of the elements in the vector is arbitarary and can be changed using a

permutation matrix to reorder the elements in the mean and variance.  Consider the partition of C

and r such that  and C is partitioned such that the leading subdiagonal is of the same

order as .  Then, 

From Searle (1982):

Then, the mean of the distribution is
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Next, the form of the conditional normal is required.  Based on Searle (1971), if

[3.5]

Finally,

x |x  ~ N(µ ,V ),1 2  1 11
* *

where

and
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If this result is applied to the vector of f ixed and random effects,

[3.6]

where

The conditional distributions for the fixed and random effects will also be considered

individually.  

Fixed effects

First, considering only terms that involve ββ, the full conditional density of the fixed effects

is:

Constants (with respect to ββ) are added to complete the quadratic from, and the density can be

written as:
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This is the kernel of a normal density, and therefore, 

Note that this result can also be obtained by applying the special form of the conditional normal,

[3.6], to the form of the full conditional distribution of the fixed and random effects,  [3.4].

Random effects

Next, considering only terms that involve u, the full conditional density of the random

effects is:

Constants (with respect to u) are added to complete the quadratic from, and the density can be

written as:
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This is also the kernel of a normal density, and therefore,

[3.7]

Blocking random effects

A blocked Gibbs sampling algorithm is used to generate all genetic effects for an animal as

well as associated uncorrelated random effects simultaneously.  For example, for dairy cattle data

with multiple lactations recorded, often a permanent environmental effect is included to account

for non-genetic, animal specific, random effects.  The permanent environmental levels would

correspond to the animal levels, that is, the level for animal identification and permanent

environmental (PE) effect would be coded in the same column of the original data set.  The

MTGSAM programs would in that case generate the PE effects simultaneously with the genetic

effects.  In general, the programs block any uncorrelated random effect that is coded in the same

column as an animal or second animal effect with the genetic effects when generating new values,

so that al effects in the block are generated simultaneously.  Generating correlated variables in

blocks will often increase the mixing rate of the Gibbs sampler and reduce the correlations among

samples drawn.  This method seems to help reduce correlations among the samples drawn, but

does not completely eliminate the highly correlated samples obtained using GS (Van Tassell ,

Casella, and Pollak, 1994; Liu, Wong and Kong, 1994).  A correlation can exist between variables

that are assumed to be statistically uncorrelated caused by the data structure (i.e., through the least
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squares part of the equations).  Intuitively, if the animal and PE effects are generated individually

then the range of one effect, say PE, is limited by the current value of the genetic effect.  This in

turn leads to the animal effect being limited by the current value of the PE, resulting in increased

correlation among sequential rounds of values in the Gibbs sampler, which reduces the eff iciency

and convergence of the Gibbs sampler.  In models with maternal genetic and permanent

environmental effects, those effects are blocked together; that is the maternal permanent

environmental effect is blocked with the maternal genetic effect because those effects are

correlated due to the data structure.   Previous results for a maternal effects model applied to

Simmental weaning weight data support this concept, although the difference between blocked

and scalar algorithms were relatively small (Van Tassell , Casella, and Pollak, 1994).

In order to derive the form of  full conditional distribution for the block of effects

additional (still more!) definitions are needed.  Let P be a permutation matrix such that 

 where u  are the random effects in the block, and u  are the remaining random effects.  Theni         -i

applying the special form of the conditional normal distribution that was derived, i.e., [3.6], to the

full conditional distribution of the random effects in [3.7] results in the full conditional

distribution of the block of random effects:

[3.8]

where

Although this form appears quite complex, it is actually fairly simple.  The variance matrix is

comprised of the appropriate elements of the coeff icient matrix, the mean is a function of that

matrix and the right hand sides for the same effects adjusted for the off-diagonal elements of the

effects not generated in that block.  The adjustments to the right hand sides are based on the rows

of the coeff icient matrix for those blocked elements with the columns removed for the elements
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included in that block.  The remaining matrix is multiplied by the vector of effects not included in

the block and subtracted from the appropriate element.

Residual effects with missing data

To allow for missing traits, the residual effects for missing traits must be generated in

order to calculate quadratic forms for residual effects and for generating residual (co)variance

matrices.  The missing residuals are generated using the form of the conditional normal

distribution, i.e., the residuals are calculated for the observed traits and the missing residuals are

generated using the Gibbs sampler based on the current values of the (co)variances for that block.

In order to specify the form of the full conditional distribution of the missing residual effects,

assume, without loss of generality, that the missing traits occur in the first variables of a block. 

That is, the vector of residuals can be partitioned as

where e  is the sub-vector of missing residuals and e  is the sub-vector of residuals for observedm        o

traits.  For block i of residual effects, the residuals are assumed to be distributed normally,

specifically,

Let

then, applying the result for the general conditional normal distribution, 

[3.9]

Finally, the full conditional distributions of the variance components are derived.

Genetic (co)variance matrix

Using the final form of the joint posterior distribution,

This is the kernel of an IW density, specifically, 
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[3.10]

Uncorrelated random effect (co)variance matrices

The full conditional distribution for the matrix of (co)variances for each group of

uncorrelated random effects is

This also is the kernel of an IW density; specifically,

[3.11]

Residual (co)variance matrices

The full conditional distribution for the matrix of (co)variances for each group of residual

effects is

This also is the kernel of an IW density; specifically,

[3.12]

Implementation of the Gibbs sampler
Based on the full conditional distributions derived, the GS algorithm used can be outlined

as:

1. Calculate starting values for all variables.

a. Means of (co)variances supplied by the user are used for those components.
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b. Gauss-Seidel iteration using the starting variance components is used to generate

starting values for fixed and random effects.  The user specifies maximum

number of rounds of iteration and convergence criterion.

2. Generate fixed effects from [3.6].

3. Generate genetic effects and blocked uncorrelated random effects from [3.8].

4. Generate uncorrelated random effects not in a block from [3.6].

5. Calculate residual effects for traits with observations, and generate missing residuals

from [3.9].

6. Calculate quadratic forms for genetic effects, S  from .0

7. Generate G from [3.10].

8. Calculate quadratic forms for each block of uncorrelated random effects, S  from .i

9. Generate each D  from [3.11].i

10. Calculate quadratic forms for each block of residual effects, Q  from .i  

11. Generate each R  from [3.12].i

12. Repeat steps 2 through 11 (many times!).

Estimation of Parameter Means and Posterior Distributions
Typically, the mean of a parameter is the point estimate of interest.  There are two basic

methods that are used by MTGSAM, depending on the variable.  The first is based on the average

of the expected values of the parameter and the second based on the average of the sampled

values.  For most variables, the expected value of the parameter is used because it is the Rao-

Blackwell estimator; i.e., , it is the minimum variance estimator.  The algorithm is quite simple; 

the program determines the total number of samples that will be included in the average, to

determine the denominator of the average.  The number is simply the total rounds of GS minus the

number of rounds discarded in the burn-in phase of the analysis.  The variable for the mean is

initialized before the GS algorithm starts.  Then, for each round of post burn-in GS the expected

value of the parameter divided by the denominator is added to the variable for the mean.  The

division is done as the values are added to reduce the likelihood of overflow errors as the number

of values added might be large in some analyses.  This is at the price of computational eff iciency
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as well , as many divisions are done for each mean rather than just one division done when the

sum is completed.  The expected value used in the calculation correspond to the expected value of

the full conditional distribution for that parameter from which the new value is sampled.  There

are cases where the expected value of the parameter is not known; specifically, for functions of

parameters.  These include phenotypic variance, correlations, heritabiliti es (or other fractions of

phenotypic variance), and linear combinations of f ixed and random effects (i.e., contrasts,

estimable functions, and predictible functions).  A simple average of the observed values for each

of those values are used in that case.  For example, to calculate the mean of the difference of two

fixed effects, the observed difference would be calculated in each round and that value averaged

for all of the post burn-in rounds.

Similarly, a parametric approach can be used for the estimation of the posterior distibution

of some parameters.  This is done by calculating the average height of the conditional distribution

across the range of values for the parameter (Casella and George, 1992).  For example to calculate

the posterior distibution of a scalar x, and the full conditional distribution includes a vector y, then

to determine the estimated posterior distribution of f(x) calculate for values of x  throughtout thei

range of the parameter

[3.13]

Note that the vectors y  correspond to samples from the Gibbs sampler which are assumed to bej

independent; this typically means that the samples are taken some number of rounds apart in the

Gibbs chain.  The distance between using samples to calculate the posterior distributions will vary

with the data set and the model used. 

Because the conditional distribuion for all parameters cannot be written in closed form

alternative methods may need to be used.  The marginal distribution of individual elements of an

inverted Wishart cannot be written in closed form if there is more than a single variance.  Recall

that the inverted Wishart simpli fies to the inverted chi-square with only one random effect.  The

parametric approach can be used with inverted chi-square variables since the full conditional

distribution can be written in closed form.  One simple alternative  is to generate a histogram of
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the samples drawn for a parameter.  The precision of distribution estimates obtained using these

methods can be dramatically different; it takes many fewer points from the Gibbs sampler to

estimate the distribution using the parametric approach.  There are more sophisticated approaches

than simple histograms available for non-parametric density estimation.  One example is the

average shifted histogram (ASH) algorithm described by Scott (1992).  This method uses a

flexible weighting algorithm to average the height of neighboring cells in the histogram to smooth

the density estimate.  

Var iance Components

Posterior Mean

The MTGSAM posterior mean estimate for variance components is based on the expected

value of the IW RV.  Recall that if T ~ IW(V,ν), then E(T) = V /(ν - m -1).  Therefore, from-1

[3.10], [3.11], and [3.12] the expected values for variance matrices in a given round of Gibbs

sampling are calculated as 

and

The mean of the (co)variance components were calculated as the average of these expected values

over the length of the post burn-in chain.

Posterior Distr ibution

The MTGSAM program does not estimate the posterior distribution for the variance

components.  At some later date an additional program may be added to assist in obtaining

posterior density estimates.  Until that time, the ASH programs will be distributed to assist the

user in non-parametric density estimation.  The data needed to generate the poster distributions for
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the (co)variance components is written to units 61, 62, and 63.  Information about the format of

those files and how to estimate those posterior densities is given in chapter 5.  

It is possible to use a parametric density estimate only when there is a singe random effect,

i.e., the variance matrix is a scalar.  In that case, the full conditional distribution for the variance

component is a scaled inverted chi-square distrtibution, which can also be written as an inverted

gamma distribution.  The form of the inverted gamma (IG(α,γ)) distribution is

Following the concept of [3.13], the posterior distribution can be estimated as a mixture

distribution of the full conditional distributions from which the variance component was drawn. 

Specifically, for a value, , in the range of the parameter:

where s is the scale parameter of the univariate IW variable  (i.e., the inverse of the combinedj

value representing the sum of squares and prior information for a variance component), ν is the

shape parameter of the IW variable (i.e., the combination of the number of levels of the random

effect and the prior distribution shape parameter), and n is the number of samples available to

estimate the posterior distribution.  The s values are assumed to be sampled from far enough apartj

in the Gibbs sampling chain to be effectively uncorrelated.

Functions of Var iance Components

Posterior Mean

The functions of variance components considered by MTGSAM include the phenotypic

(co)variances (sum of appropriate genetic, uncorrelated random and residual (co)variances),

correlations, and fraction of phenotypic variance accounted for by a particular variance component

(e.g., heritabilit y (h ), fraction due to uncorrelated random effects (c ), or fraction due to residual2        2
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effects (e )).  Because the conditional distribution of these functions cannot be written in closed2

form a non-parametric approach is used by MTGSAM to estimate the posterior means for these

values.  The posterior means for the parameters are estimated as the mean of the functions

calculated using the sampled variance components in each post burn-in round of Gibbs sampling.

Posterior Distr ibution

The MTGSAM program does not estimate the posterior distribution for functions of the

variance components.  The ASH programs can be used for non-parametric density estimation

using the observed values of the functions.  The values of those functions of the VCs are not

written to the GS files, and, therefore, must be recalculated from the values of the VCs.  The

values of the VCs are written to unit 61.  Information about the format of that file and the ASH

algorithm is given in Chapter 5.  

Fixed and Random Effects

Posterior Mean

Recall that the full conditional distribution of the fixed and random effects is a normal

distribution.  The posterior means for those parameters are estimated in MTGSAM as the average

of the means of the normal distribution that the parameter is sampled from in each of the post

burn-in round of GS.  The user decides if the mean of the fixed and random effects is written to

files in MTGSAM.  If requested, them mean estimates of the covariates are written to unit 71,

animal and second animal means to unit 72, and uncorrelated random effect means to unit 73.

Posterior Distr ibution

The variance of the full conditional distribution of the fixed and random effects is simply

the inverse of the corresponding diagonal element of the coeff icient matrix.  This is true even for

the random effects generated in blocks (this can be shown using the form of the conditional

normal distribution).  Given the mean and the variance, the posterior distribution can be estimated

as a mixture distribution of normal distributions.  The same technique used for the parametric

density estimate for the variance components can be used for the fixed and random effects, which

is based on [3.13].  Specifically, for a value, s, in the range of the parameter:i
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where µ  and σ  are the mean and standard deviation, respectively, of the full conditionalj  j

distribution of the fixed or random effect.  Again, it is assumed that the samples are taken far

enough apart in the GS chain that the parameters are effectively uncorrelated.  

If requested, the observed values of the fixed and random effects are written to unit 61 and

the mean and variances of the distribution from which the values were sampled are written to unit

62.  The information in the file for unit 63 provides information about how to read those data

files.  Information about the format of those files and how to estimate those posterior densities is

given in chapter 5.

Functions of Fixed and Random Effects

The MTGSAM programs consider two different linear cominations of  fixed and random

effects: those based on a single effect and those based on multiple fixed or random effects.  A

contrast of a single element may be used if a particular effect is of interest.  An example might be

a case where the distribution of genetic effects for a select group of animals is wanted, but the

amount of information generated for all animals would be prohibitive (i.e., selecting the option for

writing sample information for solutions is impracticle).  When the contrast contains only one

effect the program uses the parametric estimate of the mean of the contrast, i.e., the average of the

means of the normal full conditional distributions.  In addition, the sample information written to

the unit 62 includes the mean and variance of the normal full conditional distributions, which

allows for the parametric estimation of the posterior distribution.  When the contrast includes

multiple effects a non-parametric approach must be used for mean and posterior density

estimation.  The mean is estimated as the average of the sampled values, which are determined by

calculated the linear combination of sampled fixed and random effects specified by the contrast. 

These values are written to unit 61.  In addition, because there is no full conditional distribution

for the contrast the mean written to unit 62 is simply the observed value of the contrast and the

variance is written as 0.0 so that the user can identify which contrasts can be evaluated using
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parametric tools.  Chapter 5 describes the format of f iles for units 61, 62, and 63 as well as

discussed estimation of posterior distributions.

Posterior Mean

For single element contrasts the mean is calculated as the average of the normal full

conditional distribution for the corresponding effect.  For contrasts based on multiple effects, the

mean is calculated as the average of the sampled values, which are calculated from the sampled

fixed and random effects included in the contrast.

Posterior Distr ibution

To estimate the posterior distribution of a contrast including a single effect one can use a

parametric approach based on the normal full conditional distribution of the fixed or random

effect (see the section on posterior distributions for fixed and random effects) or by using a non-

parametric approach (such as the ASH algorithm).  The posterior distribution for contrasts based

on multiple effects must be calculated using some non-parametric method where the observed

values of the contrasts are analysed.
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CHAPTER FOUR: Computational Strategies for M TGSAM

MTGSAM consists of three programs: MTGSNRM which calculates the non-zero

elements of the inverse of the numerator relationship matrix, MTGSPREP which determines the

non-zero elements of W =[X Z] for each animal (these elements are needed to build the MME),

and MTGSRUN which implements the Gibbs sampler for a variety of models.

Because only a few changes were made in the MTDFNRM program to create MTGSNRM

and because that program follows the method of Quaas (1976), the program techniques employed

in that program will not be described here.

 MTGSPREP

Most of the MTGSPREP program corresponds to the MTDFPREP program, and much of

the following text is taken from Chapter 5 of the MTDFREML manual.  Some of the

modifications needed for MTGSPREP will also be described.

Basically, MTGSPREP forms the part of the MME that is independent of G and R used in

each round, i.e., W=[X Z] and y.  Note that in MTDFREML both the data and the covariates are

calculated as deviations from their respective means.  As with that program, MTGSPREP can be

modified to produce either original or deviated values for each of these variables.  To locate the

appropriate section of the program to make modifications, search for the phrase COVARIATE

DEVIATION or DATA DEVIATION, for the covariates and data sections of the program,

respectively.  Deviated values for covariates and data will be used for the example presented later

in this chapter.

With appropriate modification of the include file (GSPARAM.FOR), this program can fit

any number of f ixed effects (both discrete and continuous) and random effects in addition to the

required animal effect.  Models can be different for each trait and missing observations are

permitted.

MTGSPREP reads the data file (unit 31) which is set up with integer variables followed by

real variables.  This file is read in free format, so spaces are required between data fields.  The

program can be modified to handle either formatted reads or binary reads by modifying the
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appropriate sections of the program (two open statements and two read statements).  The data file

is read twice, first to determine the number of levels for each discrete factor and the simple

statistics for each continuous variable (covariates and traits), and second to recode levels of

factors to correspond to the equation numbers in the MME and to express each continuous

variable as a deviation from its mean.  After the second read of the data the equations which are to

be blocked with animal effects are written to file MTGS44.  An equation is blocked with animal

effects only if that equation is coded in the same column as the animal effect or a second animal

effect for a  trait.

To ill ustrate the strategy used in the programs, data from Meyer (1991) will be used. 

Records are body weight (t1) and intake (t2) measured on 284 animals.  The pedigree file includes

45 base animals for a total of 329 animals in A.  For each trait the effects in the model of analysis

include random animal (a), maternal genetic (m), and  maternal permanent environment (pe: 42

levels).  Fixed effects are litter size (lsc: covariate) and generations (gen: 3 levels) for body

weight, and litter size (lsd: 7 levels) and sex (sex: 2 levels) for intake.  The first two records in the

data file (7 integers and 3 reals) are:

animal sire dam gen sex lsd lit lsc t1 t2
20101 11012 10101 1 1 4 1 4.0 22.5 59.1
20102 11012 10101 1 1 4 1 4.0 22.6 0.0

Note that litter size appears twice in the data, both as the sixth integer (lsd) and as the first real

(lsc) variable.  In addition, intake was deleted for animal 20102 to demonstrate the effect of

missing data so the field for t2 is coded as 0.0 which is used as the missing value.

The first step is to run MTGSNRM which forms A  and writes the sorted vector of 329-1

animal IDs to unit 21 (ascii ) and the half stored non-zero elements to unit 22 (binary). 

MTGSPREP is then run with the following parameters in input file example.in; MTGSPREP is

executed using the DOS command  mtgsprep.exe < example.in (see page 13 for a description of

using input files rather than entering input values interactively):
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PREPEX.DAT name of data file
test of MTGSPREP with km mouse data
2 traits
* end of comments
7 number of integers on each line of data file
3 number of reals on each line of data file
2 number of traits in analysis
weight name of trait 1
2 position of trait 1 in vector of real values
0.0 value of missing observation for trait 1
1 number of covariates
litter size name covariate 1
1 position of covariate 1 in vector of real values
1 maximum power for covariate 1
1 number of f ixed factors
generation name for fixed factor 1
4 position of f ixed factor 1 in vector of integers
0 write summary of f ixed factor 1 levels to log file
1 position of animal effect in vector of integers
329 num. of animals in relationship matrix (from NRM)
1 include second animal effect
mat gen name of second animal effect
3 position of second animal effect in vector of integers
1 number of uncorrelated random factors
mat pe name of uncorrelated random factor
3 position of uncorr. rand. factor in vector of integers
0 do not write summary of uncorr. ran. factor to log
intake name of trait 2
3 position of trait 2 in vector of reals
0.0 value for missing observation for trait 2
0 number of covariates
2 number of f ixed factors
litter size name for fixed factor 1
6 position of f ixed factor 1 in vector of integers
0 write summary of f ixed factor 1 levels to log file
sex name of f ixed factor 2
5 position of f ixed factor 2 in vector of integers
0 write summary of f ixed factor 2 levels to log file
1 include second animal effect
mat gen name of second animal effect
3 position of second animal effect in vector of integers
1 number of uncorrelated random factors
mat pe name of uncorrelated random factor 1     
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3 position of uncorr. rand. factor in vector of integers
0 write summary of uncorr. ran. factor to log file
1 write labels for cov. and fixed factors to MTGS45
1 write labels for uncorr. random factors to MTGS46

The subsequent steps are:

1. Read the number of animal IDs from unit 31 and compare to the number entered by the user as

read from the log of MTGSNRM (i.e., 329).  If these numbers are not equal, the program

terminates because the wrong pedigree file is probably being used.  If the numbers are equal,

the sorted vector of IDs is read from unit 21.

First read of data:

2. The 284 lines of data are then read sequentially from unit 31.  For each line, all (7) integer

variables are read into an integer vector and all (3) real variables are read into a real vector. 

Each of the j = 2 traits is then processed:

a) If the value for the trait is equal to the missing value (0.0), skip to the next trait.

b) If the value for the trait is valid:

i) update the count, sum, and sum of squares for each real variable,

ii ) compare the class value of each fixed factor and uncorrelated random factor (e.g., pe)

to the unique numeric (but unsorted) li st of current values stored in memory; if the

level is not already in the list, it is added at the end and the number of levels for the

effect is incremented by one.

3. After all li nes of data have been read into memory, sort the vectors of levels for each discrete

fixed and uncorrelated random factor.

4. Calculate the mean and variance for each real variable.

5. Based on the sequence of the MME and the number of levels for each factor, determine the

starting row of each factor in the model.  The starting row is expressed as one less than the

actual position.  For the example data the structure is:
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Factors (starting row MME)-1 No. rows

t1: linear covariate for litter size 0 1
t1: fixed effect for generation 1 3
t2: fixed effect for litter size 4 7
t2: fixed effect for sex 11 2
t1: random animal 13 329
t2: random animal 342 329
t1: random second animal (mat gen) 671 329
t2: random second animal (mat gen) 1000 329
t1: random maternal pe 1329 42
t2: random maternal pe 1371 42

For this example, there are 1413 equations in the MME.  The means for trait 1 are 4.48 for the

litter size covariate and 24.07 for weight, and for trait 2 the mean for intake is 64.30.

Second read of data:

6. The 284 lines of data are then reread sequentially from unit 31.  For each line, all (7) integer

variables are read into an integer vector and all (3) real variables are read into a real vector. 

Each of the j = 2 traits is then processed:

a) If the value for the trait is equal to the missing value (0.0), skip to the next trait.

b) If the value for the trait is valid, the value and position of each element in W and y is then

determined:

i) covariates and observations are deviated from their corresponding means, e.g., the 

deviations  for  the  first  record  are:  4.0-4.4789=-0.4789 (litter size), 22.5-

24.0687=-1.5687 (weight), and 59.1-64.2975=-5.1975 (intake).

ii ) the W row position of each regression coeff icient is determined from the sequence and

order (linear, quadratic, etc.) of the covariates,

iii ) the position of each discrete factor in W is determined by looking up its position in the

corresponding vector of sorted levels and then adding this position number to the

starting row position for the factor; e.g., for the first record, the value of 4 for litter size
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(trait 2) is found at position 4 in the sorted list of levels (1, 2,..., 6, 7) so 4 is added to the

starting position (4) for litter size to give the row position in W of 8.

7. Let W  be the element of W from row i and column j.  After each line of data is read, theij

values and positions of elements in W  and the value for y  are written to unit 42 (binary); theij     ij

length of W  is determined by the total number of model effects and the number of valid traits,ij

and the number of W  rows is equal to the number of valid traits.ij

8. After all li nes of W  have been written to unit 42 for a record, the column positions are writtenij

to unit 42 and a summary for each animal is written to unit 43; this information consists of

number of effects (rows in W ), data lines, trait combination number (1 to 2 -1) , and structureij
n

(i.e., pattern of missing values) of observations for the animal.  For the record of animal one,

the values written to unit 42 and 43 are (subscript denotes trait number; text in parentheses is

not written):

unit 42 - values and positions for W :ij

(lsc ) (gen ) (lsd ) (sex ) (a ) (a ) (m ) (m ) (pe ) (pe ) (y )1 1 2 2 1 2 1 2 1 2 i

(t ) -0.479 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 -1.56871

(t )  0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 -5.19752

(row)    1   2 8 12 59 388 692 1021 1330 1372

unit 43 - summary of information for first animal:

(Trait structure)
(No. effects) (No traits) (code) (p ) (p )1 2

10 2 3 1 1

Trait structure codes are used to indicate the form of R  to be used in W R W  and W R y ,-1
i

' -1   ' -1
i i i  i i i

and consist of a value (p) for each trait of 1 or 0, if the trait is present or missing,j

respectively, and a code calculated as   In the record of the second animal, trait

2 (intake) is missing so a single W  row of f ive effects is written to unit 42:ij

(lsc ) (gen ) (a ) (m ) (pe ) (y )1 1 1 1 1 1

(t :) -0.4789 1.0 1.0 1.0 1.0 -1.46871

(row) 1 2 60 692 1330
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The information written to unit 43 is:

(Trait structure)
(No. effects) (No. traits) (code) (p ) (p )1 2

5 1 1 1 0

9. After the data have been read the second time, the blocking information is written to unit 44. 

The equations to be blocked with genetic effects are determined by finding uncorrelated

random effects coded in the same column of the original data set as the animal effects.  In

addition, equations may be blocked with genetic effects if a trait has a second animal effect

and there is an uncorrelated random effect coded in the same data column as the second

animal effect for that trait.  Note that the second animal effect can be different for traits (i.e.,

maternal genetic effect or paternal genetic effects can be fit for different traits).  The form of

the data written to unit 44 is animal number (renumbered) and the number of blocked

equations on the first line, and the equation numbers to be blocked for that animal on the

following line.  The information for the first animal in the blocking file is:

(animal) (No. Equations)
21 2

(equations)
1330 1372

Animal 21 (original ID 10101) does not have a record, although it is present as a dam for the

first group of animals in the data set.  As a result, the maternal permanent environmental

effect equations for that animal are blocked with the genetic effects because it is coded in the

same column as the maternal genetic effect for both traits.  Notice that the maternal

permanent environmental equations are blocked with the DAM not with the animal having

the record.  This is because the dependency in the model occurs between maternal genetic and

maternal permanent environmental effects (see the discussion of blocking in Chapter 3 on

page 56).

10. Finally, information describing the models and MME (e.g., number of traits, starting position

and number of levels for each effect) is written to unit 41 (ascii ).  If requested, the labels for
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covariates and fixed effects are written to unit 45 and labels for uncorrelated random effects

are written to unit 46.  A summary of the model and data is then written to unit 82 (MTGS82

in ascii ).

MTGSRUN

Linked L ist Matr ix Storage

Several unique strategies were employed in implementing the Gibbs sampler.  First, the

MME are built i n two pieces; the first part includes the least squares part of the equations (i.e.,

W'R W) with the ΣΣ augmented only for the uncorrelated random effects.  The G ⊗ A  is not-1              -1 -1

explicitl y added to this matrix. Instead, one copy of A  is stored and used in the iterative-1

algorithm.  Define:

Sparse matrix techniques are used to store only the non-zero elements of C*.  In addition, the

non-zero elements are half-stored to further reduce memory requirements.  The non-zero

elements are stored in a linked list form (as described by George and Liu, 1980).  The

subroutines used to build the linked list are based on those distributed with the set of ITPACK

programs, which is a set of programs used to solve sparse linear systems of equations using

iteration.  The universal resource locator (URL) for world wide web (WWW) browsers for

information about ITPACK and the subroutines is http://www.netlib.org/itpack/index.html  .  The

subroutines are used to accumulate the non-zero elements by row and column and then convert

the information to the linked list form.  The linked list consists of 3 vectors, for example,  IA, JA,

and A, where the vectors are of length at least nr+1, nz, and nz, and declared as integer, integer,

and double precision, respectively, and nr is the number of rows (and columns) in the matrix, and

nz is the number of non-zero elements.  Element i of IA is a pointer to the starting location of the

elements in row i.  The last element of IA is nz+1. The elements of JA contain the column

numbers for the non-zero elements, and A contains the non-zero elements of the matrix.  That is,
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the elements of row i are stored in elements IA(i) to IA(i+1)-1 of A, and the column identifiers in

the same elements of JA.

To ill ustrate the format, consider the linked list storage of the upper half-stored elements

of 

From the linked list, the dense half-stored matrix can generated from this li st using the following

Fortran statements:

DO I = 1,NR
DO J = IA(I),IA(I+1)-1

DENSEA(I,JA(J))=A(J)
END DO

END DO

An additional subroutine was written to rebuild the MME without rebuilding the linked list

structure.  To do this non-zero elements are sorted by columns within a row in two groups after

the linked list is built .  The list is sorted within the blocked equations and within the unblocked

equations.  This allows the linked list structure to be searched to find the location of a non-zero

element and update the value.  Note that because the structure is recycled zero elements must be

stored in locations where non-zero elements may be generated with different variance matrices. 

For example, if the linked list is built using a starting covariance between uncorrelated random

effects of zero, the location where non-zero elements could result from non-zero covariances

must be included to allow reuse of the linked list.

Finally, due to reasons to be outlined when discussing the Gauss-Seidel and Gibbs

sampling implementations, there are some elements of the coeff icient matrix which are upper

half-stored, and some lower half-stored.  Some elements must be lower half-stored for some of

the blocked equations so that the blocked algorithms function properly.
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In addition to C* being sparse stored, A  is stored using a linked list.   This matrix,-1

however, is full  stored.  Full storage is required for two reasons.  The primary reason is that the

implementation of  the Gauss-Seidel and Gibbs sampling algorithms require access to a full row

or column of A , which is not possible when the elements are half stored in a linked list. -1

Calculation of quadratics of the form u'A u is also easier with A  full stored, although it is-1      -1

possible with the matrix half stored.

Gauss-Seidel I teration

Gauss-Seidel iteration is available as an option in the MTGSAM programs to allow

solutions to be obtained for the MME for a given set of (co)variances.  Define  as the update

to solution i in round κ of iteration and neqn as the number of equations, then the update

algorithm for Gauss-Seidel iteration can be written as (Golub and Van Loan, 1989):

initialize r , the right hand side
for i = 1 to neqn,

end. [4.1]

This form can be rewritten for a blocked algorithm by replacing the scalar elements with blocks

of coeff icients.  The Gauss-Seidel iteration algorithm can be considered intuitively as adjusting

the right hand sides (RHS) of the equations for the current value of all the other effects in the

model (i.e., the off-diagonal elements of the coeff icient matrix) and scaling by the inverse of the

diagonal element of the coeff icient matrix.

In the case where the equations are upper half stored [4.1] can be rewritten as:

initialize r* as r , the RHS
for i = 1 to neqn,

for j = i + 1 to neqn

end
end. [4.2]

An analogous blocked form of this algorithm also exists.  This algorithm accesses the elements

of the coeff icient matrix in an eff icient sequence when the elements are upper half stored.
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Finally, a hybrid of the two forms of the algorithm can be generated using the set of 

equations where the coeff ient matrix is not augmented with G ⊗ A  (i.e., C* ) and using G  and-1 -1     -1

A .  First define a  as row i of A  with the diagonal element, a , removed,  is the n-1×1-1     -i     -1     ii

vector of genetic effects from round κ of iteration for trait j with element i removed, and g  isi,j

element i,j of G .  Let d  be the vector of adjusted RHS for the block of equations for animal i ,-1
i

and let C  be the matrix of elements of the coeff icient matrix associated with the blockedi

equations which is formed from C*, G , and a .  Finally, let .  Using the special-1   ii 

form of the matrix where C is written as the sum of C* and G ⊗ A , equations [4.1] and [4.2]-1 -1

can be rewritten as: 

initialize r* as r, the RHS
update fixed effects and r* using [4.2]
for block of equations for animal i , i = 1 to n,

if equation j in the block corresponds to an animal effect for trait l update the RHS

as 

if equation j is in the block corresponds to an a blocked uncorrelated random

effect update the RHS as 

update the block of genetic and uncorrelated random effects as 

update RHS for equations following block (k) for all solutions in block (j):

end
update unblocked uncorrelated random effects and r* using [4.2] [4.3]

Fixed and Unblocked Uncorrelated Random Effects

The scalar implementation of [4.2] is used for these effects.  The linked list is built i n a

specific form to optimize the Gauss-Seidel iteration algorithm for these equations:  the diagonal

element is stored in the first location in the group of elements for a row in the linked list followed

by a sorted list of the upper half stored off diagonal elements in the row.

Genetic and Blocked Uncorrelated Random Effects

There is a subtle potential problem when implementing the blocked version of [4.3] when

uncorrelated random effects are included in the block.  The problem can best be demonstrated by

example.  Consider the following example coeff icient matrix with 4 equations where the
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numbers indicate upper half stored non-zero elements and an x represents the symmetric element

not stored:

If equations 1 & 4 and 2 & 3 are treated as blocks, then for the evaluation of the first block

(equations 1 and 4) the diagonal matrix, , is determined correctly.  However, when

the adjustment for the off-diagonal elements is considered, the off-diagonal elements between

equations 3 and 4 will not be found if the equations are upper half stored.  Another way to

visualize the problem is to consider the form of the coeff icient matrix where elements from

equations 1 & 4 are permuted to equations 1 & 2 and coeff icients from equations 2 & 3 are

permuted to equations 3 & 4.  The resulting coeff icient matrix is:

In this form, it is easier to see the problem: the matix once permuted is no longer upper half

stored.  To account for this problem some coeff icients are upper half stored and some lower half

stored when building the linked list.  Coeff icients for fixed effects and for unblocked

uncorrelated random effects are upper half stored.  For coeff icients for genetic and blocked

uncorrelated random effects, the animal associated with the equation is determined so that the

order of the updating is known.  Elements are upper half stored if the animal associated with the

row is less than or equal to the animal associated with the column, and lower half stored

otherwise.
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Checkpointing

Checkpointing is the practice of saving intermediate results in an analysis so that a

program can be continued from some point without having to restart the program and losing

computer time.  The MTGSRUN program checkpoints in two ways.  MTGSRUN saves

information to unit 90 entered by the user that will not change through the analysis.  This

information includes comments or description entered, prior distribution information, grouping

information for uncorrelated and residual effects, Gauss-Siedel convergence criteria and

maximum iterations, Gibbs sampling iteration information including total rounds, length of burn-

in, and checkpoint frequency, and contrast coeff icients. The program saves information

alternately to units 91 and 92 at intervals specified by the user.  The information written to these

files include means for variance components, heritabiliti es, and correlations, inverses of

(co)variance matrices, and the random number generator common block information.  After the

information is written to the checkpoint file, that file is closed and the files containing the

samples (unit 61) and parameters (unit 62) from the Gibbs chain are closed and reopened.  The

files must be closed to be certain that the information is actually written to the file by the

operating system, otherwise the system could lose the data in a buffer in a system crash.  In the

case of a restart from the checkpoint information, the programs will determine which of the two

changing checkpoint files was written from the later round of iteration and attempt to open that

file.  If there is an error in the first checkpoint file tried the program will attempt to use the

second file; there should be littl e chance of both files being corrupt.

Gibbs Sampling

As shown in Chapter 3, the full conditional (i.e., sampling) distributions for the fixed and

random effects are all normal distributions.  Therefore, only means and (co)variances are needed

to generate these effects.  The calculation of mean of the distribution is identical to the updating

algorithm for the Gauss-Siedel iteration algorithm described earlier, and therefore, the algorithms

used are very similar.  The Gibbs sampling algorithm is simply an extension of the Gauss-Seidel

iteration algorithm; once the mean is determined using the Gauss-Seidel iteration algorithm a

normal deviation is added to that mean based on the (co)variances of the full conditional

distribution.  In the scalar case, which is used for fixed effects and unblocked uncorrelated
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random effects, the variance is equal to the inverse of the diagonal element of the coeff icient

matrix.  For the blocked algorithm, which is used for genetic effects and blocked uncorrelated

random effects, the variance is the inverse of the matrix of elements of the coeff icient matrix

corresponding to equations in the block (a block diagonal matrix of the permuted coeff icient

matrix).  The deviations from the mean are calculated as Lr, where L is the Cholesky

decomposition of the (co)variance matrix B and r is a vector of uncorrelated standard normal

(mean = 0, SD = 1) deviates.  The Cholesky decomposition of B is a matix L, such that B = LL'. 

Therefore, VAR(Lr) = LVAR(r)L' = LIL' = B.  In the scalar case, the problem simpli fies

because L is simply the square root of B and r is a single standard normal deviate.

The generation of the variance components is straightforward.  The quadratic forms are

calculated, based on the form of the full conditional distribution derived in Chapter 3, the prior

distribution information is added (if a non-flat prior is used), and a new (co)variance matrix is

generated.

Random Number Generation

All random number generation subroutines were written in Fortran.  The random number

generator used to generate standard (0,1) uniform random variables was based on one described

by Marsaglia and Zamin (1987).  The random number generator for normal random variables is

based on the Kinderman and Ramage (1976) procedure as described by Kennedy and Gentle

(1980).  The random number generator for Wishart random variables is based on the algorithm

described by Odell and Feiveson (1966) and discussed by Kennedy and Gentle (1980).  A

random number generator for Chi-square random variables was needed for that algorithm, and an

approximation based on Wilson and Hil ferty (1931) was used.
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CHAPTER FIVE: Output File Formats

Because (as of this writing) the MTGSAM programs generate only the Gibbs sampling

chains and calculate mean estimates, it is important for the user to be able to access the Gibbs

sampling information generated to evaluate burn-in, to evaluate the thinning rate (i.e., the

sampling lag for independent samples), and most importantly, to estimate posterior distributions. 

There are three files are needed to access the samples, units 61, 62, and 63 (i.e., MTGS61,

MTGS62, and MTGS63).  Files MTGS61 and MTGS62 are written in direct access unformatted

format.  The unit 61 file contains the observed values of the variance components, contrasts (if

any), and solutions (if requested).  The unit 62 file contains the parameters used to generate the

samples from the appropriate distribution.  The parameters needed are shape and scale

parameters for inverted Wishart variables and mean and variance for normal variables.  Because

the shape parameter for the the inverted Wishart variables does not change, it is not written with

each sample; it is written once to MTGS63.  For contrasts, the mean and variance is only known

in the single variable situation.  That is, for contrasts containing more than one element, the

closed form of the distribution is not known.  Therefore, the unit 62 file has the mean and

variance only for single element contrasts.  For multiple element contrasts, the observed value is

written in place of the mean of the distribution and a value of 0 is written in place of the

variance.  The order of the variables written to unit 62 for the contrasts and solutions is mean ,1

variance , mean , variance , etc.1  2  2

MTGS63 contains information needed to to read units 61 and 62.  The mouse data used to

describe the MTGSPREP program will be used as an example.  Assume that MTGSPREP has

been run using the input file from page 68 and MTGSRUN has been run using the following

input file (note that the blank lines are required):

1 Type of run - New analysis
Mouse data from Karin Meyer
Multiple trait analysis of
Body weight and feed intake
*
 
1 2.47783750007415800 Genetic (co)variance means
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2 .459944782089452000 Genetic (co)variance means
3 1.57927675355541000 Genetic (co)variance means
4 -.594199892718565200 Genetic (co)variance means
5 8.19549233549404500 Genetic (co)variance means
6 1.02224752348769800 Genetic (co)variance means
7 .121688323984633000 Genetic (co)variance means
8 1.10564369918392600 Genetic (co)variance means
9 -.370200664457456500 Genetic (co)variance means
10 .162979687500515000 Genetic (co)variance means
0 .000000000000000000 Done entering values
1 Genetic priors are correct
9 Genetic (co)variance priors shape parameter

0 No uncorrelated random covariances restricted
1 .827308600070143100 Uncorrelated random (co)variance means
2 -1.69664802413357700 Uncorrelated random (co)variance means
3 3.51285576291655400 Uncorrelated random (co)variance means
0 .000000000000000000 Done entering values
1 Ind Rand priors are correct
9 Ind Rand (co)variance priors shape parameter

0 No residual covariances restricted
1 5.34178427718693300 Residual (co)variance priors
2 3.80577188391943900 Residual (co)variance priors
3 12.3974357127453400 Residual (co)variance priors
0 .000000000000000000 Done entering values
1 Residual priors are correct
9 Residual (co)variance priors shape parameter
200 Rounds of Gauss-Seidel iteration
.100000000000000000E-04 Convergence criteria for Gauss-Seidel
10000 Rounds of Gibbs sampling (includes burn-in)
2000 Rounds of burn-in before writing Gibbs sampling
1 Frequency of writing Gibbs samples
100 Frequency of check-pointing
1 Write out all solutions? (Y=1,N=0)
1 Write out user specified contrasts
2 Number of contrast to monitor
2 Number of coeficients
12 1.00000000000000000 Contrast equation and coeff icient
13 -1.00000000000000000 Contrast equation and coeff icient
1 Number of coeficients
14 1.00000000000000000 Contrast equation and coeff icient
6210 19906 Seeds for random number generator
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Then, the contents of MTGS63 are:

  STRT61  STRT62  LENGTH   SHAPE   #    DESCRIPTION
 1 1 10 338 GENETIC (CO)VARIANCES

11 11 3 51 1 INDEPENDENT RANDOM (CO)VARIANCES
14 14 3 293 1 RESIDUAL (CO)VARIANCES
17 2 OBS CONTRASTS TO IUN61

17 4 MEAN AND VA R OF CONTRASTS TO IUN62
19 1413 OBS 'SOLUTIONS' IUN61

21 2826 MEAN AND VA R OF 'SOLUTIONS' TO IUN62

Total number of equations:      1413

Recall that both MTGS61 and MTGS62 are written in binary form using direct file

access. All variables are written using a double precision (real*8) format. The first column in

MTGS63 contains the starting location for each of the variables written to unit 61.  The second

column contains the analogous starting location for unit 62.  The next column contains the

number of variables written to the appropriate file.  Column four contains the shape parameters

for the inverted Wishart variables, and column five contains the group number for uncorrelated

random and residual variances.  The group number corresponds to the information on grouping

entered by the user.  The final column contains a brief description of the variables written.  

Then, the order of variables in MTGS61 is:

observed genetic (co)variance element 1
observed genetic (co)variance element 2

M

observed genetic (co)variance element 10
observed uncorrelated random (co)variance element 1
observed uncorrelated random (co)variance element 2
observed uncorrelated random (co)variance element 3
observed residual (co)variance element 1
observed residual (co)variance element 2
observed residual (co)variance element 3
observed contrast 1
observed contrast 2
observed solution 1
observed solution 2

M

observed solution 1413.
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The order of variables in MTGS62 is:

scale parameter genetic (co)variance element 1
scale parameter genetic (co)variance element 2

M

scale parameter genetic (co)variance element 10
scale parameter uncorrelated random (co)variance element 1
scale parameter uncorrelated random (co)variance element 2
scale parameter uncorrelated random (co)variance element 3
scale parameter residual (co)variance element 1
scale parameter residual (co)variance element 2
scale parameter residual (co)variance element 3
mean of contrast 1
0.D0     (since multiple element contrast)
mean of contrast 2
variance of contrast 2
mean of solution 1
variance of solution 1
mean of solution 2
variance of solution 2

M

mean of solution 1413
variance of solution 1413.
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