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I ntroduction

Gibbs smpling (GS) isamethod d numericd integration that all ows inferencesto be
made aou joint or margina densities, even when those densities canna be evaluated dredly.
The GS agorithm is based ongeneration, in sequence, of variables from all of the full condtional
densities. Thefull condtional density isthe density of avariable given al other parametersin the
model. For example, if GSis used to estimate the distributions of f(aly), f(bly), or f(a,bly), then
the full condtional distributions, f(ajb,y) and f(bla,y), would berequired. In order to use GSto
evauate any of these densiti es, an arbitrary starting value for one of the variables would be
chosen, and then values would be drawn from the full condtional densitiesin the sequence

a' ~f(ab™y) and

b" ~ f(bla"y),
where ~ indicaes that the variable is arandam variable from the distribution spedfied, and the
superscript refers to the sequence of the value in the GS chain. If the sequenceis repeded enough
times, the distribution d the a ad bsamples will be from the distributions f(aly) and f(bly), and
the gb sample pairswill be drawn from the f(a,bly) distribution.

In the cae of the problem of estimation o VC, thejoint density of interest isthe
distribution o fixed effeds, randam effeds, and VC, al given thedata. The marginal densiti es of
interest in this problem are the distributions of fixed effeds, randaom effeds, or VC, given the
data

A general set of Fortran programs was developed for estimation o variance mmponrents
with animal models using GS. The programs are cdled Multiple Trait Gibbs Sampling in Animal
Models (MTGSAM). The program interfaceis smilar to that used in the MTDFREML programs
(Boldman et a., 1993 and shares a substantial amourt of Fortran programs. The programs
suppat multi ple-trait models with an arbitrary number of covariates, fixed effeds, secondanimal
genetic dfeds, and randam effeds for ead trait. The programs manage data with any
combination d missng observations. Genetic dfeds and urcorrelated randam effeds related to
animal or seamndanimal effeds (e.g., dred or maternal permanent environmental effeds) are

generated as ablock to increese the rate of convergence. The programs generate means and



samples from the GS chain for estimating variance mmporents, varianceratios, heritabiliti es,
fixed and randam effeds, and contrasts. In order to guaranteevalid parameter estimates, proper
Bayesian prior distributions may be required for variance @mporents. The programs generate the
Gibbs smples but will not perform burn-in o convergence analysis and will nat generate
posterior distributions. Therefore, the user is expeded to have an understanding of these aspeds
of Gibbs smpling. Some of these feaures may be added owver time, as better algorithms are
developed.

Chapter 1 givesinstructions abou how to compile and exeaute the programs. Chapter 2
presents ©me small numericd examples. Chapter 3 presents some of the theoretic results related
to Gibbs sampling. Chapter 4 dscusses me of the computational strategies employed to help if

modificaions of the programs are needed.

MTGSAM Fortran Files

MTGSNRM This program computes A™ and recodes identification numbers for animal, sire,
and dam. This program is nealy identicd to MTDFNRM, the analogous program
used by MTDFREML. The program uses subroutinesin MTGSSUB.

MTGSPREP This program al ows the user to spedfy the traits to be analyzed and to spedfy the
model for ead trait. The program then reals the original datafile and generates a
new data file with recoded levels of fixed and randam effeds, and information
used to buld the mixed model equations. Note that any animal that appeasin the
data file must be included in the pedigreesuppied to MTGSNRM. This program
is gmilar to MTDFPREP, the analogous program used by MTDFREML. The
program uses sibroutinesin MTGSSUB.

MTGSRUN This program generates Bayesian paosterior distributions and means using a Gibbs
sampling agorithm. Means for variance mmporents, fixed and randam effeds,
heritabiliti es, correlations, and contrasts can be cdculated. The program generates
files containing Gibbs samples with a user spedfied bun-in period andinterval
between samples. The program uses sibroutinesin MTGSSJUB and MTGSRSB.

MTGSSUB A set of general subroutines used by all of the main programs.
MTGSRSB A set of subroutines used orly by MTGSRUN.



MTGSAM Data Files

File Format® Description MTGSNRM? MTGSPREP* MTGSRUN?
MTGS21 U reordered IDs @) I I
MTGS22 U non-zero A elements O - I
MTGS23 F inbreeding information @) - -
MTGHA1 F model information - 0] I
MTGA42 U recded data - 0] I
MTGHA43 U animal summary - 0] I
MTGS44 U blocking information - 0] I
MTGSA45 F covariate andfixed level labels - {O} {1}
MTGS46 F uncorrelated randam level labels - {O} {1}
MTGS60 F rename for inpu file for new run - - {1130
MTGS61 UD samples from GS chain - - O
MTGS62 UD parameters of GS densities - - @)
MTGS63 F dataneeded to analyze 61 & 62 - - O
MTGS71 F paosterior means of covariates - - {O}
andfixed effeds
MTGS72 F posterior means of animal effeds - - {O}
MTGS73 F posterior means of uncorrelated - - {O}
randam effeds
MTGS81 F log filefor MTGSNRM @) - -
MTGS82 F log file for MTGSPREP - @) -
MTGS83 F log filefor MTGSRUN - - @)
MTGS90 U chedkpaint file - - {10
MTGS91 U chedkpaint file - - {10
MTGS92 U chedkpaint file - - {10
MTGS99 U scratch file - - 1/0/D

'File format: F = formatted, U = unformatted, D = dired access
Filetype: | =inpu, O = output, D = deleted at end d run, {} indicaesthat the use of thisfile
varies with the speafic run.



MTGSNRM MTGSPREP

pedigreefilel datafile
freeformat freeformat
MTGS2l — 5
MTGS22
MTGS23
MTGS81
MTGSAL
MTGSRUN M TG4
MTGSA3
MTGS44
MTGS45
MTGSB0 MTGS46
MTGS61 MTGS82
MTGS62
MTGS63
MTGS71
MTGS72
MTGS73
MTGSS3
MTGS90
MTGS91

MTGS92



CHAPTER ONE: User Notesfor MTGSAM

Introduction

Multiple Trait Gibbs Sampling for Anima Models, dencted as MTGSAM, is a set of
programs to estimate Bayesian pacsterior means and dstributions for (co)variance mmponents,
fixed and randam eff eds, and contrasts using Gibbs sampling with animal models. Theinterface
of the programs are similar to the MTDFREML (M ultiple Trait Derivative-FreeRestricted
Maximum Likelihood programs. These two programs sare asignificant amourt of Fortran
source ®de, espedaly for the numerator relationship and data manipulation programs.

The MTGSAM programs can be used for asingle trait analysis or for any number of traits.
The programs all ow any combination d missng observations for the multi ple trait models.
Posterior mean estimates for "fixed" and randam effeds and for contrasts can aso be cdculated.
The size of analyses that can be run depends on the number of traits and animalsin the analysis,
and oncomputer speed and memory.

Animal models can incorporate alditi ve genetic efeds not only for animals with records,
but also for parents and aher relatives withou records included in the pedigreefile. One
additional correlated randam effed, (e.g., maternal genetic) and any number of uncorrelated
randam effeds can be used for ead trait in the analysis. Fixed effeds and covariates are spedfied
separately for ead trait.

Computing Considerations
All programs are written in FORTRAN 77. The programs were developed on 486and
Pentium microcomputers using a Microsoft Fortran Powerstation compil er, but shoud runwith
minor modifications on any platform with a FORTRAN compiler. At least 16 MB of memory is
advisable, espedally for the MTGSRUN program. Requirements for hard disk spacewill vary
with the anount of information requested in MTGSRUN. If only posterior means are requested

and nosampling information is written, then the disk requirements are minimal. If the number of



Gibbs smples or elements written in ead sample increase, the disk spacewill i ncrease aswell. If
only variance @mporent informationis written, and the number of Gibbs samplesisrelatively
small, several MB of disk spaceshoud be sufficient. If the "solutions” are written in ead Gibbs
sample or the number of samples written isrelatively large, the anount of disk space ca be quite
large (hundeds of MB).

Currently, al programs have interadive inpu/output defined to standard FORTRAN 77
units of 5 (inpu from keyboard) and 6 (output to screen). Two areas that may need modificaion
on datforms other than PC's are the inpu/output file cnredions and the timing routines.
Currently, the Fortran OPEN statement is used to open files and conred to the gpropriate unit
numbers. Thefiles used by the program al have names of the type MTGSH#, where ##
corresponds to the unit number of the gpropriate MTGSAM program. For example, IUN81 (unit
81in MTGSNRM) correspondsto file MTGS81. The compil er or system dependent timing
subroutines arein the file MSTIME. Thisfile cmntains two subroutines: DOSTIM and DOSDAT,
which return the system time and dhte, respedively. These cdl s correspondto the Microway
NDP Fortran compil er cdlsfor timings and MSTIME shoud be diminated when using that
compiler. These timing subroutines can be dhanged for other compil ers or platforms, or
commented ou (C in column 1 d the source @de).

The file GSPARAM.FOR contains maximum parameter definitions for arraysin programs
MTGSPREP and MTGSRUN. The INCLUDE statement brings GSPARAM.FOR into
MTGSPREP and MTGSRUN to provide consistent parameter definitions. In the PC
environment, the INCLUDE statement looks like :

INCLUDE 'GSPARAM.FOR'
In MV S/TSO environments, the INCLUDE statement is:

INCLUDE 'QCAROL.GSPARAM.FOR'
In CMS environments, alibrary must be aeded that contains the INCLUDE source @de. A
possble execto crede thelibrary containing the INCLUDE source @deis.

/* An execto use INCLUDE statement in MTGSAM  */
TRACE RESULTS

"MAC GEN LIB1 GSPARAM"

"GLOBAL MACLIB LIB1"



The GSPARAM file must have afil etype of COPY inthe CMS environment. After thelibrary is

creded onCMS, the INCLUDE statement in MTGSPFREP or MTGSRUN has the form:
INCLUDE(GSPARAM)

Chedk the system documentation for variations of this code if problems arise. Alternatively, the

source ®de in GSPARAM.FOR could be placel dredly into MTGSPREP and MTGSRUN

programs repladng the INCLUDE statement. Note that if GSPARAM.FOR is changed, bdh

MTGSPREP and MTGSRUN must be recompil ed, i.e., the programs must have the same

parameter definitions.

MTGSAM Programs
The threeMTGSAM programs. 1) form the inverse of the relationship matrix, 2) prepare
datato set up d the weighted least squares part of MM E and 3 set up and solve the MM E for
solutions for fixed and randam effeds using Gauss Seidel iteration (GSI) and/or estimate
paosterior means and generate Gibbs samples for (co)variance mmponrents, fixed and randam
effeds, contrasts of fixed and randam effeds. The foll owing programs and subroutines are
needled:

MTGSNRM Forms non-zero elements of A™* using an ASCII freeformatted
pedigreefil e using the rules of Quasas (1976. Program reorders
animal, sire and dam identification (for animal model) or
aternatively, sire, sire of sire and maternal grandsire of sire
identificaion (for sire models). The program also generates
inbreeding coefficients for animals, siresand dams.

MTGSPREP From an ASCII datafil e, forms coefficients for MM E acording to
model spedficaions suppied to the program.
MTGSRUN From coefficients of MM E formed in MTGSPFREP there aetwo

optionsin MTGSRUN. First the program can be used to oltain
solutions to the MM E using user suppied values for (co)variance
comporents using Gauss Seidel iteration. The second ogionisto
run some rounds of GaussSeidel iteration foll owed by Gibbs
sampling. The Gibbs smpler can be used to oltain Bayesian
estimates of posterior means of (co)variance mmporents,

heritabiliti es, and correlations; covariates, fixed, and randam

effeds; and contrasts. The Gibbs samples may also be saved to files



to all ow construction d univariate or multi variate posterior density
estimation.

GSPARAM.FOR Fortran code for INCLUDE statement that contains parameter

statements for maximum limits for variables such as maximum
number of animals and fixed effeds. If the user chooses not to use
the INCLUDE statement, these source statements can be placel
diredly into source ode for MTGSPREP and MTGSRUN where
the INCLUDE statement islocated.

MTGSSUB A file mntaining a suite of general purpose Fortran subroutines

needed in the MTGSAM programs. Routines were written by C.
Van Tas=ll, K. Meyer (1988, K. Boldman (Boldman et al., 1993,
and P. VanRaden. Some subroutines were dso oltained (and some
modified) from STATLIB and NETLIB.

MTGSRSB A set of subroutines used only by MTGSRUN. Subroutines written

by C. Van Tas<ll.

Settingup A* (MTGSNRM)

Pedigreeinformation may be in afil e separate from the data when animals withou records

need to be included in the relationship matrix. Thefileisasaumed to bein freeformat, i.e., all

variables are separated by spaces. The source mde can be eaily modified to acoommodate

formatted read statementsif animal identificaion nunbers are not separated by spaces. The

pedigreefil e neals to include numeric fields for:

¢

Animal ID, sireID and dam ID (optionally sire ID, sire of sire ID and maternal
grandsire of sire ID for sire models).

If both parents of an animal without arecord are unknown, that animal does not
need to be in the pedigreefile & an animal becaise it does naot provide ties.

If asireID or dam ID is missng, the missng parent ID must be coded asaO.

If an animal has missng parent(s), andif the missng parent is needed to code for a
maternal or paternal correlated randam effed, the missng parent must be cded
with aunique number other than O.

The largest ID the program can acaommodate is the maximum integer the compil er
can hande (2°!- 1 =2,147,483,647Tor most Fortran compilers). If IDs are larger
than this or include charaders, IDs must be recoded prior to runnng MTGSNRM.



In the parameter statement of MTGSNRM, the maximum number of animals (MAXAN)

in the relationship matrix can be dhanged. MAXAN represents both animals with records and

base animals.

ToRun MTGSNRM:

1. Compile andlink MTGSNRM and MTGSSUB (subroutines).
2. RunMTGSNRM. This program will cdculate A™*. The program asks :

a)

b)

c)
d)

€)
f)

9)
h)

Do youwant to cdculate A™ using animal, sire, and dam (0) or sire, sire of
sire, and maternal grandsire of sire (1) rules?

Maximum animal ID in pedigreefile (for data verificaion orly).

Minimum animal ID in pedigreefil e (for data verificaion orly, Owill work).
Name of freeformatted file containing pedigreeinformation, e.qg.,
ANIMAL.PED.

Number of integer fieldsin pedigreefile.

Position d animal (or sire) ID in vedor of integers.

Position d sire (or sire of sire) ID in vedor of integers.

Position d dam (or MGS of sire) ID in vedor of integers.

Note that the clumns edfed in questions g and hcan correspondto avedor of zeros if

one choosed to ignore relationships among animals. The number of animalsin A will appea on
thescreen andin file MTGS81. This number is needed later for MTGSPREP - write it down.
The MTGSNRM program produces threeoutput files:

MTGS21

MTGS22

MTGS23

MTGS81

Thisfile contains the number of animals, followed by vedor of original
animal IDs sorted in ascending order in binary format. The locaionin the
file correspondsto thereaded ID, i.e., pasitioni isthe origina 1D
correspondng to recoded ID 1.

Thisfile contains the non-zero lower-half-stored elements of coefficients
of A'in binary format. Note that the dements are NOT summed. The
format of thefileisi, j, a’.

Thisfile contains the number of animals, followed by oneline for eah
animal in the pedigreein the foll owing format:

Reooded ID | Origina 1D | Inbreeding Coefficient

Animal Sire Dam| Animal Sire Dam| Animal Sire Dam

Thisisthelog file of information from the exeaution & MTGSNRM. The
information includes number of animalsin A, number of non-zero
elements, and inbreeding information.



Setting up MME (M TGSPREP)

The data file for MTGSPREP must have integer variables first, including animal 1D,
numericd identities for fixed effed levels, and numericd identities for randam effeds (e.g., dam
ID for maternal or permanent environment effeds), followed by red variables, which include
covariates and trait measurements. The datafile shoud bein freeformat with at least one space
separating variables. If the datais naot in freeformat, the source mde can be modified for a
formatted read of unit IUN31.

Models can be different for ead trait in the analysis. The number of fixed effeds,
covariates or uncorrelated randam effeds are usually not limiting for atrait. AnINCLUDE file,
GSPARAM.FOR, contains maximums for several variables used in the programs. The limits
must be large enough to acoommodate the data set. If not, error messages or wrong results will be
obtained. Limitsthat can be changed in GSPARAM.FOR are:

MAXTRT maximum number of traitsin the analysis

MAXINTR  maximum number of integer variables onead record
MAXR8 maximum number of red variables on eat record

MAXCOM  maximum lines of comments for output description o analysis
MAXCOV  maximum number of covariates per trait

MAXNFR  maximum number of regresson coefficients per trait

MAXFIX maximum number of fixed eff eds per trait

MAXN FL maximum number of levelsfor eadt fixed effed

MAXAN IM  maximum number of animals

MAXRAN  maximum number of uncorrelated randam eff eds per trait
MAXNRL  maximum number of levels for ead urcorrelated randam effed
MAXCNT  maximum number of contrasts to monitor

MAXCCOEF maximum number of contrast coefficients for ead contrast

NZEC maximum number of nonzero e ementsin half-stored coefficient matrix,
note that A is not added to MM E

NZEA maximum number of non-zero elementsin full-stored A™* matrix

NZE larger of NZEC or NZEA - usualy NZEC

Fieldsin the datafile can be used for more than ore trait and can have more than ore
name within or aadosstraits. For example, for weaning weight in bed catle, when additive,
maternal and permanent environmental randam effeds are in the model, the dam ID field cen be
used to indicate bath maternal genetic and permanent environment eff eds. More than ore

uncorrelated randam effed can be spedfied for ead trait in the analysis. Within trait,

10



uncorrelated randam effeds will, of course, be uncorrelated. However, if the same uncorrel ated
randam fador (i.e., in the same lumn in the data set) isused aaosstraits, a ®variance ca be
estimated. Uncorrelated fadors which occur in the same lumn aaosstraits are considered to be
in the same uncorrelated randam "group;’ i.e., fadors coded in the same wlumn may have non
zero correlations, but groups coded in dff erent columns are assumed to have zero correlations.
The MME set up by MTGSPREP have the foll owing order :
covariate(s) trait 1

covariaté(s) trait n
fixed effed(s) trait 1

fixed effed(s) trait n
additive genetic animal effed trait 1

additive genetic animal effed trait n
additional correlated randam effed trait 1 (e.g., maternal genetic)

additi on:al correlated randam effed trait n
uncorrelated randam effed(s) for trait 1

uncorrelated randam effed(s) for trait n

The number and types of equations in the MM E depend onspedfic models and chta.
Equationsin the aowelist that do nd apply to aspedfic anaysisdo nd appea. All models will
have alditive genetic animal effeds. Uncorrelated animal effeds will result from a pedigreefile
with al siresand dams missng. Genetic variances cannd be estimated if A =1 for an animal
model athough asire model can be used with A =1.

Torun MTGSPREP

1. Compile andlink MTGSPREP and MTGSSUB (subroutines). GSPARAM.FOR must
be avail able.
2. RunMTGSPFREP. The program reads MTGS21 and asks the foll owing questions:
a) Nameof datafile (IUN31), eg., ANIMAL.DAT
b) Description d analysis (upto 6lines, terminated with a* in column 1 after last
comment line)
c) Number of integer variablesin ead line of datafile
d) Number of red variablesin ead line of datafile

11



€) Number of traitsin the analysis
Questions f-y are repeded for eadh trait with the exceptions of q) andr)
f) Name of trait
g) Positionfor trait inlist of red variables
h) Missng value designationfor trait (e.g., 0,0.0,-999.9,etc.)
i) Number of covariates
Questions j-I will berepeaed for ead covariate in atrait
j) Namefor first covariate
k) Position d first covariatein list of red variables
l) Typeof covariate (linea, quadratic, etc)
m) Number of fixed effeds
Questions n-p will be repeaed for ead fixed effed in atrait
n) Name of fixed effed
0) Position d fixed effed in list of integer variables
p) Writelevelsof fixed effed to unt 82 (MTGS82): 1 yes; 0 no
Questions g-r will be asked orly for thefirst trait
g) Position d animal ID in list of integers (same for ead trait)
r) Number of animalsin A* (from MTGSNRM)
s) Isthere asecondanimal (e.g., maternal genetic) effed (1 yes; 0 no
If thereisasemndanimal effed for the trait, answer questionst) and uU)
t) Name of secondanimal effed
u) Position d secondanimal effed in list of integer variables
v) Number of uncorrelated random effeds (e.g., PE, litter)
Questions w-y will be repeaed for ead urcorrelated randam effed in atrait
w) Name of uncorrelated randam effed
X) Position d uncorrelated random effed in list of integers
y) Write levels of uncorrelated randam effedsto urit 82 (1 yes; 0 no
Question z will be aked if thereisat least one awvariate or fixed effed
z) Saveorigina labelsto match with mean estimates for covariates and
fixed effedsin MTGSRUN (1 yes; 0 ng
Question aawill be asked if thereis at least one uncorrelated randam effed
ad Save original labelsto match with mean estimates for uncorrel ated
randam effedsin MTGSRUN (1 yes; 0 no

If the optionto write levels of fixed effeds or uncorrelated randam effeds to unt 82
(MTGS82) is 1, summary statistics for ead level will be written to the output log. With many
levels of afixed effed or uncorrelated randam eff ed, answer no (0) to avoid alarge output log.

On DOS or UNIX based systems, after gaining famili arity with the program, users may
want to pu the analysisinformationin afile for the program to read, which is easier than entering

the datainteradively. However, plesse enter the datainteradively to become familiar with the

12



guestions the first few times. If amistake is made answering questions interadively, the program
must be started from the beginning. To runthe program using such an inpu file exeaute the
program using the form:
mtgsprep.exe <input.fil

where mtgsprep.exe is the exeautable form of the MTGSFREP Fortran file and input.fil contains
the same entries that would be entered interadively. If running the programs from a batch or
script file it may be useful to use the cmmmand:

mtgsprep.exe <inpu.fil > output.fil
where output.fil isafile containing the prompts usually written to the terminal. An alternative
approad is to change the fil e definition sedion for unit 5in MTGSPREP to a physicd fil e rather
than keyboard inpu (i.e., change the value for IUNS and add an open statement for that fil ).
MTGSPREP produces the following files:

MTG41 Information onmodel to be used in MTGSRUN. Informationincludes:

¢ number of traits, eff eds, animals, regresson coefficients, equations,
number of uncorrelated randam effeds, number of columns that
contain urcorrelated randam effeds, number of fixed effeds,
column of animal ID in data set, whether the original labels for
fixed effeds and covariates were written to afil e, and whether the
original labels for uncorrelated randam eff eds were written to afile

¢ name of ead trait, number of covariates by trait; power of eah
covariate

¢ number of fixed effeds by trait; number of levelsfor ead fixed
effed

starting equation number for dired effeds by trait

presence of sescondanimal (e.g., maternal genetic) eff eds by trait
column of seandanimal ID in data set

starting equation number for secmndanimal effeds by trait
number of uncorrelated randam effeds by trait

number of levels for eat urcorrelated randam group, column of
uncorrelated randam groupin data set (if no. urcorrelated randam
effeds > 0)

¢ starting equation number of uncorrelated randam effeds,
uncorrelated randam group number, and column pasitions from
original data of eat urcorrelated randam effed by trait (if no.
uncorrelated randam effeds > 0)

* & & & o o
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MTGS42

MTGS43

MTGS44

MTGS45

MTGS46

MTGS82

¢ name of ead urcorrelated randam effed by trait (if no. urcorrelated
randam effeds > 0)

Reooded datafor MTGSRUN in hinary format. The file includes the
coefficients of the "design” matrix W =[X Z], equation numbers, and the
data deviated from the mean. To use the undeviated data search for the
string DATA DEVIATION: in the program and comment out the
appropriate write statement (a C in the first column dof the line) and remove
the comment for the line which writes the raw data.

Summary for ead animal by record in binary format. The datainclude
number of columns of W and number of observations written to MTG342,
a wde representing the pattern of missng observations, and codes to
determine if ead trait i's present or missng.

Blocking information wsed in MTGSRUN for related randam eff eds coded
in the same @mlumn asthe animal or secondanimal ID for atrait. Data
include animal 1D, number of blocked equations, and equation numbers for
effedsto be blocked.

Original abelsfor covariates and fixed effeds if requested for merging with
posterior meansin MTGSRUN.

Original labels for uncorrelated randam effeds if requested for merging
with pasterior meansin MTGSRUN.

Program log that includes simmary statistics and ader and information
abou the mixed model equations.

Prior to running MTGSPFREP, make sure that any output fil es to be saved from a previous
MTGSPREP run are renamed o copied elsewhere. MTGSPFREP will delete or overwrite output

fileswritten in ealier runs.

Estimating Variance Componentsor Solving MME (MTGSRUN)

The main function & MTGSRUN isto generate Gibbs ssmples for variance mmponrents

and fixed and randam effeds under aflexible set of options. The program gives the user the

option d using Gauss Seidel iteration (GSI) to generate solutions to the MM E using starting

values for the variance mmporents. The program can be used to oltain solutions only for the
MM E with appropriately chasen resporses to the questions posed by MTGSRUN. If Gibbs

sampling is requested (with or withou GSI) the user has the option to spedfy the numbers of
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rounds of Gibbs ssmpling ,burn-in, interval between Gibbs samples, and frequency of
chedkpoainting. Chedpointing isthe processof saving all necessary variables to files @ that the
program can be restarted at some intermediate step if the program is halted (acddentally or
intentionall y).
Thefirst questionto be aked by MTGSRUN is:
TYPE OF ANALYSIS:
1D New analysis
2) Continuation o GaussSeidel iteration wsing last solutions
3 Continuation d a previous analysis sopped prematurely
4) Continuation d aprevious analysis gopped when completed
Option lischaosen to start any analysis, option 2isused if further rounds of GS| are need
to oltain asolutionfor the MME, option 3is used if a Gibbs sampling analysis has been stopped
for some reason and the analysisisto be continued, and ogion 4all ows additional rounds of
Gibbs smpling if after preliminary analysisit is dedded that more Gibbs samples are needed.
The use of chedkpainting allows all of these cntinuations to be used with littl e or no lossof
acaragy. The mntinuation d a halted analysis shoud return the same analysis as run without
interruption. The adition d rounds after completion may cause (minor) roundng differencesin
the posterior means of parameter estimates, but the sampled values shoud be identicd to thase
runin ore analysis. Any analysis must be initialized using option 1. Option 2shoud be used
only when noGibbs sampling has been dore foll owing previous rounds of GSI. It is often useful
torunanaysesin df pe&k hous (e.g., nghts and weekends). Option 3gives usersthe option o
running an analysis as computing resources permit, by using this option and chedkpointing at
appropriate intervals. Finaly, the last option allows an analysisto be wntinued if it is deaded
that theinitial Gibbs sampling chain length isinsufficient.
Solving the MM E using Gauss-Seidel iteration
The MM E can be @onstructed and solved using a blocked GaussSeidel algorithm. The
blocked algorithm updates all animal and secondanimal effeds as well as blocked urcorrelated
randam effeds smultaneously. An urcorrelated randam effed is considered "blocked” if the
code for that effed appeaed in the same wlumn asthe animal ID or in the same wlumn asthe
secondanimal effed for that trait (if one exists). All other effeds (covariates, fixed effeds, and
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uncorrelated randam eff eds not blocked) are updated ore equation at atime. The program uses
starting values of zeros for al fixed and randam effeds. Iterations are repeaed urtil either a
maximum number of iterationsisreaded or until the mwnvergence caiterionismet. The

convergence citerion wsed is:

where n is the number of equations, and% is lutionto equationi in roundj of iteration.
Generating Gibbs samples

Themain pupaose of this st of programs is to generate values from a Gibbs smpler. The
theory related to Gibbs smpling is given in Chapter 3, including discusson d the Bayesian
variance @mporent model, prior distributions, and cerivation d the Gibbs sampling algorithm.
A Bayesian variance omporent model is assumed, although in some situations it is posshbleto
use flat priors for the variance mmporents, and in that case the estimates shoud be similar to
REML estimates. For adiscusson d prior distributionsincluding when it is ssfeto useflat priors
for variance @mporents e Chapter 3.
Torun MTGSRUN

1. Compile andlink MTGSRUN, MTGSSUB (general subroutines), and MTGSRSUB
(subroutines used by MTGSRUN). GSPARAM.FOR must be avail able.

2. RunMTGSRUN. The program reads MTGHA1, MTGSA2, MTGHA3,and MTGH44.
The program needs MTG35 andlor MTGS46 if merging of solutions and labelsis
requested.

a) Enter optionfor analysis: 1, nrew analysis, 2, continuation d Gauss Seidel iteration
using last solutions; 3, continuation d a previous analysis fopped prematurely, or
4, continuation d aprevious analysis gopped when completed.

OPTION 1 QUESTIONS

b) Enter description d the analysis terminated with a* in column 1 d theline
foll owing the last comment. The maximum number of lines of commentsis
defined in GSPARAM.FOR.

c) Pressenter to continue foll owing user information. If aninpu fileisused to for
resporsesto questions be sureto insert ablank linein that file.
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d)

f)

Inpu the mean of the prior distribution for additive and secondanimal (i.e., the G,
matrix) (co)variances. A matrix description d the (co)variance @mporentsis
displayed which depends on the model chosenin MTGSFREP. The order of the
genetic éfeds are animal effedsfirst in order of traits foll owed by secondanimal
effeds, where gopropriate. The row and column labelsinclude an A or M for
animal or secondanimal effed, respedively, followed by the trait number. For
example, for atwo trait model with secondanimal effedsfor only thefirst trait, the
foll owing information would be displayed:

Al A2 M1
Al: 1
A2 2 4
M1: 3 5 6

Enter matrix position and values for priors.
For example, for 0%, an entry is:

1 100DO0 <return> [1 100.<return>or 1 100<return> dso work].
For opqa0

2-25D0 <return>.

The matrix isinitialized to zero. A prior is needed for ead comporent to be
estimated (0 isavalid estimate for covariances). Type-1 0.dO<return> to show
the pasition nunmbers again. Once dl priors are entered, end the inpu by typing O
0.dO<return> [0 O <return> dso works).

The mean o the prior distribution will redisplay and werificaionis requested,
enter: O if thevauesare nat corred, 1 if thevalues are wrred, or 2 to dsplay the
values again. If there aeincorred values only those values need to be re-entered,
because the mvariance matrix will not be initialized again.

Enter the shape parameter for this covariance matrix. The prior distribution for the
covariance matrix is assumed to be an inverted Wishart distribution. The shape
parameter corresponds to the degreeof freedom parameter for the crrespondng
Wishart distribution. For aproper prior distribution the shape parameter must be &
least 2 more than the order of the covariancematrix. To hdd the @mvariance
matrix constant use avalue of -1 for the shape parameter. To use a"flat" prior
enter avalue of O for the shape parameter (seeChapter 3 to ched if thisis sfe!).
Pressenter to continue foll owing user information (insert ablank linein inpu file).
The program will display any randam effeds coded in the same wlumn in the
original data set that appea in more than oretrait. The user is given the
oppatunity to spedfy groups of traits which shoud have @variances restricted to
zero. Thetrait and randam effed names (as entered in MTGSPFREP) are given.
The user shoud answer with Oif there ae no covariances that need to be restricted
and 1if groups of traits are to be spedfied. An example of information provided
by MTGSRUN foll ows:
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RANDOM #
TRAIT # TRAITNAME W/INTRT RANDOM EFFECT NAME
1 Weaning Weight 1 Mat Perm Env
4 Y ealing Weight 1 Mat Perm Env

Arethere mvariances among these randam fadors that shoud be ZERO?
0= No (Covariances among all effeds can be non-zero)
1=Yes(Some mvariances need to be restricted to zero)

Questionsi and | repeaed for ead set of uncorrelated randam effeds to be split into

groups.

i)
)

Group numbers are requested for ead combination d trait and random effed
name. Groups must be mnseautive starting with 1.
Group numbers will be redisplayed with trait and randam effed name.

Verificaion d group numbersis requested: 1=yes,; 2=no

Questions k-m are repeaed for ead group d uncorrelated randam eff eds (groups
correspondto column used to code for the dfed in the original data, or the number
assgned to groups of uncorrelated randamsin a olumn asdorein questioni) .

k) Inpu mean o the prior distribution for uncorrelated randam effed

(co)variances for the group d uncorrelated randam effeds. A listing by group
describing the trait and urcorrelated randam effea with a code will be listed.
Finally, amatrix description d the (co)variance mmporentsis displayed using
those mdes. An example of information provided by MTGSRUN foll ows:

RANDOM #
CODE TRAIT# TRAIT NAME W/IN TRT RANDOM EFFECT NAME
11 1 Weaning Weight 1 Mat Perm Env
12 4 Yealing Weight 1 Mat Perm Env

Enter the expeded values for the residual covariance matrix. I's correspondto
the codeslisted abowe.

11 12
11: 1
[2: 2 3

Enter matrix position and values for priors.

The mean o the prior distribution will redisplay and werificaionis requested,
enter: O if thevaluesare nat corred, 1 if the values are @rred, or 2 to dsplay
the values again. If there aeincorred values only those values need to be re-
entered, because the cvariance matrix will not be initialized again.

m) Enter the shape parameter for this covariance matrix. For aproper prior the

shape parameter must be & least 2 more than the order of the mvariance
matrix. To hdd the cvariance matrix constant use avalue of -1 for the shape
parameter. To use a"flat" prior enter avalue of O for the shape parameter (see
Chapter 3 to ched if thisis sfe!).
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If two or more traits are included in an analysis answer questions n-q.
n) Pressenter to continue following user information (insert ablank linein inpu

filg).

0) Theuser isgiven the oppatunity to spedfy groups of traits which shoud have

residual covariances restricted to zero. The trait number and rame ae given.
The user shoud answer with Oif there ae no covariances that need to be
restricted and 1if groups of traits are to be spedfied.

Questions p and qare aked if question 0 is answered yes, that isif residual effeds
areto be split into groups.

p) Group numbers are requested for ead trait. Groups must be mnseautive
starting with 1.

g) Group numberswill beredisplayed. Verificaion o group numbersis
requested: 1=yes, 2=no

Questions r-t are repeaed for ead group d residua eff eds (groups correspondto
traitsin the original data, or the number assgned to groups of traits as dorein question

p) .
r

Y

Input mean of the prior distribution for uncorrelated randam effed

(co)variances for the group d uncorrelated randam effeds. A listing by group

describing the trait and urcorrelated randam effea with a code will be listed.

Finally, amatrix description d the (co)variance mmporentsis displayed using

those mdes. An example of information provided by MTGSRUN foll ows:

Theresidual effeds coded in group lare represented in 3trait(s) as follows:
CODE TRAIT# TRAIT NAME

R1 1 Pelvic Width
R2 3 Ovulation Rate
R3 4 Milk Production

Enter the expeded values for the residual covariance matrix. R's correspondto
the codeslisted above

R1 R2 R3
R1 1
R2: 2 4
R3: 3 5 6

Enter matrix position and values for priors.

The mean o the prior distribution will redisplay and werificaionis requested,
enter: O if thevaluesare nat corred, 1 if the values are @rred, or 2 to dsplay
the values again. If there aeincorred values only those values need to be re-
entered, because the avariance matrix will not be initi ali zed again.

Enter the shape parameter for this covariance matrix. For a proper prior the
shape parameter must be & least 2 more than the order of the mvariance
matrix. To hdd the cvariance matrix constant use avalue of-1for the shape
parameter. To use a"flat" prior enter avalue of O for the shape parameter (see
Chapter 3 to ched if thisis sfe!).
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u) Enter the number of rounds of GaussSeiddl iterationto be done before starting
Gibbs ssampling (Enter O for nore).

v) Enter the mnvergence caiterionfor the GaussSeidel iteration. Thisvalueisthe
sum of sgquared changes insolutions divided by the sum of squared solutions. Use a
relatively large value for warm up for Gibbs smpling (e.g., 1D-3). Use a
relatively small value for solutionsto MM Es (e.g., 1D-10).

w) Enter the length o the Gibls ssmpling chain, including the burn-in period.

Questions x-ae ae asked orly if the number of rounds of Gibbs sampling is greaer

than zero.

x) Enter the length of the 'burn-in' period. Thisisthe number of rounds of Gibbs
sampling ignored before including datain means estimates or writing values to
files.

y) Enter the frequency of writing data (variance mmporents, contrasts, etc) to
MTGS61and MTGS62.

z) Enter the frequency of chedkpainting. Thisisthe frequency of writing criticd
information to allow arestart if stopped prematurely.

ag Write dl fixed and randam effeds at the same frequency as the variance
comporent information? 0, ng 1, yes.

ab) Write aset of contrasts out at the same frequency as the variance @mponrent
information? 0, ng 1, yes.

Questions ac-ae aie asked if question ab is answered yes.
ac) Enter the number of contraststo be monitored.

Questions ad-ae aie asked for eat contrast.
ad) Enter the number of elementsin ead contrast, e.g., 2.
Question aeis asked for ead element in a cntrast.
ae Enter the equation numbers and coefficientsin order for the
contrast, e.qg., 4 1.<return>5 -1. <return>.

af) Enter two randam number seeds. Thefirst must be in the range 0 to 31328 ,and the

secondmust be in the range 0 to 30081.

OPTION 2 QUESTIONS

The program will read information from the dhedpoint files. All of the user respones
from the previous analysis (entered with ogion 1) will be restored. Only the values for
the variables aff eded by the following questions will be dfeded.

If there have been rounds of Gibbs sampling completed in the previous analysis after
(or withou) Gauss Seidel iteration then the following information will be given and
guestion b will be asked:
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Rounds of Gibbs sampling were completed after Gauss Seidel iterationin the
previous analysis. Do you want to continue Gauss Seidel iteration from the aurrent
Gibbs ssmpling fixed and randam solutions or restart the analysis?

** ALL PREVIOUS GIBBS SAMPLING DATA WILL BELOST IF YOU
CONTINUE OR RESTARTI! **

b) Enter: 0to stopthe analysis
1 to restart the analysis
2 to procea with Gauss Seidel using final Gibbs sampling 'solutions
3 to continue Gibbs sampling
If question bisnot asked or if it isanswered with ogion 2,the foll owing questions ¢
and dwill be asked.
c) Enter the number of additional rounds of GaussSeidel iterationto be dore
before starting Gibbs sampling.
d) Enter the new convergence citerion for the GaussSeidel iteration. See
guestion v uncar option 1for information.

OPTION 3 QUESTIONS
There ae no questions asked after the question for option number.

OPTION 4 QUESTIONS
If the previous analysis has been completed the program will ask question b. If the
previous analysis was incomplete, it will reset the optionto 3and continue that
anaylysis.

b) Enter the number of additional rounds of Gibbs ssmpling to be dore.

Convergence

Measurement of convergencein Gibbs sampling is more difficult than with alikelihood

based procedure. The main problem is that the cnwvergence of a distribution must be evaluated,

nat the onwvergenceto asingle point asisthe typicd animal breeding problem (e.g., prediction o

breeding values or estimation d variance mmporents). There ae severa simple diagnaostics

which may be helpful. One dternativeisto generate samples from multiple dhains and compare

the estimated means for parameters aaosschains or to estimate the parameters distribution for

eadt chain and compare those estimates using a "fat tip pentest.” Thefat tip pentestisa

subjedive evaluation d the distributions to determine if the estimates are goproximately equal,
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i.e., doesthe line drawn by afat tip pen cover bath of the estimated dstributions. If so, thereisa
reasonably good chancethat the estimates are cnverged. The drawbadk of using multi ple dains
isthat the burn-in period for ead chain must be discarded and may correspondto significant
increases in computing time for the same number of useful samples drawn from the Gibbs
sampler.
Starting or Restarting MTGSRUN
On DOS or UNIX based systems, after gaining famili arity with the program, users may
want to pu the analysisinformationin afile for the program to read, which is easier than entering
the datainteradively. For restarts, users can copy MTGS60to arestart inpu file. MTGS60
contains the origina answersto the interadive questions except for the (co)variances, which are
the mean estimates obtained at the end o the previous run. Please enter the data interadively to
become familiar with the questions the first few times. If amistake is made answering questions
interadively, the program must be started from the beginning. To runthe program using such an
inpu file exeaute the program using the form:
mtgsrun.exe <inpu.fil
where mtgsrunexe is the exeautable form of the MTGSRUN Fortran file and input.fil contains the
same antries that would be entered interadively. If runnng the programs from a batch or script
fileit may be useful to use the mmmand:
mtgsrunexe <inpu.fil > output.fil
where output.fil isafile containing the prompts usually written to the terminal. An alternative
approad is to change the fil e definition sedionfor unit 5in MTGSRUN to a physicd fil e rather
than keyboard inpu (i.e., change the value for IUN5S and add an open statement for that fil e).
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CHAPTER TWO: Illustrationsfor MTGSAM

This chapter demonstrates models and analyses that can be run ising MTDGSAM. The
examples presented are based onthe mouse data distributed with DFREML (Meyer, 199)). Data
are avallable on dskette or by anorymous FTP. The data fil es are distributed with example
single and multi ple trait MTGSAM analyses. The format of the pedigreefile, MOUSE.PED,
includes threefields: animal, sire, and dam. The data file, MOUSE.DAT, contains ten fields of
data - seven integer and threered. Theintegers correspondto: animal, sire, dam, generation, sex,
litter size, and litter number. The threered fields represent: litter size (for use @& a @variate),
body weight, and feed intake.

The purpose of this dionisto ill ustrate interadive sessons with the programs and the
types of output generated as well as what to examine and exped from the output. All analyses
demonstrated here were run ona Pentium classmicrocomputers with 64MB of memory (although

the analyses shoud run onsystems with much lesspower and memory).

MTGSNRM
MOUSE.PED was the file used by MTGSNRM to producethe non-zero A™* e ements used
in MTGSRUN. Two of the most important linesto nae in the output file, MTGS81, are the
number of pedigreelines read and the total number of different animals which isneeded in
MTGSPREP.
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Resultsin MTGS81:

Started 10:49:39.96 on 04/06/1995

i T o

PROGRAM "MTGSNRM" - Calculate A-1 and recode animal for IDs for Gibbs sampling
++++++++++H

OPTION FOR CALCULATION OF A-1
FOR ANIMAL SIRE DAM TYPE... O
FOR ANIMAL SIRE MGS TYPE.. 1

OPTION CHOSEN FOR THIS ANALYSIS =

MAXIMUM ID =
MINIMUM ID =
PEDIGREE FILE OPENED, IUN33 =

FILE FOR IDS AND INBREEDING COEFFICIENTS OPENED
THIS FILE WILL CONTAIN ANIMAL, SIRE, AND DAM
RECODED AND ORIGINAL IDS FOLLOWED BY THE
INBREEDING COEFFICIENT FOR EACH

NO. INTEGER FIELDS PER RECORD IN IUN33 =

mouse.ped

ANIMAL ID IN POSITION ......

SIRE ID IN POSITION ........

DAM (MGS) ID IN POSITION ...

NO. OF GENETIC GROUPS FOR CALCULATION OFW =

The current time is: 10:49:40.29

NO. OF PEDIGREES READ = 309
NO. OF DIFFERENT ANIMALS = 329

INCLUDES NO. OF GENETIC GROUPS

1
o

END OF FIRST PASS
The current time is: 10:49:40.45

END OF SORT

The current time is: 10:49:40.45

FIRST 10 REORDERED IDs 1 215
FIRST 10 REORDERED IDs 2 403
FIRST 10 REORDERED IDs 3 615
FIRST 10 REORDERED IDs 4 701

0

41615

1

QWNEL D™

see note 1

see note 2
see note 3

see note 4

Note 1:

Note 2:

Note 3:

Note 4:

The answers highlighted in gray were answers to the interactive
guestion asked by MTGSAM. Check to make sure that they are
correct

Does this agree with your data? This number should equal number
of data lines in pedigree file. Animals can be repeated in data
file.

This is the number of animals plus the number of base animals.
Make sure that the number of base animals is at least 0. The
number of base animals is the number of different animals minus
the number of pedigrees read.

Reordered animal identification numbers with original animal
identification. These animal IDs should be reasonable given the
data set.
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FIRST 10 REORDERED IDs 5 814
FIRST 10 REORDERED IDs 6 904
FIRST 10 REORDERED IDs 7 1314
FIRST 10 REORDERED IDs 8 1602
FIRST 10 REORDERED IDs 9 1701
FIRST 10 REORDERED IDs 10 1813

ID VECTOR WRITTEN IN ORDER TO IUN21
The current time is: 10:49:40.51

SIRE AND DAM IN PEDIGREE REORDERED IN IVECS AND IVECD
The current time is: 10:49:40.56

CALCULATION OF A-1 FROM ANIMAL SIRE DAM (IOPT = 0)

NON-ZERO HS ELEMENTS FOR NRM INVERSE = 1241
LOG DETERMINANT OF NRM = -210.71674289
NUMBER OF INBRED ANIMALS = 0

... WITH AVERAGE INBREEDING COEF = .00000000

TOTAL NO. OF ANIMALS INCLUDING BASE

AND GENETIC GROUPS 329 see note 3

The current time is: 10:49:40.73
The elapsed time was: 00:00:00.44

Variance Component Estimation
Single Trait Model

The data for mouse body weight were analyzed with a model including additive (direq)
genetic dfed, correlated ssoondanimal genetic efed and ore uncorrelated randam effed. The
datainclude 284 olservations for body weight in mice. Additive dired genetic dfed of animal,
materna genetic efed of ssamndanimal (the dam) and a maternal permanent environmental
effed arein the model. Threefixed effeds were: generation, sex and litter size.
MTGSPREP

For this example, the option to write levels of informationto MTGS81 for all fixed effeds
was enabled and for the uncorrelated random effeds was disabled. The complete list of answers

to the interadive questions foll ow.

mouse.dat name of datafile
Mouse data from Karin Meyer
Single trait analysis of body weight
* end d comments

7 number of integers on ead line of datafile
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3

1

body weight
2

0.0

0

3
generation
4

1

Sex

5

1

litter size
6

1

1

329

1

maternal genetic

3
1

maternal perman env

3

0
1
1

number of reds onead line of datafile

number of traitsin analysis

name of trait 1

pasition d trait in vedor of red values

value of missng observation for trait 1

number of covariates

number of fixed fadors

name for fixed fador 1

pasition d fixed fador 1 in vedor of integers

write summary of fixed fador 1 levelsto log file (MTGS82)
name for fixed fador 2

pasition d fixed fador 2 in vedor of integers

write summary of fixed fador 2 levelsto log file (MTGS82)
name for fixed fador 3

pasition d fixed fador 3 in vedor of integers

write summary of fixed fador 3 levelsto log file (MTGS82)
pasition d animal effed in vedor of integers

num. of animalsin relationship matrix (from MTGSNRM)
include secondanimal effed

name of secondanimal effed

pasition d secondanimal effed in vedor of integers
number of uncorrelated randam fadors

name of uncorrelated randam fador

pasition d uncorrelated randam fador in vedor of integers
do nd write summary of uncorrelated randam fador to log
write summary of fixed fador 1 levelsto log file (MTGS82)
write labels for uncorrelated randam fadors to MTGS46

Resultsin MTGS82:

Started 13:30:31.47 on 04/06/1995
++++++++++H

PROGRAM "MTGSPREP" - Setup MME for Gibbs sampling

Last revised ALPHA VERSION

++++++++++H
Data set description :

Mouse data from Karin Meyer
Single trait analysis

No. of data lines in Unit 31 = 284
No. of integer variables per record = 7
No. of real variables per record = 3
No. of traits = 1

No. of valid records = 284

No. of animals with valid records = 284
No. of animals in A-1 = 329
Order of MME = 712

see note 5

Note 5: Does this correspond to the data?
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Results for trait 1 - Body Weight (position 2) see note 6

No. of records = 284 (missing value:  .0000 No. missing= 0)
Trait Mean SD Ccv Min Max  Std Min  Std Max
1 24.0687 3.30236 13.72 14.600 34.500 -2.87 3.16

No. of covariates= 0
No. of fixed effects = 3
1: 3levels for generation (MME rows: 1- 3)
Level Value No. % Mean
1 1 93 3275 23.724 see note 6
2 2 84  29.58 23.063
3 3 107 37.68 25.158
2:  2levels for sex (MME rows: 4- 5)
Level Value No. % Mean
1 1 150 52.82 22.656 see note 6
2 2 134 47.18 25.650
3: 7 levels for litter size (MME rows: 6- 12)
Level Value No. % Mean
1 1 11 3.87 26.609 see note 6
2 2 41 1444 23.722
3 3 25 8.80 24.864
4 4 36 12.68 24.028
5 5 96 33.80 24.265
6 6 45 1585 24.333
7 7 30 10.56 21.973
No. of animals in A-1 = 329 (MME rows: 13- 341)
No. of 2nd animal effects = 1 see note 7
1: 329 levels for maternal genetic (MME rows: 342 - 670)
No. of uncorrelated random effects = 1 see note 8
1: 42 levels for maternal perman env (MME rows: 671 - 712)

Summary of data and mixed model equations

Trait 1 - Body Weight No. of records = 284 (No. missing=0)

Trait Mean SD cv Min Max Std Min Std Max
1 24.0687 3.30236 13.72 14.600 34.500 -2.87 3.16

Order of MME = 712

Note 6: Are these characteristics of your data reasonable?

Note 7: An equation is created for the second animal effect for all
animals

Note 8: An equation is created for each level of an uncorrelated random
effect
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Number of fixed effects = 3

Trait No. Name Position Levels Rows
1 1 generation 4 3 1- 3
1 2 sex 5 2 4 - 5
1 3 litter size 6 7 6- 12

Number of animal effects (# traits) = 1

Trait No. Name Position Levels Rows

1 1 Animal w/ full A-1 1 329 13- 341

Number of second animal effects = 1
Trait No. Name Position Levels Rows
1 1 maternal genetic 3 329 342 - 670

Number of uncorrelated random effects = 1
Trait No. Name Position Levels Rows
1 1 maternal permanenv 3 42 671- 712

Files written:
MTGSA41 (ascii): Model information
MTGS42 (binary): Recoded W=X:Z elements
MTGS43 (binary): W summary for each animal
MTGS44 (binary): Blocking information by animal
MTGS45 (ascii): labels for covariates and fixed effects
MTGS46 (ascii): labels for uncorrelated random effects
The elapsed time was: 00:00:00.54

see note 9

Note 9: Check number of levels and positions of fields in integer vector
for possible input errors and order of MME

MTGSRUN
Answers to the interadive questions asked by MTGSRUN:

1 type of run - new analysis
Mouse data from Karin Meyer
Single trait analysis of body weight

blank line needed for pressenter prompt
genetic (co)variance means

genetic (co)variance means

genetic (co)variance means

dore entering values

genetic priors are corred

genetic (co)variance priors hape parameter
blank line needed for pressenter prompt
115 independent randam (co)variance means

0 .00 dore entering values
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1 ind Rand priors are @rred

9 ind Rand (co)variance priors $ape parameter
120 residual (co)variancepriors

0 .00 dore entering values

1 residual priors are mrred

9 residual (co)variancepriors ape parameter
100 rounds of GaussSeidel iteration

1E-04 convergence citeriafor Gauss Seidel

200 rounds of Gibbs ssampling (includes burn-in)
100 rounds of burn-in before Gibbs sampling

10 frequency of writing Gibbs ssmples

50 frequency of chedk-painting

0 write out al solutions? (Y=1,N=0)

0 write out user spedfied contrasts

29193 21661sedls for randam number generator

Note that the number of rounds of Gibbs smplingisVERY SMALL andisused herejust for
demonstration puposes. The burn-in and frequency of writing samples are dso chosen orly for

demonstration puposes.

Resultsin MTGS83:

"MTGSRUN?" - Multiple trait Gibbs sampling program
Last revised ALPHA VERSION

Started 08:01:39.81 on 04/14/1995

Mouse data from Karin Meyer
Single trait analysis of body weight

This is a new analysis - not a continuation

The prior distribution of genetic variances and covariances was an
inverted Wishart distribution with shape parameter: 9 and with
expected value:

Al M1
Al: 4.0000
M1: .50000 1.5000

The prior distribution of variances and covariances for the random
factors coded in column 3 and represented in 1 trait(s) was an
inverted Wishart distribution with shape parameter: 9 and

with expected value:
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11
1: 1.5000

The I's correspond to the codes below

RANDOM #
CODE TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME
1 1 Body Weight 1 maternal perman env

The prior distribution of variances and covariances for the residual
effects was an inverted Wishart distribution with shape parameter: 9
and with expected value:

R1
R1: 2.0000

The R's correspond to the codes below

CODE TRAIT # TRAIT NAME
R1 1 Body Weight

There was a maximum of 100 rounds of Gauss-Seidel iteration done
before starting Gibbs sampling.

A value of .10000D-03 was used to determine convergence of
Gauss-Seidel iteration

There were 100 rounds burn-in run before using the Gibbs
sampling done before using the results

There were 200 total rounds of Gibbs sampling including the burn-in period
Results were written out every 10 rounds.

Checkpointing information was written out every 50 rounds.

The two random number generator seeds used were: 29193 and 21661

Gauss-Seidel iteration converged in round 13
with a convergence criteria of .849214D-04

For the genetic and independent random effect and residual
(co)variance components several estimates are provided. The first
column contains the posterior mean of the expected value of the
component. The second is the posterior mean of the observed values.
The final column contains the posterior mean of the observed values
for heritability (genetic effects) or fraction of phenotypic variance
(independent randoms and residual) on the diagonal and correlations
below the diagonal. For phenotypic (co)variance components only the
posterior means of the observed components and the correlations are
given.

If a (co)variance has been held constant, only the values and the
means of the observed "heritabilities" and correlations are given.
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GENETIC (CO)VARIANCE COMPONENT ESTIMATES

A correspond to direct effects, M to second animal (e.g., maternal) effects
For example, M3 is second animal genetic effect for trait 3

Al M1
M1: 2 3

VC POST MEAN OF EXP VC POST MEAN OF OBS VC POST MEAN OF OBS CORR

1 4.3072971277831 4.2662797793787 .382937737008567800
2 1.7888933877744 1.7707084304743 .630660694294524500
3 1.8796056518771 1.8795230673661 .169380671693390900

INDEPENDENT RANDOM EFFECT (CO)VARIANCE COMPONENT ESTIMATES

The random factors coded in column 3 are represented in 1
trait(s) as follows:

RANDOM #
CODE TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME
1 1 Body Weight 1 maternal perman env

I's correspond to the codes listed above

1 1.1976811419801 1.2080489869830 .110473240469843800

RESIDUAL (CO)VARIANCE COMPONENT ESTIMATES
The residual effects are represented in 1 trait(s) as follows:

CODE TRAIT # TRAIT NAME
R1 1 Body Weight

R's correspond to the codes listed above

R1
Ri: 1

VC POST MEAN OF EXP VC POST MEAN OF OBS VC POST MEAN OF OBS CORR

1 1.9305686899210 1.9370950692461 .179021126890384100
PHENOTYPIC (CO)VARIANCE COMPONENT ESTIMATES

CODE TRAIT # TRAIT NAME
P1 1 Body Weight
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P's correspond to the traits listed above

P1
P1: 1

VC  POST MEAN OF OBSERVED VC  POST MEAN OF OBSERVED CORR

1 11.06165533344822 1.00000000000000000000

Multiple Trait Model

The data for mouse body weight and feed intake were analyzed with a multi ple trait animal
model. The model for body weight included additive (dired) genetic &fed and ore uncorrelated
randam effed. The datainclude 284 olservations for body weight. Additive dired genetic efed
of animal and alitter effed arein the model. One wvariate and ore fixed effed werefit. Litter
sizewasincluded as a mvariate and generation was considered afixed effed. The model for feed
intake dso included dired genetic efed and ore uncorrelated randam effed. There were two
fixed effedsincluded: litter size and generation.

Note that litter sizeisincluded as a variate for one trait and afixed effed for the other.
The use of fador as a wvariate andfixed effed is passble because there aetwo fields st for the
same dfed - onein the veaor of integers and ore in the vedor of red values. If the same dfed
isnat to be used for two traits in the same analysis the samefield can be used asa wvariate in ore
anaysisand afixed effed in asecondanalysis by pladng thefield in alocaionwhereit can be
included in thered values for thefirst analysis and as an integer in the secondanalysis.
MTGSPREP

For this example, the option to write summary informationto MTGS81 for levels of fixed
fadors was enabled for all fixed effeds. The optionwas enabled for the uncorrelated random
effed for body weight and dsabled for feed intake. The amwmplete list of answers to the interadive

questions foll ow.

mouse.dat name of datafile

Mouse data from Karin Meyer

Multiple trait analysis of

Body Weight and Feal Intake

* end d comments

7 number of integers on ead line of the datafile
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3
2

Body Weight

2
0.
1
Litter Size
1
1
1
Generation

Litter

7

1

Fed Intake
3

0.

0

2

Litter Size

6
1
Sex

tter

PRPONCPFRORO

number of reds onead line of the datafile

number of traitsin the analysis

name of trait 1

pasition d trait 1 in vedor of red values

value of missng observation for trait 1

number of covariatesfor trait 1

name of covariate 1

pasition d covariate in vedor of red values

maximum power of covariate

number of fixed effedsfor trait 1

name of fixed effed 1

pasition d fixed effed 1 in vedor of integers

write summary of fixed effed 1 levelsto log file (MTGS82)
pasition d animal effed in vedor of integers

number of animalsin relationship matrix (from MTGSNRM)
include seoondanimal effed for trait 1: 1=yes, 0=no
number of uncorrelated randam effeds for trait 1

name of uncorrelated randam effed

pasition d uncorrelated randam effed in vedor of integers
write summary of uncorrelated randam effed to log file (MTGS82)
name of trait 2

pasition d trait 2 in vedor of reds

value of missng observation for trait 2

number of covariatesfor trait 2

number of fixed effedsfor trait 2

name of fixed effed 1

pasition d fixed effed 1 in vedor of integers

write summary of fixed effed 1 levelsto log file (MTGS82)
name of fixed effed 2

pasition d fixed effed 1 in vedor of integers

write summary of fixed effed 2 levelsto log file (MTGS82)
include seoondanimal effed for trait 1: 1=yes, 0=no
number of uncorrelated randam effeds for trait 1

name of uncorrelated randam effed

pasition d uncorrelated randam effed in vedor of integers
do nd write sum. of uncorr. randam effed to log file (MTGS82)
write labels for covariates and fixed effedsto MTGS45
write labels for uncorrelated randam effeds to MTGS46
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Resultsin MTGS82:
Started 11:36:13.52 on 04/14/1995

+++++++
PROGRAM "MTGSPREP" - Setup MME for Gibbs sampling

Last revised ALPHA VERSION
+++++++

Data set description :
Mouse data from Karin Meyer
Multiple trait analysis of
Body Weight and Feed Intake

No. of data lines in Unit 31 = 284

No. of integer variables per record = 7

No. of real variables per record = 3

No. of traits = 2

No. of valid records = 568

No. of animals with valid records = 284

No. of animals in A-1 = 329

Order of MME = 755

Results for trait 1 - Body Weight (position 2)

No. of records = 284 (missing value:  .0000 No. missing= 0)

Trait Mean SD CcVv Min Max Std Min Std Max
1 24.0687 3.30236 13.72 14.600 34.500 -2.87 3.16

No. of covariates= 1
1. 1 regression coefficients for Litter Size (MME rows: 1- 1)

Statistics for covariates:
Cov. Mean SD CcVv Min Max Std Min Std Max
1 4.47887 1.64829 36.80 1.0000 7.0000 -2.11 1.53

No. of fixed effects = 1
1. 3levels for Generation (MME rows: 2- 4)
Level Value No. % Mean
1 1 93 32.75 23.724
2 2 84 29.58 23.063
3 3 107 37.68 25.158
No. of animals in A-1 = 329 (MME rows: 14 - 342)
No. of 2nd animal effects= 0
No. of uncorrelated random effects = 1
1. 42levels for Litter (MME rows: 672 - 713)
Level Value No. % Mean
1 1 8 2.82 23.800
2 2 7 2.46 23.014
3 3 5 1.76 22.880
4 4 7 2.46 24.129
5 5 8 2.82 21.687
6 6 8 2.82 18.300
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7 7 7 246 25471
8 8 7 246 27.186
9 9 7 246 23.514

10 10 8 2.82 28.375
11 11 7 246 22.943
12 12 6 2.11 23.467
13 13 8 2.82 23.750
14 14 8 2.82 24.212
15 15 4 1.41 25.400
16 16 8 2.82 19.113
17 17 6 211 27.317
18 18 8 2.82 23.850
19 19 6 211 24.750
20 20 6 2.11 25.067
21 21 4 1.41 21.925
22 22 6 211 21.033
23 23 5 1.76 24.180
24 24 8 2.82 23.537
25 25 7 2.46 22.386
26 26 8 2.82 19.462
27 27 7 2.46 24.843
28 28 7 246 25.429
29 29 8 282 25.175
30 30 8 2.82 22.950
31 31 7 2.46 25.457
32 32 8 2.82 23.450
33 33 6 2.11 23.983
34 34 2 .70 32.650
35 35 7 246 26.757
36 36 5 1.76 25.160
37 37 6 211 25.167
38 38 7 246 26.414
39 39 7 2.46 24.443
40 40 6 211 24317
41 41 8 2.82 26.688
42 42 8 2.82 25.063
Results for trait 2 - Feed Intake (position 3)
No. of records = 284 (missing value:  .0000 No. missing= 0)

Trait Mean SD cvVv Min Max Std Min Std Max
2 64.2556 5.93258 9.23 46.900 82.100 -2.93 3.01

No. of covariates= 0
No. of fixed effects = 2
1: 7 levels for Litter Size (MME rows: 5- 11)
Level Value No. % Mean
1 1 11 3.87 58.355
2 2 41 14.44 61.578
3 3 25 8.80 65.020
4 4 36 12.68 61.531
5 5 96 33.80 65.286
6 6 45 1585 66.242
7 7 30 10.56 66.433
2:  2levels for Sex name (MME rows: 12 - 13)
Level Value No. % Mean
1 1 150 52.82 61.392
2 2 134 47.18 67.461
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No. of animals in A-1 = 329 (MME rows: 343 - 671)

No. of 2nd animal effects= 0
No. of uncorrelated random effects = 1
1: 42 levels for Litter (MME rows: 714 - 755)

Summary of data and mixed model equations

Trait 1-Body Weight No. of records = 284 (No. missing= 0)
Trait 2 - Feed Intake  No. of records = 284 (No.missing= 0)

Trait Mean SD (®4Y) Min Max Std Min Std Max
1 24.0687 3.30236 13.72 14.600 34.500 -2.87 3.16
2 64.2556 5.93258 9.23 46.900 82.100 -2.93 3.01

Order of MME = 755

Number of covariates = 1

Trait No. Name Position Coeff. Rows
1 1 Litter Size 1 1 1- 1

Number of fixed effects = 3

Trait No. Name Position Levels Rows
1 1 Generation 4 3 2 - 4
2 1 Litter Size 6 7 5- 11
2 2 Sex name 5 2 12- 13

Number of animal effects (# traits) = 2

Trait No. Name Position Levels Rows

1 1 Animal w/ full A-1 1 329 14 - 342
2 1 Animal w/ full A-1 1 329 343- 671

Number of uncorrelated random effects = 2

Trait No. Name Position Levels Rows
1 1 Litter 7 42 672- 713
2 1 Litter 7 42 714 - 755

Files written:

MTGSA41 (ascii): Model information

MTGS42 (binary): Recoded W=X:Z elements

MTGS43 (binary): W summary for each animal
MTGS44 (binary): Blocking information by animal
MTGS45 (ascii): labels for covariates and fixed effects
MTGS46 (ascii): labels for uncorrelated random effects

The elapsed time was: 00:00:00.66
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MTGSRUN
Answers to the interadive questions asked by MTGSRUN.

1 type of run - new analysis
Mouse data from Karin Meyer

Multiple trait analysis of

Body Weight and Feed Intake

blank line needed for pressenter prompt

1 7.87 animal effed prior value (03,)
2 2.50 animal effed prior value (O 40)
3 9.99 animal effed prior value (03,)
0 0 end d genetic (co)varianceinpu
1 values are wrred: 0=no, l=yes, 2=redisplay
9 genetic (co)variance priors ape parameter
blank line needed for pressenter prompt
0 covariances among groups of uncorr. randams to restrict to zero? (0=no, l=yes)
1 1.38 uncorrelated effed starting value (03,)
2 -1.58 uncorrelated effed starting value (0, ¢,)
3 2.98 uncorrelated effed starting value (02,)
0 0 end d uncorrelated randam (co)varianceinpu
1 values are mrred
9 uncorrelated randam (co)variance priors sape parameter

blank line needed for pressenter prompt
0 covariances among groups of uncorr. randams to restrict to zero? (0=no, l=yes)
1 2.66 residud effed starting value (03,)
2 2.61 residud effed starting value (Og; g,)
3 11.13 residud effed starting value (03,)
0 Oend d residua (co)varianceinpu
1 values are mrred

9 residual (co)variancepriors ape parameter

200 rounds of GaussSeidel iteration

1.d5 convergence citeriafor Gauss Seidel

500 rounds of Gibbs sampling (including burn-in)

100 rounds of burn-in before writing samples

20 frequency of writing Gibbs ssmples

10 frequency of chedpainting

0 write out al solutions with samples (0=no, 1=yes)

0 write out spedfied contrasts with samples (0=no, 1=yes)

8939 20902 sedls for randam number generator
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Note that similar to the single trait example, the number of rounds of Gibbs samplingisVERY
SMALL andisused herejust for demonstration pupaoses. The burn-in and frequency of writing

samples are dso chasen orly for demonstration pupaoses.

Resultsin MTGS83:

"MTGSRUN?" - Multiple trait Gibbs sampling program
Last revised ALPHA VERSION

Started 14:10:08.26 on 04/14/1995

Mouse data from Karin Meyer
Multiple trait analysis of
Body weight and feed intake

This is a new analysis - not a continuation

The prior distribution of genetic variances and covariances was an
inverted Wishart distribution with shape parameter: 9 and with
expected value:

Al A2
Al: 7.8700
A2 : 2.5000 9.9900

The prior distribution of variances and covariances for the random
factors coded in column 7 and represented in 2 trait(s) was an
inverted Wishart distribution with shape parameter: 9 and

with expected value:

11 12
1: 1.3800
2: -1.5800 2.9800

The I's correspond to the codes below

RANDOM #
CODE TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME
1 1 Body Weight 1 Litter
12 2 Feed Intake 1 Litter

The prior distribution of variances and covariances for the residual
effects was an inverted Wishart distribution with shape parameter: 9
and with expected value:

R1 R2
R1: 2.6600
R2: 2.6100 11.310

The R's correspond to the codes below
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CODE TRAIT # TRAIT NAME
R1 1 Body Weight
R2 2 Feed Intake

There was a maximum of 200 rounds of Gauss-Seidel iteration done
before starting Gibbs sampling.

A value of .100000D-04 was used to determine convergence of
Gauss-Seidel iteration

There were 100 rounds burn-in run before using the Gibbs
sampling done before using the results

There were 500 total rounds of Gibbs sampling including
the burn-in period

Results were written out every 20 rounds.
Checkpointing information was written out every 10 rounds.
The two random number generator seeds used were: 8939 and 20902

Gauss-Seidel iteration converged in round 125
with a convergence criteria of .986327D-05

For the genetic and independent random effect and residual
(co)variance components several estimates are provided. The first
column contains the posterior mean of the expected value of the
component. The second is the posterior mean of the observed values.
The final column contains the posterior mean of the observed values
for heritability (genetic effects) or fraction of phenotypic variance
(independent randoms and residual) on the diagonal and correlations
below the diagonal. For phenotypic (co)variance components only the
posterior means of the observed components and the correlations are
given.

If a (co)variance has been held constant, only the values and the
means of the observed "heritabilities" and correlations are given.

GENETIC (CO)VARIANCE COMPONENT ESTIMATES
A correspond to direct effects, M to second animal (e.g., maternal) effects
For example, M3 is second animal genetic effect for trait 3

Al A2

A2: 2 3

VC POST MEAN OF EXP VC POST MEAN OF OBS VC POST MEAN OF OBS CORR

1 7.6128712242734 7.6244012978318 .625885316788609700
2 2.6353199371560 2.6135917088905 .317260115589680000
3 8.6969256552332 8.6940402984235 .361645393507590000

INDEPENDENT RANDOM EFFECT (CO)VARIANCE COMPONENT ESTIMATES
The random factors coded in column 7 are represented in 2
trait(s) as follows:
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RANDOM #

CODE TRAIT # TRAIT NAME W/IN TRT RANDOM EFFECT NAME

1 1 Body Weight 1 Litter
2 2 Feed Intake 1 Litter
I's correspond to the codes listed above
11 12
m: 1
2: 2 3
VC POST MEAN OF EXP VC POST MEAN OF OBS VC POST MEAN OF OBS CORR
1 1.5107549042936 1.5015300872335 .123695539121797300
2 -1.6584116514526 -1.6350729678939 -.752155531137562700
.136756123538846000

3 3.2795626422993 3.2759175761303

RESIDUAL (CO)VARIANCE COMPONENT ESTIMATES
The residual effects are represented in 2 trait(s) as follows:

CODE TRAIT # TRAIT NAME
R1 1 Body Weight
R2 2 Feed Intake

R's correspond to the codes listed above

R1 R2
Ri: 1
R2: 2 3
VC POST MEAN OF EXP VC POST MEAN OF OBS VC POST MEAN OF OBS CORR
1 2.9159545081281 2.9374446952519 .250419144089593200
2 2.5894656720673 2.5956383897162 .440715557884698400
11.919454743307 .501598482953563200

3 11.932969999529
PHENOTYPIC (CO)VARIANCE COMPONENT ESTIMATES

CODE TRAIT # TRAIT NAME
P1 1 Body Weight
P2 2 Feed Intake

P's correspond to the traits listed above
P1 P2
P1: 1
P2: 2 3

VC POST MEAN OF OBSERVED VC

POST MEAN OF OBSERVED CORR

1.00000000000000000000

1 12.06337608031729
2 3.574157130712805 .21073590131847460000
3 23.88941261786115 1.00000000000000000000

40



Contrasts

The multiple trait example will be used to demonstrate the use of contrasts. Unlike the
MTDFREML program, when using the MTGSAM program the contrasts must be spedfied at the
beginning of an analysis. Thisisbecaise the mntrast value is written ou as the Gibbs samples
are written rather than oltained as a solution to the mixed model equations using the final
variance @mporent estimates. Asaresult, the mntrasts acourt for uncertainty of other
parameters in the model when the distributionis estimated. It isimportant that the contrast be
estimable. Thereisnotod to determine expeded values of solutions, the MTDFREML
programs may be used to evaluate expedations and estimabilit .

Only the dhangesintheinpu datawill be given. The cntast information is written to
MTGS83, and orly the information additional to that previous given will be presented. The
following lines replacethe line on page 38, 42with the label "write out spedfied contrasts with
samples.”

write out spedcified contrasts with samples: 0=no; 1=yes

number of contrasts

number of elementsin the wntrast 1

1. equation number of solutionfor contrast and coefficient for element 1
number of elementsin the cntrast 2

. equation number of solution for contrast and coefficient for element 1
-1. equation number of solution for contrast and coefficient for element 2
number of elementsin the contrast 3

equation nunber of solutionfor contrast and coefficient for that solution
equation nunber of solutionfor contrast and coefficient for that solution
number of elementsin the contrast 4

equation nunber of solutionfor contrast and coefficient for that solution

N W
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CHAPTER THREE: Theoretical Considerations for
MTGSAM

Mixed Models
In matrix notation the general mixed model for an observation vedor, v, is:
y=XB + Zu + e, where
3 = vedor of fixed effeds associated with recordsiny by X, and

u = vedor of randam effeds associated with recordsiny by Z,

y XB y Z37'+R ZX R
Elu|l=| O |, andVar|u|= 27" 2 0
e 0 e R 0 R

(GDA) 0
>= 0 a[pp | ,and
ojop 1, ]
R=0R’,
j=1

wherei correspondsto the group d uncorrelated randam eff eds which are mmmon aaosstraits
(e.g., materna permanent environmental effeds), D, describes the (co)variances among those
randam effeds aaosstraits for an animal, R} is the matrix of (co)variances of residuals for the
traits measured onan animal j, r, isthe number of levels of randam groupi, nisthe number of
animals, and [ and [J correspondto the dired product and dred sum operators, respedively (see
Seale (1982 for adescription d these operators). Note that for an animal with all traits
measured R; = j@le , Wwhere R, isthet; x t; covariance matrix among residuals for block j of the
residual effeds and p isthe number of blocks of residual effeds. The blocks correspondto
uncorrelated randam effeds for diff erent traits that are aoded in the same @lumn in the original
data(e.g., permanent environmental eff easin multiple traits). The blocks for uncorrelated
randam and residual effeds can be divided by the user when GSFREP isrun. Thedivision d the
blocks correspondto groups of traits that are not observed onthe same animal, e.g., sex limited

traits such as milk production and scrotal circumference
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Define2,=GUAand2;=D; U I ,thenX = iéozi,whereyisthenumber of groups of
uncorrelated randam effeds. In addition, defineu’ = [u{) uj---u ] where u,, corresponds to the
genetic éfeds, and u; to the uncorrelated randam effedsin bock i, for i > O.

In many animal breeding applicationsfor asingletrait analysis, u isavedor of brealing
valueswith V(u) = G = Ao}, where A is the numerator relationship matrix and o is the alditive

genetic variance (variance of breeding values) andR =162,

Henderson's Mixed M odel Equations
Henderson's mixed model equations (e.g., 1950, 1963, 1975, 198dmplify for many

situations the cdculation o ﬁ and . Ingenera form the MME are:
X'RIX  XR?z |B|_[XR?y
ZR*X Z'R7'Z+zZ7'|0 Z'Ry
The eguations will also be written as Cs=r. Although R is of order the number of records,

R is usually assumed to be diagonal for single trait analyses, often 102, and Hock diagonal (blocks
of order of number of traits) for multiple trait analyses, so that caculations with R are eay.
Henderson et al. (1959 proved the f3 from these equations are BLUE as from generali zed | east-
squares and Henderson (1963 proved the U are BLUP.

Bayesian Variance Components M odel
Prior Distributions

To fully speafy the model for estimates of variance ®mporents additional assumptions
must be made. First, the prior distributions for the dfeds in the model must be determined.
These programs were developed using a"flat" prior distribution for the "fixed" effeds, that is,
thereisno prior knowledge &ou these dfeds. Next, the randam effeds are asumed to be
normally distributed. For the genetic dfeds there will be an additional assumption d aknown
covariance structure anong those randam eff eds correspondng to the relationship matrix.
Finally, theresidual effeds are assumed to distributed namally. These asumptions are the same
as those used with most likelihood tased methods. In addition, these assumptions result in BLUE
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and BLUP solutions for fixed and randam eff eds when variance mmporents are known (Gianda
and Fernando,1986 Gianda, Im and Macelo, 1990).

The animal and secondanimal effeds are assumed to have non-zero covariances that can
be estimated for al trait combinations. Covariances among uncorrelated randam effeds edfied
for different traits may be non-zero orly if those dfeds are aded in the same @wlumn dof the
original dataset. As e in Chapter 2, the user can speafy that some of these mvariances are to
be restricted to zero.

The family of prior distributions for the (co)variance mmporents are dhosen mainly for
computational simplicity. The inverted Wishart (IW) distributionis used for (co)variances. The
Wishart density describes the distribution d sums of squares and crossproducts of standard
normal randaom variables (RVs) (Odell and Fieveson, 1966, andif X isaWishart RV, then Xt is
anIW RV. Intheunivariate cae, this corresponds to an inverted Chi-square distribution.
Although ather distibutions could be used, the Gibbs sampling algorithm would be more cmmplex.

If T isdistibuted asan IW variable, i.e., T ~ IW(V,v), then the form of the distributionis

(T, V) = KO,V T2 expltr(~2v T ),

T,V>0,v>m+1,
where,

K(v,v ) =|v® 2’“(2‘“)““ ¥ 4m(m) ﬁ F(T’l)jl
j:

(Johrsonand Kotz, 1979. The parameter v isan integer variable andisreferred to as the shape
parameter, correspondng to the degrees of freedom of the mrrespondng Wishart RV and
representing the degreeof certainty for the prior distribution, and the matrix V describes the
variance-covariance structure of the variables. Finally, m isthe number of correlated randam
vedors (dimension d V). Themean of T isV~Y(v - m - 1) (Johrson and Kotz, 1979. Inthe
MTGSAM programsV is cdculated such that the expeded value of prior density of the genetic
(co)variancematrix is equal to the value entered interadively. For example, for the genetic
(co)variance matrix, the mean value spedfied by the user is G,,, then V* = v'G,, where

vi=v-m-1.
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Some previous Gibbs ssmpling work has been dore using flat prior distributions for the
variance mmporents (Wang et a., 1994 Jensen et a., 1995. Work by Hobert (1994) indicates
that the joint distribution daes not always exist when flat priors are used for the variance
comporents, resulting in spurious results from the Gibbs sampler. Further work needsto be dore
to determine when flat priors can safely be used for variance @mporents.

Joint Posterior Density

Thejoint posterior desity can be written as the product of the prior and condtional
densities previously described. The joint density of the parameters given the data and the prior
informationis:

f(B,u,G,Dl,DZ,...,Dk,R|y,vg,Go,vd1,Dol,...,vdvDoy,vrl,Rol...,v

0f(B,u,G,D;,D,,....D,,R,YIVg, GV, . D, v-v-1Vg Do, 1V R, oV
\

Of(yIB,u,R)xf () xf(ulZ) xf(Glvy, Go) x [ [f(Dilvs .Dg )] ¥
1=1

OJR[™ x exp{—%(y -XB —Zu)’ R™(y-XB —Zu)}

x|z ™ xexp{—%u'i‘lu} x|G[ 2o xexp[tr( —V—2‘9’ GOG‘ln
Y [ vy +my + .
X |:| |Di|‘§(vdi g +1) xexp(tr[ —V—Zdi DOi Dlljj]

e [ =3(v, +m, + V: -
X D |R| 2( i FMy 1) xexp[tr[—?'ROiRi l)]]
' 3.1

Next, severa dired product and dred sum results are presented that are used to smplify the form
of the joint density (from Seale, 1982):

[ADB=|A|B
=|Al"lB’

mxm

A, OB

s -1, — 1 v -1 —_ ! g5 -1
uzlu=u'| 0z, u—zuizi u,
=0 =5
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Applying these results,
f(B.U,G.D;,D,,.... D RIY. Vg, GV, Do, Vg Do WV RV LR, )

O|R[™ x exp{—%(y -XB —Zu)’ R™(y-XB —Zu)}
L T )
-l [ exp[tr[_v_; D, Dilm
=1 L 2 i
x ﬁ _|R [Hveeme ) xexp[tr[—v—z*“ RORI1D]

OlR[™ xexp{ “(y-XB Zu) ‘1(y—XB—Zu)}

x|G|-n/z xexp{—%U{)(G‘l 0 A—l)uo} x|G|—%(vg+t+1) xexp[tr[ —V_29 GOG—l)J
y *
-1, /2 _ 1 .,/ .- 3(vg; +mg; +1) _Vdi -
x D D| xeXp{ Eui(Dilm In) } D[ * xexp(tr( 7DoiDilD

I_l{ 3(v, +m, 1)xexp[tr[—%RoR,1D].

— 1<

[3.2
Considering one subvedor, u; , this can be further partitioned into m, subvedors as foll ows:
;:[ui'1 up e u'imd. ] Finaly, define
g11 ng glt
G.1: g21 g22 g2t and
o gt g
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Then u,Z;u, can berewritten asfollows for i = 0:

Ug

1
-1 ] [ ' -1 -1 UOZ

uOZOuO=[u01 Up, - uot][G A ] :

Ug

— 411 -1 12 -1 21 -1

=g U A Ug g 7UG A UG, + o +gT UG A UG
22 -1 tt -1

+g7ug A Uy t+ - +gTU A U

t

i giiUE)iA_luoi

1=1 =1
=r(S,G ™).
Next, define
1,my.
d;Ll d_;I.Z di My,
R L
Dt =] L ‘.| and
gme 1 g 2 g Mai M
i i i
"1 I ’il i "1 Img;
|’2 I :2 i 12 7 Iy,

u_u, u; u_ - U

Imdi I lmdi 12

Then, u,Z*u; can be rewritten as followsfor i > O:
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uZ'u, =ui(Di ol, )ui
:di“ui’luil +di12u.' ug + - +d*u’ u.
+dP?uj U+ e +d ™0

di My;

3 3

=tr(S;D;).

Similarly, let e = P(y-X[3-Zu), such that €' = [e’1 €, ---e‘p], where e isthe vedor of residuals for

block i of the residual (co)variance matrices and P is a permutation matrix that simply reorders the
elements of the vedor so that the residuals are ordered by trait within animal within residual
block. The matrix P is smply an identity matrix with the columns (or rows) reordered; one
property of a permutation matrix isPP'= PP =1. Then,
var(e) =R =PRP’,
PRP=P'PRPP=IRI =R,
R|=|P'RP| = |P'|R|P|=|R|P|P|=|R|P'F =|R]|,and

[Q[Ri‘lﬂlni]] |‘||R‘1D|

The number of traits represented in € ist, and the number of animals represented isn.. It is

RI=[R|=

|R'1|

asuumed that aresidual effed is present for all traits contained in ablock if an animal is
represented in that block, although an animal is not assumed to be represented in all residual
blocks. Theimpad of missng traits onthis requirement will be discussed in the next sedion on
full condtional distributions. Define g asthe residuals for the traitsin block i and animal j and
6,k aselement k of g ;. Further define

11 12 Lt
rl ri rl
21 22 2.t
_ r I r=
R : 1 - i |. i ’ and
phidl o pti2 plidt
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ei',lei,l e'i,lei,z ei,1ei,t
_ ei',zei,l e'i,zei,z ei,2ei,t

ei',tiei,l e'i,tiei,Z éi,tiei,ti
Then, (y-XB-Zu)' R (y-XB-Zu) can be rewritten as

(y=XB-Zu) R™(y-XB-2Zu) —¢Rle

e gpl[R;l ai, ]]e

p

=Y e[R*O1, ]e

Then finally,
£(B,U,G,D;,D,..... D RIY, Vg, Go Vg, Do sV Do WV, Ry VLR |

Al 1 e -3((y +5)e7)

[0 e ~L(vio, +5)or)

£ I(n;+v, +m, + * _
X I_l |:|Ri|_2( Vg +mg +1) ><exp{—%'[l’((vriR0i +Qi)Ril)H.

1=1

[3.3
Full Conditional Densities
The full condtional densities required for GS can be derived from the diff erent versions of

the joint posterior density, i.e., [3.1], [3.2], and[3.3], by treaing the known parameters as
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constants and reorganizing the remaining variables into the form of the kernel of arecognized
density.
Fixed and random effects

First, the condtional distribution d the "solutions" of the mixed model equations (i.e., the
"fixed" and random effeds) will be obtained. A useful result from the form of the mixed model
equationsis:

o IXRI™  XR7'z B
sCs=[p v ]_Z'R‘lx Z'R7Z+ z'l}m

o IXR™ XR?*Z[B] .., .40 OB
1B u]_z'R—lx z'R-lz}[u}L[B u]{o z‘l}m

=sW'R'Ws+u'Z "u, where
w=[X Z].

Then, the condtiona distribution d the solutions, s=[B' u]", can be written as
f(dR,G,D,,D,,...,D\,y)

O exp{—%(y - WS)' R (y- Ws)} x exp{—% u'Z‘lu}

0 exp{—%(—y'R "Ws-sW'R'y+SW'RWs+u'X ‘1u)}
1 4 r ] -1

O exp{—;(s Cs-2sW'R y)}

Constants with resped to s are alded to complete the square for the quadratic form and the density

rewritten as

f(§R,G,D,,D,,...,Dy,Y)

O exp{_%(S'CS— 29W'R _ly)} X exp{—%(y'R —1wc—1W, R _1y)}

O exp{— % ((s - §)’ C(s- 5))} where

5=C'W'RYy,

Thisisthe kernel of anormal density, and therefore,
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JR,G,D;,D,,....D,,y ~N(5,C™).
[3.4

A result for conditional normal distributions

A result that will be useful in oltaining condtional distributions for individual fixed or
randam effeds or for subveaorswill be derived. The mndtiona distributionfor agroup d
randam variables can be derived using partitioned matrix results (Seale, 1982 and the form of
the condtiona normal density (seeSeale, 1971for example). The result will be derived for the
spedal case of the multivariate normal distribution having the form x ~ N(C*r,C*). The
derivation will be dorefor the first group d elementsin x, bu thisis done withou lossof
generality, becaise the order of the dementsin the vedor is arbitarary and can be changed using a
permutation matrix to reorder the dements in the mean and variance. Consider the partition o C
andr suchthat r' = [rl' r;] and C is partitioned such that the leading subdagonal is of the same

order asr,. Then,

C= ,andC ™ = .
S T F' H

H=(T-SQ7) ",
E=Q*+Q (T -5Qs) sQ™
=Q'+Q'SHS'Q*,and
F=-Q YT-5Q7%)"
= -Q7'SH.

From Seale (1982:

Then, the mean of thedistributionis
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FH
[E Fr,
5 ol
[ Er, +Fr,
:_F’rl+HrJ

_[(@*+Q7sHSQ™)r, -Q*sHr,
~HS'Q'r, +Hr, '

EF}
= r

Next, the form of the condtional normal isrequired. Based onSeale (1971)), if

. = [Xl} 5 N[(ul}(vn Vlzﬂlthen'
X2 p‘Z V21 V22

X1|X2 - N[Ul +V12V2_21(X2 _U2)’(V11 _V12V2_21V21)]-

[3.9
Finally,
X4, ~ N(U3, V1),
where
“1 =p, +FH _1(X2 _uz)
=((Q"+Q'SHSQ™)r, ~Q'sHr, )
~Q'SHH *(x, ~(-HS'Q™™r, +Hr,))
=Q7r, +QSHSQr, ~QSHr,
-Q'x, ~Q'SHS'Q'r, + Q SHr,
= Q_lrl —Q_lSXZ
and
V,, =E-FH'F'

=Q ' +Q7SHS Q™ - (-Q'SH)H*(-HS'Q ™)
=Q7+Q7SHS' Q™ -Q7SHS' Q™
= Q_l_
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If this result is applied to the vedor of fixed and randam effeds,

51|52 - N(CE(H - C12%)’Cl_i)’
[3.6]

where
C — |:Cll Cle|
C21 C22

The ondtional distributions for the fixed and random effeds will also be mnsidered
individually.
Fixed effects

First, considering only termsthat involve B, the full condtional density of the fixed effeds

f(Blu,R,y)
O exp{—%(y -XB —Zu)’ R (y-XB —Zu)}
O exp{—%(—y'R‘le —B'RIX'y+B'X'R'XB+B'X'R'Zu+u'Z'R ‘1x3)}

O exp{—%(B’X’ R'XB-2B'X'R(y- Zu))}

Constants (with resped to 3) are alded to compl ete the quadratic from, and the density can be

written as:

53



f(Blu,R,y)
O exp{—%(B'X’ R™XB-2B'X'R™(y- Zu))}

x eXp{—%(y —Zu)' RTX(X'R ‘1X)_1X’ Ry~ Zu)}

O exp{—%[(ﬁ —(X'R—lx)-lx' R™(y- Zu))

0 exp{—%[(ﬁ - E)' (X'R™X)(B- E)]}

whereB = (X'R*X) " X'R *(y - Zu).

(X'R™X)(B-(X'R™X) X' R*(y- ZU))]}

Thisisthe kernel of anormal density, and therefore,

Blu.R.y~N(B,(X'R ‘1x)'1).

Note that this result can also be obtained by applying the spedal form of the condtional normal,
[3.6, to the form of the full condtional distribution d the fixed and randam effeds, [3.4].
Random effects

Next, considering only terms that involve u, the full condtional density of the randam
effedsis:

f(ul,G,D,,D,,....Dy,R,Y)
O exp{-%(y -XB —Zu)' R (y-XB —Zu)} x exp{—%u'i‘lu}
O exp{—%(u'Z'R TZu+2u'Z’RXB-2u'Z’RYy +u's ‘1u)}
0 exp{—%(u'(Z'R‘lz +Zu-2uZ’RH(y - xB))}.

Constants (with resped to u) are alded to compl ete the quadratic from, and the density can be

written as:
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f(u|B,G,D,,D,,....D,,R,Y)

0 exp{—%(u’(Z’R “Z+I M u-20Z’R7(y - XB))}
x exp{—%((y ~XB) R'Z(zRZ+3%) " 2R (y- XB))}

O exp{—%((u —‘u)' (ZR7Z+Z7)u- U))},

where T = (Z'R*Z +2 %) Z'R™*(y - XB).

Thisisaso the kernel of anorma density, and therefore,

ujB.G.D,.D,,...D, ,R,y~N(T,(ZR7Z+37)")

[3.7]

Blocking random effects

A blocked Gibbs sampling algorithm is used to generate dl genetic efedsfor an animal as
well as associated urcorrelated randam effeds smultaneously. For example, for dairy cédtle data
with multi ple ladations recorded, dten a permanent environmental effed isincluded to acourt
for non-genetic, animal spedfic, randam effeds. The permanent environmental |evels would
correspondto the animal levels, that is, the level for animal identification and permanent
environmental (PE) effed would be coded in the same wlumn o the original data set. The
MTGSAM programs would in that case generate the PE eff eds smultaneously with the genetic
effeds. In general, the programs block any uncorrelated randam effed that is coded in the same
column as an animal or seaondanimal effea with the genetic df eds when generating new values,
so that a effedsin the block are generated simultaneously. Generating correlated variablesin
blocks will often increase the mixing rate of the Gibbs ssmpler and reducethe crrelations among
samples drawn. This method seemsto help reduce rrelations among the samples drawn, bu
does nat completely eliminate the highly correlated samples obtained using GS (Van Tas=l,
Casdlla, and Poll ak, 1994 Liu, Wong and Kong, 1994. A correlation can exist between variables
that are asumed to be statisticdly uncorrelated caused by the data structure (i.e., through the least
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squares part of the equations). Intuitively, if the animal and PE effeds are generated individually
then the range of one dfed, say PE, islimited by the aurrent value of the genetic fed. Thisin
turn leads to the animal effed being limited by the aurrent value of the PE, resulting in increased
correlation among sequential rounds of values in the Gibbs sampler, which reduces the dficiency
and convergence of the Gibbs smpler. In models with maternal genetic and permanent
environmental effeds, those dfeds are blocked together; that is the maternal permanent
environmental effed is blocked with the maternal genetic dfed becaise those dfeds are
correlated due to the data structure. Previous results for a maternal effeds model applied to
Simmental weaning weight data suppat this concept, although the diff erence between blocked
and scdar algorithms wererelatively small (Van Tassll, Casella, and Pollak, 1994.

In order to derive the form of full condtional distribution for the block of effeds
additional (still more!) definitions are needed. Let P be apermutation matrix such that

)

where u, are the randam effedsin the block, and u,; are the remaining randam effeds. Then
applying the spedal form of the cndtional normal distribution that was derived, i.e., [3.6], to the
full condtional distribution d the randam effedsin [3.7] resultsin the full condtional
distribution d the block of randam effeds:

Uilu_i ’B’G’Dl’DZ""!Dk’R,y"'N(Gi ;(Pi(Z'R_lZ +z_1)Pi,)_1)’

[3.8

where

U, =(R(ZR7Z+ 2‘1)Pi')_l(PiZ'R"l(y ~XB)-PR(ZR7Z+Z)PLu).

Although this form appeas quite mmplex, it isadualy fairly smple. The variancematrix is
comprised o the gpropriate dements of the aefficient matrix, the mean isafunction d that
matrix and the right hand sides for the same dfeds adjusted for the off- diagonal elements of the
effeds not generated in that block. The adjustments to the right hand sides are based onthe rows

of the oefficient matrix for those blocked elements with the alumns removed for the dements
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included in that block. The remaining matrix is multiplied by the vedor of effeds not included in
the block and subtraded from the gpropriate dement.
Residual effects with missing data

To alow for missng traits, the residual effeds for missng traits must be generated in
order to cdculate quadratic forms for residual effeds and for generating residual (co)variance
matrices. The missng residuals are generated using the form of the condtiona normal
distribution, i.e., theresiduals are cdculated for the observed traits and the missng residuals are
generated using the Gibbs sampler based onthe aurrent values of the (co)variances for that block.
In order to speafy the form of the full condtiona distribution d the missng residual effeds,
asume, withou lossof generdity, that the misgng traits occur in the first variables of a block.

That is, the vedor of residuals can be partitioned as

em
eI’J ) {e }’
(o]

where e, is the sub-vedor of missng residuals and g, is the sub-vedor of residuals for observed
traits. For block i of residual effeds, the residuals are assumed to be distributed namally,
spedficdly,

e|R ~NOR).

Rmm Rmo
R, = ,

om 0o

Let

then, applying the result for the general condtional normal distribution,
eqle, R ~N(R Rye, R ~RRiR, ).
[3.9
Finaly, the full condtiona distributions of the variance mmporents are derived.
Genetic (co)variance matrix

Using the final form of the joint posterior distribution,

—3(n+vg+t+l 1 * -
f(G|u,G0,vg) 0|G| ( ) XeXp(_Etr((ngO +SO)G 1))
Thisisthe kernel of an IW density, spedficdly,
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Glu,G,,v, ~ IW((\);G0 +SO)_l,n+vg).

[3.14

Uncorrelated random effect (co)variance matrices

The full condtional distribution for the matrix of (co)variances for eat group d
uncorrelated randam effedsis
=3(r +vg +my +1) _ 1 * 1
f(DyJu.Dy, v, ) O|D;| xexp( Etr((vdiDoi +S)D; ))
Thisaso isthe kernel of an IW density; spedficdly,
D,|u,Dy v, ~ IW((v;iDoi +s) +vdi).

[3.1]

Residual (co)variance matrices
The full condtional distribution for the matrix of (co)variances for eat group d residual

effedsis

f(Rile.v,.Ry ) O|R,

A ) o exp{_%tr((vl Ry +Q, )Rfl)}'

Thisaso isthe kernel of an IW density; spedficdly,

. -1
Rle.v, Ry - IW((vriROi +Q,) ", +vri).

[3.17

| mplementation of the Gibbs sampler
Based onthe full condtional distributions derived, the GS algorithm used can be ouitli ned

1. Calculate starting values for al variables.

a. Means of (co)variances suppied by the user are used for thase comporents.
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b. Gauss Seidel iteration wsing the starting variance @mporentsis used to generate
starting values for fixed and randam effeds. The user spedfies maximum
number of rounds of iteration and convergence caiterion.

2. Generate fixed effeds from [3.6].

3. Generate genetic efeds and Hocked urcorrelated random effeds from [3.§].

4. Generate uncorrelated random effeds not in ablock from [3.6].

5. Caculateresidual effedsfor traits with observations, and generate missng residuals

from [3.9.

6. Calculate quadratic forms for genetic dfeds, S, from u;)iA‘luoj.

7. Generate G from [3.10.

8. Calculate quedratic forms for eat block of uncorrelated randam effeds, S from u; u; .
9. Generate eat D, from [3.11]].

10. Calculate quadratic forms for ea block of residual effeds, Q; from ge;.
11.Generate eab R, from [3.17.

12. Reped steps 2 through 11 (many times!).

Estimation of Parameter M eans and Posterior Distributions

Typicdly, the mean of a parameter isthe point estimate of interest. There aetwo basic
methods that are used by MTGSAM, depending onthe variable. Thefirst isbased onthe arerage
of the expeded values of the parameter and the second kased onthe average of the sampled
values. For most variables, the expeded value of the parameter is used becauseit isthe Rao-
Bladkwell estimator; i.e., , it isthe minimum variance estimator. The dgorithm is quite simple;
the program determines the total number of samples that will be included in the average, to
determine the denominator of the arerage. The number is sSmply the total rounds of GS minus the
number of rounds discarded in the burn-in phese of the analysis. The variable for the meanis
initi ali zed before the GS algorithm starts. Then, for eat round d post burn-in GS the expeded
value of the parameter divided by the denominator is added to the variable for the mean. The
divisionis dore athe values are added to reducethe likelihood d overflow errors as the number

of values added might be large in some analyses. Thisisat the price of computational efficiency
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aswell, as many divisions are dore for eady mean rather than just one division dore when the
sum is completed. The expeded value used in the cdculation correspondto the expeded value of
the full condtional distributionfor that parameter from which the new value is sampled. There
are caes where the expeded value of the parameter is not known; spedficdly, for functions of
parameters. These include phenatypic variance, correlations, heritabiliti es (or other fradions of
phenaotypic variance), and linea combinations of fixed and randam effeds (i.e., contrasts,
estimable functions, and predictible functions). A simple average of the observed values for eath
of those values are used in that case. For example, to cdculate the mean o the diff erence of two
fixed effeds, the observed dfferencewould be cdculated in ead roundand that value areraged
for al of the post burn-in rounck.

Similarly, a parametric goproach can be used for the estimation o the paosterior distibution
of some parameters. Thisisdonre by cdculating the average height of the condtional distribution
aaossthe range of values for the parameter (Casella and George, 1992. For exampleto cdculate
the posterior distibution o ascdar x, and the full condtional distributionincludes avedor y, then
to determine the estimated pasterior distribution o f(x) caculate for values of x; throughtout the

range of the parameter
f(x)=1 S f(x. |y, ),
(x;) ngl (xily;)

[3.13
Note that the vedors y; correspondto samples from the Gibbs sampler which are assumed to be
independent; this typicdly means that the samples are taken some number of rounds apart in the
Gibbs chain. The distance between using samples to cdculate the posterior distributions will vary
with the data set and the model used.

Because the condtional distribuionfor all parameters canna be written in closed form
aternative methods may need to be used. The margina distribution o individual elements of an
inverted Wishart canna be written in closed form if there is more than asingle variance Recdl
that the inverted Wishart simplifiesto the inverted chi-square with orly one randaom effed. The
parametric goproad can be used with inverted chi-square variables sncethe full condtional

distribution can be written in closed form. One simple dternative isto generate ahistogram of
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the samples drawn for aparameter. The predsion d distribution estimates obtained using these
methods can be dramaticdly different; it takes many fewer points from the Gibbs smpler to
estimate the distribution wsing the parametric goproadh. There ae more sophisticated approadies
than simple histograms avail able for non-parametric density estimation. One exampleisthe
average shifted histogram (ASH) agorithm described by Scott (1992. This method wses a
flexible weighting algorithm to average the height of neighbaring cdlsin the histogram to smooth
the density estimate.

Variance Components
Posterior Mean
The MTGSAM posterior mean estimate for variance @mporentsis based onthe expeded
value of the IW RV. Recdl that if T ~IW(V,v), then E(T) =V*/(v - m-1). Therefore, from
[3.10, [3.1]], and [3.17 the expeded values for variance matrices in agiven round d Gibbs
sampling are cdculated as
VG, +S,

E(CIS:Gorva) = (2 )
g

V4Do +S

(1 +vy =my -1

E(D|S;,Dy .V, ) =
nd ViR, +Q,

E(RilQi’vr"Roi): (n. +v, -m, —1)'

The mean o the (co)variance @mporents were cdculated as the average of these expeded values
over the length of the post burn-in chain.
Posterior Distribution

The MTGSAM program does not estimate the posterior distribution for the variance
comporents. At some later date an additional program may be alded to assst in oltaining
posterior density estimates. Until that time, the ASH programs will be distributed to asgst the
user in nonparametric density estimation. The data neaded to generate the poster distributions for
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the (co)variance @mporentsiswritten to unts 61, 62,and 63. Information abou the format of
those files and haw to estimate those posterior densitiesis given in chapter 5.

It isposgble to use aparametric density estimate only when there is a singe randam effed,
i.e., thevariancematrix isascdar. Inthat case, the full condtional distribution for the variance
comporent is ascded inverted chi-square distrtibution, which can also be written as an inverted

gammadistribution. The form of the inverted gamma (IG(a,y)) distributionis

ool

Foll owing the cncept of [3.13, the posterior distribution can be estimated as a mixture

ig(x|a,y) =

distribution o the full condtional distributions from which the variance mmporent was drawn.

Spedficdly, for avalue, 07, in the range of the parameter:

f(afly) =43 ig(o7l3.2s))

=1
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where s isthe scde parameter of the univariate IW variable (i.e., theinverse of the cmmbined
value representing the sum of squares and prior information for avariance @mporent), v isthe
shape parameter of the IW variable (i.e., the mmbination o the number of levels of the randam
effed and the prior distribution shape parameter), and nis the number of samples avail able to
estimate the posterior distribution. The s values are assumed to be sampled from far enough apart
in the Gibbs ssmpling chain to be dfedively uncorrelated.

Functions of Variance Components
Posterior Mean
The functions of variance mmporents considered by MTGSAM include the phenatypic
(co)variances (sum of appropriate genetic, uncorrelated randam and residual (co)variances),
correlations, and fradion d phenotypic variance acourted for by a particular variance @mponrent
(e.g., heritability (h?), fradion dweto urcorrelated randam effeds (¢?), or fradion die to residual
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effeds (€¢9)). Becaisethe condtional distribution o these functions canna be written in closed
form anon-parametric goproadc isused by MTGSAM to estimate the posterior means for these
values. The posterior means for the parameters are estimated as the mean of the functions
cdculated using the sampled variance omporentsin ead pcst burn-in round d Gibbs sampling.
Posterior Distribution

The MTGSAM program does naot estimate the posterior distribution for functions of the
variance @mporents. The ASH programs can be used for non-parametric density estimation
using the observed values of the functions. The values of those functions of the VCs are not
written to the GSfil es, and, therefore, must be recdculated from the values of the VCs. The
values of the VCs are written to unit 61. Information abou the format of that file and the ASH
algorithm is given in Chapter 5.

Fixed and Random Effeds

Posterior Mean

Recdl that the full condtional distribution o the fixed and randam effedsisanormal
distribution. The paosterior means for those parameters are estimated in MTGSAM as the average
of the means of the normal distribution that the parameter is sampled from in ead o the post
burn-inround d GS. The user deddesif the mean of the fixed and randam effedsis written to
filesin MTGSAM. If requested, them mean estimates of the cvariates are written to unt 71,
animal and secndanimal meansto unt 72,and urcorrelated random effed meansto unit 73.
Posterior Distribution

The variance of the full condtional distribution d the fixed and randam effedsis smply
the inverse of the @mrrespondng diagonal element of the wefficient matrix. Thisistrue even for
the randam eff eds generated in blocks (this can be shown using the form of the condtional
normal distribution). Given the mean and the variance, the paosterior distribution can be estimated
asamixture distribution o normal distributions. The same tedhnique used for the parametric
density estimate for the variance mmporents can be used for the fixed and randam effeds, which

isbased on[3.13. Spedficdly, for avaue, s, in the range of the parameter:
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where |, and o; are the mean and standard deviation, respedively, of the full condtional
distribution o the fixed or randam effed. Again, it is assumed that the samples are taken far
enough apart in the GS chain that the parameters are dfedively uncorrelated.

If requested, the observed values of the fixed and randam eff eds are written to unt 61 and
the mean and variances of the distribution from which the values were sampled are written to unit
62. Theinformationin the file for unit 63 provides information abou how to read those data
files. Information abou the format of those files and haw to estimate those posterior densitiesis
given in chapter 5.

Functions of Fixed and Random Effeds

The MTGSAM programs consider two dfferent linea cominations of fixed and randam
effeds. those based onasingle dfed and those based onmultiple fixed or randam effeds. A
contrast of asingle dement may be used if a particular effed is of interest. An example might be
a cae where the distribution d genetic dfedsfor aseled group d animalsiswanted, bu the
amount of information generated for al animals would be prohibitive (i.e., seleding the option for
writing sample information for solutionsisimpradicle). When the contrast contains only one
effed the program uses the parametric estimate of the mean of the contrast, i.e., the average of the
means of the normal full condtional distributions. In addition, the sample information written to
the unit 62 includes the mean and variance of the normal full conditional distributions, which
allowsfor the parametric estimation d the posterior distribution. When the contrast includes
multiple df eds anonparametric goproach must be used for mean and pasterior density
estimation. The mean is estimated as the average of the sampled values, which are determined by
cdculated the linea combination d sampled fixed and randam effeds gedfied by the mntrast.
These values are written to unt 61. In addition, kecause thereis nofull condtional distribution
for the contrast the mean written to unit 62is smply the observed value of the contrast and the

varianceiswritten as 0.0 so that the user can identify which contrasts can be evaluated using
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parametric tools. Chapter 5 describes the format of files for units 61, 62,and 63aswell as
discussed estimation d posterior distributions.
Posterior Mean

For single dement contrasts the mean is cdculated as the average of the normal full
condtiona distribution for the arrespondng effed. For contrasts based onmultiple dfeds, the
mean is cdculated as the arerage of the sampled values, which are cdculated from the sampled
fixed and randam effedsincluded in the contrast.
Posterior Distribution

To estimate the posterior distribution d a mntrast including asingle éfed one can use a
parametric gpproad based onthe normal full condtional distribution d the fixed or randam
effed (seethe sedion on paterior distributions for fixed and randam effeds) or by using anon
parametric goproacd (such asthe ASH algorithm). The posterior distribution for contrasts based
onmultiple dfeds must be cdculated using some non-parametric method where the observed

values of the contrasts are analysed.
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CHAPTER FOUR: Computational Strategiesfor M TGSAM

MTGSAM consists of threeprograms. MTGSNRM which cd cul ates the nonzero
elements of the inverse of the numerator relationship matrix, MTGSPREP which determines the
non-zero elements of W =[X Z] for ead animal (these dements are needed to buld the MME),
and MTGSRUN which implements the Gibbs sampler for avariety of models.

Because only afew changes were made in the MTDFNRM program to crede MTGSNRM
and because that program foll ows the method d Quaas (1976, the program techniques employed
in that program will not be described here.

MTGSPREP

Most of the MTGSPREP program corresponds to the M TDFPREP program, and much of
the foll owing text is taken from Chapter 5 of the MTDFREML manual. Some of the
modificaions needed for MTGSPFREP will aso be described.

Basicdly, MTGSPREP forms the part of the MM E that isindependent of G andR used in
eat round,i.e, W=[X Z] andy. Notethat in MTDFREML both the data and the @variates are
cdculated as deviations from their respedive means. Aswith that program, MTGSFREP can be
modified to produce ether original or deviated values for eat of these variables. To locate the
appropriate sedion d the program to make modifications, seach for the phrase COVARIATE
DEVIATION or DATA DEVIATION, for the mvariates and data sedions of the program,
respedively. Deviated values for covariates and datawill be used for the example presented later
in this chapter.

With appropriate modification d the include file (GSPARAM.FOR), this program can fit
any number of fixed effeds (bath dscrete and continuows) and randam effeds in addition to the
required animal effed. Models can be different for ead trait and missng observations are
permitted.

MTGSPREP reals the datafil e (unit 31) whichis st up with integer variables foll owed by
red variables. Thisfileisreal in freeformat, so spaces are required between datafields. The

program can be modified to hande ather formatted reads or binary reads by modifying the
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appropriate sedions of the program (two open statements and two read statements). The datafile
isrea twice, first to determine the number of levels for ea dscrete fador and the simple
statistics for ead continuous variable (covariates and traits), and secondto reaode level s of
fadorsto correspondto the equation numbersin the MM E and to expressead continuous
variable @ adeviation from its mean. After the seamndreal of the datathe eguations which are to
be blocked with animal effeds are written to file MTGS44. An equationis blocked with animal
effedsonly if that equationis coded in the same @mlumn asthe animal effed or asecondanimal
effed for a trait.

To ill ustrate the strategy used in the programs, data from Meyer (1991) will be used.
Reaords are body weight (t1) and intake (t2) measured on 284animals. The pedigreefileincludes
45 bese animalsfor atotal of 329animalsin A. For ead trait the dfedsin the model of analysis
include randam animal (&), maternal genetic (m), and maternal permanent environment (pe: 42
levels). Fixed effeds are litter size (Isc: covariate) and generations (gen: 3 levels) for body
weight, and litter size (Isd: 7 levels) and sex (sex: 2 levels) for intake. Thefirst two recrdsin the

datafile (7 integers and 3reds) are:

animal sire dam  gen sex I lit Isc tl t2
20101 11012 10101 1 1 4 1 4.0 22.5 59.1
20102 11012 10101 1 1 4 1 4.0 22.6 0.0

Note that litter size gopeastwicein the data, bah as the sixth integer (Isd) and asthefirst red
(Isc) variable. In addition, intake was deleted for animal 20102to demonstrate the dfed of
misgng data so the field for t2 is coded as 0.0 which is used as the misgng value.

Thefirst step isto run MTGSNRM which forms A and writes the sorted vedor of 329
animal IDsto unt 21 (ascii) and the half stored norzero elementsto unt 22 (binary).
MTGSPREP is then run with the following parameters in inpu file example.in, MTGSPREP is
exeauted using the DOS command mtgsprep.exe < example.in (seepage 13 for a description o

using inpu files rather than entering input values interadively):

67



PREPEX.DAT name of datafile
test of MTGSPREP with km mouse data

2 traits

* end d comments

7 number of integers on ead line of datafile

3 number of reds onead line of datafile

2 number of traitsin analysis

weight name of trait 1

2 pasition d trait 1 in vedor of red values

0.0 value of missng observation for trait 1

1 number of covariates

litter size name @variate 1

1 pasition d covariate 1 in vedor of red values

1 maximum power for covariate 1

1 number of fixed fadors

generation name for fixed fador 1

4 pasition d fixed fador 1 in vedor of integers

0 write summary of fixed fador 1 levelsto log file
1 pasition d animal effed in vedor of integers
329 num. of animalsin relationship matrix (from NRM)
1 include seoondanimal effed

mat gen name of secondanimal effed

3 pasition d secondanimal effed in vedor of integers
1 number of uncorrelated randam fadors

mat pe name of uncorrelated randam fador

3 pasition d uncorr. rand. fador in vedor of integers
0 do nd write summary of uncorr. ran. fador to log
intake name of trait 2

3 pasition d trait 2 in vedor of reds

0.0 value for missng observationfor trait 2

0 number of covariates

2 number of fixed fadors

litter size name for fixed fador 1

6 pasition d fixed fador 1 in vedor of integers

0 write summary of fixed fador 1 levelsto log file
sex name of fixed fador 2

5 pasition d fixed fador 2 in vedor of integers

0 write summary of fixed fador 2 levelsto log file

1 include secondanimal effed

mat gen name of secondanimal effed

3 pasition d secondanimal effed in vedor of integers
1 number of uncorrelated randam fadors

mat pe name of uncorrelated randam fador 1
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3 pasition d uncorr. rand. fador in vedor of integers

0 write summary of uncorr. ran. fador to log file

1 write labels for cov. and fixed fadorsto MTG45

1 write labels for uncorr. randam fadorsto MTGS46

The subsequent steps are:

1. Rea the number of animal IDs from unit 31 and compare to the number entered by the user as

real from thelog of MTGSNRM (i.e., 329. If these numbers are nat equal, the program
terminates because the wrong pedigreefile is probably being used. If the numbers are equal,

the sorted vedor of IDsisread from unit 21.

First read of data:

2.

The 284lines of data ae then read sequentially from unit 31. For ead line, al (7) integer
variables are real into an integer vedor and al (3) red variables are read into ared vedor.
Each o thej = 2 traitsis then processed:
a) If thevauefor thetrait isequal to the missng value (0.0), skip to the next trait.
b) If thevaluefor thetrait isvalid:
i) updetethe court, sum, and sum of squares for eat red variable,
i) compare the dassvalue of ead fixed fador and urcorrelated randam fador (e.g., pe)
to the unique numeric (but unsorted) list of current values dored in memory; if the
level isnaot aready inthelist, it isadded at the end and the number of levels for the

effed isincremented by one.

. After al li nes of data have been read into memory, sort the vedors of levels for eat discrete

fixed and urcorrelated random fador.

Cadculate the mean and variancefor ead red variable.

5. Based onthe sequence of the MM E and the number of levels for ead fador, determine the

starting row of ead fador in the model. The starting row is expressed as one lessthan the

adual position. For the example data the structureis:
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Fadors (starting row MM E)-1 No. rows

t1: linea covariate for litter size 0 1
t1: fixed effed for generation 1 3
t2: fixed effed for litter size 4 7
t2: fixed effed for sex 11 2
t1: randam animal 13 329
t2: randam animal 342 329
t1: randam seandanimal (mat gen) 671 329
t2: randam secondanimal (mat gen) 1000 329
t1: randam materna pe 1329 42
t2: randam maternal pe 1371 42

For this example, there ae 1413equationsin the MME. The meansfor trait 1 are 4.48for the

litter size mvariate and 24.07or weight, and for trait 2 the mean for intake is 64.30.

Second read of data:

6. The 284lines of data ae then reread sequentially from unit 31. For ead line, al (7) integer
variables are read into an integer vedor and al (3) red variables areread into ared vedor.
Eadh o thej = 2 traitsis then processd:

a) If thevauefor thetrait isequal to the missng value (0.0), skip to the next trait.
b) If thevaluefor thetrait isvalid, the value and paition d eat element in W andy isthen
determined:

i) covariates and olservations are deviated from their correspondng means, e.g., the
deviations for the first record are: 4.0-4.478%-0.4789(litter size), 22.5
24.0687%-1.5687(weight), and 59.164.2975-5.1975(intake).

i) theW row position d ead regresson coefficient is determined from the sequence and
order (linea, quadratic, etc.) of the cvariates,

iii) the position d ead discrete fador in W is determined by looking upits pasitionin the
correspondng vedor of sorted levels and then adding this position number to the

starting row positionfor the fador; e.g., for thefirst record, the value of 4 for litter size
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(trait 2) isfoundat position 4in the sorted list of levels (1, 2,..., 6, Yso 4isadded to the
starting position (4) for litter size to give the row positionin W of 8.

7. Let W; bethe dement of W from row i and column j. After ead line of dataisread, the
values and paitions of elementsin W, and the value for y; are written to urit 42 (binary); the
length of W, is determined by the total number of mode! eff eds and the number of valid traits,
and the number of W, rows is equal to the number of valid traits.

8. After all lines of W; have been written to unt 42 for arecord, the wlumn pasitions are written
to unt 42 and asummary for ead animal iswritten to unit 43; thisinformation consists of
number of effeds (rowsin W), datalines, trait combination number (1to 2-1) , and structure
(i.e., pettern of misgng values) of observations for the animal. For the record of animal one,
the values written to unt 42 and 43are (subscript denates trait number; text in parenthesesis

not written):

unit 42 - values and pasitions for W;;:

(Isc) (gen) (Isdy) (sex) (&) (&) (M) (M) (pe) (pe) (V)
(t) -0479 1.0 00 00 10 00 10 00 10 0.0 -1.5687

t) 00 00 10 10 00 10 00 10 00 1.0 -51975
(ow) 1 2 8 12 59 388 692 1021 1330 1372

unit 43 - summary of information for first animal:

(Trait structure)
(No. effeds) (No traits) (code) (py (P
10 2 3 1 1

Trait structure ades are used to indicate the form of R;* to be used in W;R;*'W, and WR;'y,,
and consist of avalue (p) for ead trait of 1 or O, if the trait is present or missng,
respedtively, and a code caculated as 3 (p, x2)" . Intherecord of the secondanimal, trait

=1
2 (intake) is missng so asingle W;; row of five dfedsiswritten to urit 42:

(Iscy (geny) (a) (my) (pey) \A)
(t.) -0.4789 1.0 1.0 1.0 1.0 -1.4687
(row) 1 2 60 692 1330
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The information written to unt 43is:;

(Trait structure)
(No. effeds) (No. traits) (code) (py) (po)
5 1 1 1 0

9. After the data have been read the secondtime, the blocking informationis written to unt 44.
The equations to be blocked with genetic dfeds are determined by finding uncorrelated
randam eff eds coded in the same @lumn dof the original data set asthe animal effeds. In
addition, equations may be blocked with genetic dfedsif atrait has asecndanimal effed
andthereis an urcorrelated randam effed coded in the same data wlumn as the second
animal effed for that trait. Note that the sscondanimal effed can be different for traits (i.e.,
maternal genetic efed or paternal genetic dfeds can befit for different traits). The form of
the data written to unt 44 is animal number (renumbered) and the number of blocked
equations onthefirst line, and the equation numbers to be blocked for that animal onthe

following line. Theinformation for the first animal in the blocking fileis:

(animal) (No. Equetions)
21 2
(equations)
1330 1372

Animal 21 (original ID 1010J) does nat have arecord, athowgh it is present as a dam for the
first group d animalsin the dataset. Asaresult, the materna permanent environmental
effed equations for that animal are blocked with the genetic efeds becaiseit is coded in the
same olumn as the maternal genetic fed for bath traits. Noticethat the maternd
permanent environmental equations are blocked with the DAM nat with the animal having
therecord. Thisisbecause the dependency in the model occurs between maternal genetic and
maternal permanent environmental eff eds (seethe discusson d blocking in Chapter 3 on
page 56).

10. Finally, information describing the models and MM E (e.g., number of traits, starting position
and nunber of levelsfor eadt effed) iswritten to unt 41 (ascii). If requested, the labels for
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covariates and fixed eff eds are written to unt 45 and labels for uncorrelated randam effeds
arewritten to unt 46. A summary of the model and catais then written to unt 82 (MTGS82

in ascii).

MTGSRUN
Linked List Matrix Storage

Several unique strategies were anployed in implementing the Gibbs sampler. First, the
MME are built i ntwo pieces; thefirst part includes the least squares part of the equations (i.e.,
W'R?W) with the X augmented orly for the uncorrelated randam effeds. The G'JA  isnot
explicitly added to this matrix. Instead, ore cpy of A™is gored and wsed in the iterative
algorithm. Define:
Y {X'R‘lx x'R‘lz} +[0 0

= , and
ZR'X ZR'Z 0 Z*}

o o
0 El[DfDIri]'

Sparse matrix techniques are used to store only the non-zero elements of C*. In addition, the
nonzero elements are half-stored to further reduce memory requirements. The non-zero
elements are stored in alinked list form (as described by George and Liu, 1980Q. The
subroutines used to buld the linked list are based onthose distributed with the set of ITPACK
programs, which is a set of programs used to solve sparse linea systems of eguations using
iteration. The universal resourcelocaor (URL) for world wide web (WWW) browsers for
information abou ITPACK and the subroutines is http: //mww.netlib.org/itpack/index.html . The
subroutines are used to acawmulate the non-zero e ements by row and column and then convert
the information to the linked list form. Thelinked list consists of 3 vedors, for example, 1A, JA,
and A, where the vedors are of length at least nr+1, nz, and rez, and dedared as integer, integer,
and doulbe predsion, respedively, and rr is the number of rows (and columns) in the matrix, and
nz is the number of non-zero elements. Element i of 1A isapainter to the starting locaion d the
elementsinrow i. Thelast element of IA isnz+1. The dements of JA contain the alumn

numbers for the non-zero el ements, and A contains the non-zero e ements of the matrix. That is,
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the dements of row i are stored in elements 1A (i) to IA(i+1)-1 of A, and the column identifiersin
the same dements of JA.
To ill ustrate the format, consider the linked li st storage of the upper half-stored elements

of

, then IA =

S = O W
N O U1 O

0
2
1
1

_ W O =
— W N Ul o, W

o g U W o
(-
>
]

= W = N W =
>
Il

4 1
From the linked li st, the dense half-stored matrix can generated from this li st using the foll owing

Fortran statements:

DOI=1NR
DO J=IA(),IA(1+1)-1
DENSEA(I,JA(J)=A(J)
END DO
END DO

An additional subroutine was written to rebuild the MM E withou rebuil ding the linked li st
structure. To dothis non-zero elements are sorted by columns within arow in two groups after
thelinked list isbuilt. Thelist is rted within the blocked equations and within the undocked
equations. Thisallows the linked list structure to be seached to find the locaion d anonzero
element and updite the value. Note that becaise the structure is regycled zero elements must be
stored in locaions where nonzero elements may be generated with dff erent variance matrices.
For example, if the linked list isbuilt using a starting covariance between urcorrelated randam
effeds of zero, the locaion where nonzero e ements could result from non-zero covariances
must be included to al ow reuse of the linked list.

Finally, due to reasons to be outlined when discussng the Gauss Seidel and Gibbs
sampling implementations, there ae some dements of the wefficient matrix which are upper
half-stored, and some lower half-stored. Some dements must be lower half-stored for some of

the blocked equations  that the blocked algorithms function properly.
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In additionto C* being sparse stored, A™ is gored using alinked list. Thismatrix,
however, isfull stored. Full storageisrequired for two reasons. The primary reasonisthat the
implementation d the GaussSeidel and Gibbs sampling algorithms require accssto afull row
or column of A%, which is not possble when the dements are half stored in alinked list.
Calculation d quadratics of the form u'A™u isalso easier with A™ full stored, athoughiit is
possble with the matrix half stored.

GaussSeiddl Iteration

GaussSeide iterationis avail able a an ogtionin the MTGSAM programs to all ow
solutions to be obtained for the MM E for a given set of (co)variances. Define s asthe update
to solutioni in roundk of iteration and negn as the number of equations, then the update
algorithm for Gauss Seiddl iteration can be written as (Golub and Van Loan, 1989:

initializer, the right hand side
fori =1to negn,

g = i[r - i c,s¢ Y — nfc..s(“J
al &' CE

end. [4.7]
Thisform can be rewritten for a blocked algorithm by replaang the scdar elements with blocks
of coefficients. The GaussSeidel iteration agorithm can be considered intuitively as adjusting
the right hand sides (RHS) of the equations for the aurrent value of al the other effedsin the
model (i.e., the off- diagonal elements of the wefficient matrix) and scaing by the inverse of the
diagonal element of the wefficient matrix.

In the cae where the equations are upper half stored [4.1] can be rewritten as.

initializer* asr, the RHS

fori =1to negn,
§K+1) 1 J)
=—r, C;S
Cii( j:lzrl g j
forj=1i+1to negn
W K+1)
r=r —c
end
end. [4.2]

An analogous blocked form of this algorithm also exists. This algorithm accesesthe dements

of the wefficient matrix in an efficient sequencewhen the dements are upper half stored.
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Finally, ahybrid o the two forms of the dgorithm can be generated using the set of
equations where the meffient matrix is not augmented with G*A™ (i.e., C*) and wising G* and
A, First definea’ asrow i of A* with the diagona element, &', removed, s isthe n-1x1

' Si i
vedor of genetic efedsfrom roundk of iteration for trait j with element i removed, andg" is
element i,j of G, Let d. bethe vedor of adjusted RHS for the block of equations for animal i,
and let C, be the matrix of elements of the wefficient matrix associated with the blocked
equations which isformed from C*, G*, anda'. Finally, let p(jI =a s . Using the spedal
form of the matrix where C iswritten as the sum of C* and G'JA™, equations[4.1] and [4.2]
can be rewritten as:

initializer* asr, the RHS
update fixed effedsand r* using [4.7]
for block of equationsfor animal i,i =1to n,

if equationj in the block correspondsto an animal effed for trait Zupdate the RHS
negqn
asr.*:r.*— c, s g “pl)
: : k= ]+1 a Zi “
if equationj isin the block corresponds to an a blocked urcorrelated randam
negn
effed updte theRHS as 1/ =r] - 5 c, s

k=]+1
updete the block of genetic and urcorrelated randam effeds as C.'d,

update RHS for equations foll owing block (k) for al solutionsin block (j):
e =T =Cy8 <
end
update undocked urcorrelated randam effeds and r* using [4.2] [4.3]

Fixed and Unblocked Uncorrelated Random Effects

The scdar implementation o [4.2] isused for these dfeds. Thelinked list isbuiltina
spedfic form to optimize the Gauss Seidel iteration algorithm for these equations: the diagonal
element is gored in the first locationin the group d elementsfor arow in the linked list followed
by a sorted li st of the upper half stored off diagonal elementsin the row.
Genetic and Blocked Uncorrelated Random Effects

Thereisasubtle potential problem when implementing the blocked version d [4.3 when
uncorrelated randam eff eds are included in the block. The problem can best be demonstrated by

example. Consider the foll owing example wefficient matrix with 4 equations where the
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numbersindicae upper half stored nonzero elements and an x represents the symmetric d ement

not stored:

X W
X o b

6l
X 7

If equations1 & 4 and 2& 3 are treaed as blocks, then for the evaluation d the first block

1 2
(equetions 1 and 4) the diagonal matrix, c; = [x 7}, is determined corredly. However, when

the aljustment for the off- diagonal elementsis considered, the off- diagonal elements between
equations 3 and 4will not be foundif the eguations are upper half stored. Ancther way to
visuali ze the problem is to consider the form of the cefficient matrix where dements from
equations 1 & 4 are permuted to equations 1 & 2 and coefficients from equations2 & 3 are
permuted to equations 3 & 4. The resulting coefficient matrix is:

3
X

o b~ X

6

Inthisform, it is easier to seethe problem: the matix once permuted is nolonger upper half
stored. To acourt for this problem some wefficients are upper haf stored and some lower half
stored when bulding the linked list. Coefficients for fixed eff eds and for unbdocked
uncorrelated randam effeds are upper half stored. For coefficients for genetic and Hocked
uncorrelated randam eff eds, the animal associated with the eguation is determined so that the
order of the updating is known. Elements are upper half stored if the animal associated with the
row islessthan o equal to the animal associated with the alumn, and lower half stored

otherwise.
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Checkpointing

Chedkpainting is the pradice of saving intermediate resultsin an analysis 9 that a
program can be @ntinued from some point withou having to restart the program and losing
computer time. The MTGSRUN program chedpoints in two ways. MTGSRUN saves
informationto unit 90 entered by the user that will not change through the analysis. This
information includes comments or description entered, prior distribution information, groupng
information for uncorrelated and residual effeds, Gauss Siedel convergence giteria and
maximum iterations, Gibbs ssmpling iteration information including total rounds, length of burn-
in, and chedkpoaint frequency, and contrast coefficients. The program saves information
dternately to unts 91 and 92at intervals gedfied by the user. The information written to these
filesinclude means for variance @mporents, heritabiliti es, and correlations, inverses of
(co)variance matrices, and the randam number generator common Hdock information. After the
information is written to the chedkpaint fil e, that fil e is closed and the fil es containing the
samples (unit 61) and parameters (unit 62) from the Gibbs chain are dosed and reopened. The
filesmust be dosed to be cetain that the informationis adually written to the fil e by the
operating system, otherwise the system could lose the datain abuffer in a system crash. Inthe
case of arestart from the dhedkpoint information, the programs will determine which o the two
changing chedpaint fil es was written from the later round d iteration and attempt to open that
file. If thereisan error in thefirst chedkpaint fil e tried the program will attempt to use the
secondfile; there shoud belittl e dhance of bath fil es being corrupt.

Gibbs Sampling

As down in Chapter 3, the full condtional (i.e., sampling) distributions for the fixed and
randam effeds are dl normal distributions. Therefore, oy means and (co)variances are needed
to generate these dfeds. The cdculation d mean o the distributionisidenticd to the updating
algorithm for the Gauss Siedd iteration algorithm described ealier, and therefore, the dgorithms
used are very similar. The Gibbs sampling algorithm is sSmply an extension d the Gauss Seidel
iteration algorithm; oncethe mean is determined using the Gauss Seidel iteration algorithm a
normal deviationis added to that mean based onthe (co)variances of the full condtional

distribution. Inthe scdar case, which is used for fixed effeds and unlbocked urcorrelated
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randam effeds, the varianceis equal to the inverse of the diagonal element of the wefficient
matrix. For the blocked agorithm, which is used for genetic efeds and Hocked urcorrelated
randam effeds, the varianceis the inverse of the matrix of el ements of the wefficient matrix
correspondng to equations in the block (ablock diagonal matrix of the permuted coefficient
matrix). The deviations from the mean are cdculated asLr, where L isthe Cholesky
decmpasition d the (co)variancematrix B andr isavedor of uncorrelated standard namal
(mean =0, SD = 1) deviates. The Cholesky decompasition d Bisamatix L, suchthat B=LL".
Therefore, VAR(Lr) =LVAR(r)L'=LIL"'=B. Inthescdar case, the problem simplifies
becaise L is smply the square roat of B andr isasingle standard namal deviate.

The generation d the variance mmporentsis graightforward. The quadratic forms are
cdculated, based onthe form of the full condtional distribution derived in Chapter 3, the prior
distributioninformationis added (if anonflat prior is used), and a new (co)variance matrix is
generated.

Random Number Generation

All randam number generation subroutines were written in Fortran. The randam number
generator used to generate standard (0,1) uniform randam variables was based on ore described
by Marsaglia and Zamin (1987). The randam number generator for normal randam variablesis
based onthe Kinderman and Ramage (1976 procedure a described by Kennedy and Gentle
(1980. Therandam number generator for Wishart randam variablesis based onthe dgorithm
described by Odell and Feiveson (1966 and dscussed by Kennedy and Gentle (1980. A
randam number generator for Chi-square randam variables was needed for that algorithm, and an
approximation based onWil son and Hilferty (1931) was used.
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CHAPTER FIVE: Output File Formats

Because (as of thiswriting) the MTGSAM programs generate only the Gibbs sampling
chains and cdculate mean estimates, it isimportant for the user to be ale to accessthe Gibbs
sampli ng information generated to evaluate burn-in, to evaluate the thinning rate (i.e., the
sampling lag for independent samples), and most importantly, to estimate paosterior distributions.
There ae threefiles are nealed to accessthe samples, unts61, 62,and 63(i.e., MTGS61,
MTGS62,and MTGS63). Files MTGS61 and MTGS62 are written in dired accessunformatted
format. The unit 61file contains the observed values of the variance mmporents, contrasts (if
any), and solutions (if requested). The unit 62 file contains the parameters used to generate the
samples from the gpropriate distribution. The parameters needed are shape and scde
parameters for inverted Wishart variables and mean and variancefor normal variables. Becaise
the shape parameter for the the inverted Wishart variables does not change, it is not written with
eat sample; it iswritten orceto MTGS63. For contrasts, the mean and varianceis only known
in the single variable situation. That is, for contrasts containing more than ore dement, the
closed form of the distributionis nat known. Therefore, the unit 62 fil e has the mean and
varianceonly for single dement contrasts. For multiple dement contrasts, the observed valueis
written in placeof the mean o the distribution and avalue of 0 iswritten in placeof the
variance. The order of the variables written to unt 62 for the mntrasts and solutionsis mean,,
variance,, mean,, variance,, etc.

MTGS63 contains information rneeded to to read unts 61 and 62. The mouse data used to
describe the MTGSPREP program will be used as an example. Asaume that MTGSPREP has
been run wsing the inpu fil e from page 68 and MTGSRUN has been run wsing the foll owing
inpu file (nate that the blank lines are required):

1 Type of run- New analysis
Mouse data from Karin Meyer

Multiple trait analysis of

Body weight and feed intake

1 2.47783750007415800 Genetic (co)variance means
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2 .459944782089452000
3 1.57927675355541000
4 -.594199892718565200
5 8.19549233549404500
6 1.02224752348769800
7 .121688323984633000
8 1.10564369918392600
9 -.370200664457456500
10 .162979687500515000
0 .000000000000000000
1

9

0

1 .827308600070143100
2 -1.69664802413357700
3 3.51285576291655400
0 .000000000000000000
1

9

0

1 5.34178427718693300
2 3.80577188391943900
3 12.3974357127453400
0 .000000000000000000
1

9

200

.10000000000000006204
10000

2000

1

100

1

1

2

2

12 1.00000000000000000
13 -1.00000000000000000
1

14 1.00000000000000000
6210 19906

Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Genetic (co)variance means
Done entering values
Genetic priors are crred
Genetic (co)variance priors ape parameter

No urcorrelated randam covariances restricted
Uncorrelated randam (co)variance means
Uncorrelated randam (co)variance means
Uncorrelated randam (co)variance means
Done entering values

Ind Rand priors are wrred

Ind Rand (co)variance priors $ape parameter

No residual covariances restricted

Residual (co)variancepriors

Residual (co)variancepriors

Residual (co)variancepriors

Done entering values

Residual priors are corred

Residual (co)variance priors hape parameter
Rounds of GaussSeidd iteration
Convergence citeriafor Gauss Seidel
Rounds of Gibbs sampling (includes burn-in)
Rounds of burn-in before writing Gibbs ssampling
Frequency of writing Gibbs samples
Frequency of ched-painting

Write out al solutions? (Y=1,N=0)

Write out user spedfied contrasts

Number of contrast to monitor

Number of coeficients

Contrast equation and coefficient

Contrast equation and coefficient

Number of coeficients

Contrast equation and coefficient

Sedds for randam number generator
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Then, the mntents of MTGS63 are:
STRT61 STRT62 LENGTH SHAPE # DESCRIPTION

1
11
14
17

19

Total number of equations:

1 10
11 3
14 3

2

17 4
1413

21 2826

338 GENETIC (CO)VARIANCES
51 1 INDEPENDENT RANDOM (CO)VARIANCES
293 1 RESIDUAL (CO)VARIANCES
OBS CONTRASTS TO IUN61
MEAN AND VA R OF CONTRASTS TO IUN62
OBS'SOLUTIONS IUN61
MEAN AND VAR OF 'SOLUTIONS TO IUN62

1413

Recdl that both MTGS61 and MTGS62 are written in binary form using dired file

access All variables are written using adoulle preasion (red*8) format. The first column in

MTGS63 contains the starting location for ead o the variables written to unt 61. The second

column contains the analogous garting locationfor unit 62. The next column contains the

number of variables written to the gopropriate file. Column four contains the shape parameters

for the inverted Wishart variables, and column five mntains the group number for uncorrelated

randam and residual variances. The group number corresponds to the information ongrouping

entered by the user. The final column contains a brief description d the variables written.
Then, the order of variablesin MTGS61 is:

observed genetic (co)variance éement 1
observed genetic (co)variance éement 2

observed genetic (co)variance éement 10

observed urcorrelated randam (co)variance éement 1
observed urcorrelated randam (co)variance éement 2
observed urcorrelated randam (co)variance éement 3
observed residual (co)variance éement 1

observed residual (co)variance éement 2

observed residual (co)variance éement 3

observed contrast 1

observed contrast 2

observed solution 1

observed solution 2

observed solution 1413.
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The order of variablesin MTGS62is:

scde parameter genetic (co)variance éement 1
scde parameter genetic (co)variance éement 2

scde parameter genetic (co)variance éement 10

scde parameter uncorrelated randam (co)variance éement 1
scde parameter uncorrelated randam (co)variance éement 2
scde parameter uncorrelated randam (co)variance éement 3
scde parameter residual (co)variance éement 1

scde parameter residual (co)variance éement 2

scde parameter residual (co)variance éement 3

mean of contrast 1

0.D0 (sincemultiple dement contrast)

mean of contrast 2

variance of contrast 2

mean of solution 1

variance of solution 1

mean of solution 2

variance of solution 2

mean of solution 1413
variance of solution 1413.
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