Quantifying the utilization and genetic benefits of advanced breeding programs within U.S. dairy herds

Bailey L. Basiel and Paul M. Vanraden USDA Agricultural Research Service Animal Genomics and Improvement Laboratory

Background

- Quantify the advanced breeding strategies utilized in U.S. dairy herds contributing to the National Cooperator Database
 - Heifer genotypes
 - Semen allocation
- Compare the genetic merit of calves born in HYs using different semen allocation strategies
- Compare the realized genetic benefits of breeding strategies herds are using to the potential benefits using optimized semen allocation

More U.S. heifers are GTd each year

0 4 8 12 16 20 24+

B.L. Basiel

Most GTd U.S. females are GTd by 6 mo. of age

- Quantify the advanced breeding strategies utilized in U.S. dairy herds contributing to the National Cooperator Database
 - Heifer genotypes
 - Semen allocation
- Compare the genetic merit of calves born in HYs using different semen allocation strategies
- Compare the realized genetic benefits of breeding strategies herds are using to the potential benefits using optimized semen allocation

Most GTd heifers were conceived with sexed semen

ISDA

S1096 Dairy Cattle Genetics Multistate Meeting| St. Paul, MN| October 21, 2024| (7)

Proportion of annual calvings by mating type

USDA

Proportion of annual calvings to genotyped cows by mating type

S1096 Dairy Cattle Genetics Multistate Meeting| St. Paul, MN| October 21, 2024 (9)

B.L. Basiel

What's missing?

USDA

B.L. Basiel

Miles et al., 2023

S1096 Dairy Cattle Genetics Multistate Meeting | St. Paul, MN | October 21, 2024 | (10)

Mating strategies used in herd-years evaluated

B.L. Basiel

Mating strategies used in herd-years evaluated

S1096 Dairy Cattle Genetics Multistate Meeting St. Paul, MN October 21, 2024 (12)

- Quantify the advanced breeding strategies utilized in U.S. dairy herds contributing to the National Cooperator Database
 - Heifer genotypes
 - Semen allocation
- Compare the genetic merit of calves born in HYs using different semen allocation strategies
- Compare the realized genetic benefits of breeding strategies herds are using to the potential benefits using optimized semen allocation

PTAs of heifer calves born in 2021 by herd mating strategy

ΡΤΑ	Only conventional	Some sexed	Some beef	Some sexed and beef
n calves	16,345	17,946	33,941	201,134
NM\$	327	360	416	446
Milk	583	578	717	663
Fat	32	36	40	43
Protein	23	25	29	29
PL	16	19	20	24
DPR	-7	-7	-6	-5
HCR	4	6	5	7
CCR	-3	-2	-1	1

PTAs of heifer calves born in 2021 by herd mating strategy

ΡΤΑ	Only conventional	Some sexed	Some beef	Some sexed and beef	Some sexed and beef and GTd heifers
n calves	16,345	17,946	33,941	201,134	99,225
NM\$	327	360	416	446	466
Milk	583	578	717	663	694
Fat	32	36	40	43	44
Protein	23	25	29	29	30
PL	16	19	20	24	26
DPR	-7	-7	-6	-5	-6
HCR	4	6	5	7	8
CCR	-3	-2	-1	1	0

- Quantify the advanced breeding strategies utilized in U.S. dairy herds contributing to the National Cooperator Database
 - Heifer genotypes
 - Semen allocation
- Compare the genetic merit of calves born in HYs using different semen allocation strategies
- Compare the realized genetic benefits of breeding strategies herds are using to the potential benefits using optimized semen allocation

What is optimal?

• It depends!

- Farms that genomic test have more to gain (and lose!) (De Vries, 2020)
- Impacted by dairy heifer prices (McCullock et al., 2013; Ettema et al., 2017)

Thanks! Questions?

Bailey L. Basiel ORISE Postdoctoral Fellow Animal Genomics and Improvement Laboratory Email: bailey.basiel@usda.gov

