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There is growing interest from dairy producers in traits related to health and fitness
of cattle, which often have low heritabilities but high economic values. Traits with
low heritability can be improved by genetic selection, but large numbers of daughter
records are required to produce predicted transmitting abilities with high reliability.
Producer-recorded health event data collected from on-farm computer systems were
used to estimate variance components and compute traditional predicted
transmitting abilities (PTA) for several health traits (digestive problems, displaced
abomasum, ketosis, lameness, mastitis, metritis, reproductive problems, and retained
placenta) using single-trait threshold sire models. Heritabilities ranged from 0.01
for lameness to 0.30 for displaced abomasum using only first lactation data. Results
were similar when only first lactation or first through fifth parity data were used.
Multiple trait models also were used to estimate genetic correlations among those
traits, which ranged from -0.29 (ketosis, lameness) to +0.81 (displaced abomasum,
ketosis). Only three traits (displaced abomasum, mastitis, metritis) had 300 or more
bulls with traditional reliabilities of at least 0.50. A multiple-trait sire threshold
model was used to compute genomic PTA for 2,649 genotyped bulls. The increase
in reliability from including the genomic data ranged from 0.38 (displaced
abomasum) to 0.48 (lameness). These results suggest that enough data may exist in
on-farm computer systems to enable the routine calculation of genetic and genomic
evaluations for the most common health disorders in US Holstein cattle.

Keywords: dairy cattle, genetic evaluation, genomic selection, health traits.

A negative relationship of production with fitness traits, possibly in response to
selection for increased dairy cattle production over the last 50 years, has become
apparent (Rauw et al., 1998). Declining health of cows can impact the profitability
of a herd in several way, including increased culling rates, decreased and withheld
milk, veterinary expenses, and additional labor. Kelton et al. (1998) estimated the
cost of several common health events, which ranged from $39 per lactation with an
incidence of cystic ovaries to $340 per case of left displaced abomasum. Over the
past fifteen years, however, these economic costs may have drastically changed.
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Improvement of health traits by genetic selection is appealing because the approach
is well understood and gains are cumulative. The potential for genetic improvement
in health-related traits has been demonstrated in Scandinavian cattle breeds (Abdel-
Azim et al., 2005), and mastitis incidence has been successfully improved in
Norwegian cattle (Heringstad et al., 2003). However, there is no mandated or
consistent data recording system for health traits in the United States.

Several previous studies have addressed the use of producer-recorded health
information for genetic improvement. Zwald et al. (2004a) used producer-recorded
health event records from 2001 through 2003 and concluded that those data are
useable for genetic selection. Parker Gaddis et al. (2012) recently showed that similar
data accurately reflected the true incidence of health events, and confirmed that
phenotypic relationships among common health events were consistent with results
from epidemiological studies. The amount of producer-recorded data stored in on-
farm computer systems in the US is increasing, and may provide the records needed
to implement routine genetic evaluations for health traits.

The objective of this study was to use genetic and genomic analyses and producer-
recorded health event data to estimate variance components and heritability for
common health traits in US dairy cattle. A multiple-trait genetic analysis was used
to identify genetic relationships between health events. Single-step methodology
was used to incorporate genomic information in a multiple-trait analysis of those
traits.

Producer-recorded health event data from US farms between 1996 and 2012 were
available from Dairy Records Management Systems (Raleigh, NC) (Table 1). The
health events used for analysis were mastitis (MAST), metritis (METR), cystic ovaries
(CYST), digestive disorders (DIGE), displaced abomasum (DSAB), ketosis (KETO),
lameness (LAME), reproductive problems (REPR), and retained placenta (RETP)
from cows of parities one through five. Previous editing was applied to the data for
common health events as described in Parker Gaddis et al. (2012).

Material and
methods

Table 1. Summary statistics for each health event of interest. 
 

Health event 
Number of 

records 
Number  
of cows 

Number  
of herd-years 

Cystic ovaries 222 937 131 194 3 369 
Digestive disorders 156 520 97 430 1 780 
Displaced abomasum 213 897 125 594 2 370 
Ketosis 132 066 82 406 1 358 
Lameness 233 392 144 382 3 191 
Mastitis 274 890 164 630 3 859 
Metritis 236 786 139 818 3 029 
Reproductive disorders 253 272 151 315 3 360 
Retained placenta 231 317 138 457 2 930 
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A logistic sire model was used in ASReml (Gilmour et al., 2009) due to the binary
nature of the data. The model is given as follows:

η = Xβ + Z hh+ Z ss

where η  is the logit of observing the health event of interest, β  is a vector of fixed
effects including parity as first versus later parities and year-season, X is the
corresponding incidence matrix of fixed effects, h represents the random herd-year

effect, s represents the random sire effect where s ~ N 0,  Aσ s
2( ) with A representing

the additive relationship matrix, and Zh  and Z s  represent the corresponding
incidence matrices for the appropriate random effect. Variance components and
heritabilities were estimated for each common health event individually. Accuracies
and reliabilities of each sire’s estimated breeding value (EBV) were calculated as:
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2

2
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where rel is the reliability, SE2 is the squared standard error of the sire’s EBV, f is the

sire’s inbreeding coefficient, and σ s
2  is the estimated sire variance. Accuracy was

calculated as the square root of reliability. The variance component estimates were
then used as starting values of variance components in the multivariate analysis.

A multiple trait threshold sire model was used to fit a seven-trait model for the
following most common health events: MAST, METR, LAME, RETP, CYST, KETO,
and DSAB. The model is given below:

λ = Xβ + Z hh+ Z ss

where λ  represents a vector of unobserved liabilities to the given diseases, β  is a
vector of fixed effects including parity as first versus later parities and year-season,
X is the corresponding incidence matrix of fixed effects, h represents the random

herd-year effect, s represents the random sire effect where s ~ N 0,  Aσ s
2( ) with A

representing the additive relationship matrix, and Z h  and Z s  represent the
corresponding incidence matrices for the appropriate random effect. Variance
components and heritability were determined from parameter estimates calculated
using THRGIBBS1F90 (Tsuruta and Misztal, 2006). A total of 100,000 iterations
were completed with the first 10,000 discarded as burn-in, saving every 25 samples.
Post-Gibbs analyses were completed using POSTGIBBSF90 (Misztal et al., 2002).
Posterior means of sire predicted transmitting abilities (PTA) were estimated on the
liability scale as well as converted to probabilities of disease as described by Zwald
(2006). Highest posterior densities for the 95% interval were calculated for each
parameter. Reliabilities of estimated sire PTAs were calculated as shown above
using the posterior mean of additive variance of each health event, standard
deviation of each estimate distribution, and inbreeding coefficients of the sires.

Univariate
analysis

Multivariate
analyses
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Genomic data was incorporated through the use of a blended H matrix following
single step methodology implemented with preGSf90 software (Aguilar et al., 2011).
The software has a maximum number of genotyped animals that can be used, which
was met by restricting the genotype data to only include sires with at least five
daughters. Default editing conditions were applied as set by the software resulting
in genomic data being included for 2,649 sires with 37,525 markers. The blended H
matrix was incorporated into the same multiple trait threshold sire model as
previously described using THRGIBBS1F90 (Tsuruta and Misztal, 2006). Difficulties
were initially encountered with convergence using all seven traits. To obtain better
starting values, 2 preliminary analyses were performed. One analysis contained
four traits (MAST, METR, LAME, and KETO) and the second analysis contained the
remaining three traits (RETP, CYST, and DSAB). The posterior means of these
analyses were then used as starting values in the full, seven-trait analysis. Post-
Gibbs analyses were completed with POSTGIBBSF90. Convergence was assessed
using the Coda library (Plummer et al., 2006) of R (R Core Team, 2012). Reliability of
genomic estimated breeding values (GEBV) was estimated following Misztal et al.
(2013). The reliabilities from the pedigree-based multiple trait analysis were used as
reliabilities calculated without genomic information. These reliabilities were then
converted to the effective number of records for genotyped animals following the
formula given below:

di = α 1 1− rel i( )−1 

where α  is the ratio of residual variance to genetic variance calculated from the
pedigree-based multiple trait analysis. The inverse matrix Q was calculated as:

Qi = D + I + G−1 − A22
−1( )α 

−1

where G-1 is the genomic relationship matrix and A22
−1 is the inverse of the pedigree-

based relationship matrix for genotyped animals only. The genomic reliabilities
were then approximated as shown below:

rel i = 1− αqii

where qii is the diagonal element of Q-1 corresponding to the ith animal.

Heritabilities and standard errors estimated from the single trait analyses are shown
in Table 2. All traits exhibited a genetic component, but most were lowly heritable.
The highest heritability was found for DSAB at 0.20. This heritability is very close to
that estimated with a similar but smaller dataset (Zwald et al., 2004a). The high
heritability for DSAB may be at least partially explained by the severity of the event,
often requiring veterinary intervention. Zwald et al. (2004b) found DSAB to be the
most consistently recorded health event among producer recorded data. Lower
heritabilities were found for traits such as CYST, LAME, REPR, and RESP. These
are events that are generally much less likely to be recorded in a consistent manner.
For example, producers may have differing opinions regarding what constitutes an
incidence of lameness that needs to be recorded.

Results and
discussion
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Sire posterior mean of daughters’ probability to each disease are shown in Figure 1.
The mean probability of displaced abomasum was the highest equal to 0.53, though
again, it is likely to be one of the diseases that are reported most consistently. The
probability of daughters experiencing displaced abomasum ranged from 0.33 to
0.73. The mean probability of MAST was 0.515 and ranged from 0.29 to 0.66. These
estimates are higher than those previously reported by Zwald (2004a). Probability
of mastitis is more similar to those reported by Harder et al. (2006) when analyzing
udder disorders as a group. Probabilities of experiencing a reproductive disorder
are also similar to those reported by Harder et al. (2006).

Table 2. Heritability estimates and standard errors from single-trait analyses 
using pedigree-based relationship matrix, A. 
 

Health Event Heritability Standard Error 
Cystic ovaries 0.03 0.006 
Digestive disorders 0.06 0.02 
Displaced abomasum 0.20 0.02 
Ketosis 0.07 0.01 
Lameness 0.03 0.005 
Mastitis 0.05 0.006 
Metritis 0.06 0.007 
Respiratory disorders 0.04 0.01 
Reproductive disorders 0.03 0.006 
Retained placenta 0.07 0.01 

 

Figure 1. Sire posterior mean of daughters’ probability to each disease (CYST = cystic
ovaries; DSAB = displaced abomasum; KETO = ketosis; LAME = lameness; MAST = mastitis;
METR = metritis; RETP = retained placenta).
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Heritability estimates and 95% HPD from the multiple-trait threshold model are
shown in Table 3. Genetic correlations between health events are included on the
off-diagonals. Some traits with very low heritability estimates from the single-trait
analyses were not included in the multiple-trait analysis. All heritability estimates
were significantly different from zero. Heritability estimates of MAST and KETO
increased in the multiple-trait model. Heritability estimates for METR, LAME, RETP,
and DSAB decreased, whereas the estimate for CYST remained relatively constant.
The heritability estimate for DSAB is similar to what has been reported previously
(Zwald et al., 2004b). Health events that were lowly heritable in the single trait
analyses did not increase greatly through the use of a multiple-trait model. Several
significant genetic correlations were found between health events. A genetic
correlation of 0.81 [95% HPD = (0.70, 0.92)] was estimated between DSAB and
KETO. Zwald et al. (2004b) estimated a genetic correlation between these two events
equal to 0.14 (0.03) whereas a higher genetic correlation of 0.64 (0.10) was estimated
by Koeck et al. (2012). This correlation also is consistent with previous analyses of
these data using an informal path analysis that found an animal to have odds 15.5
times higher to have an incident of DSAB given that they previously had KETO
(Parker Gaddis et al., 2012). A high genetic correlation was also estimated between
RETP and METR. This correlation is higher than a previous estimate found equal to
0.62 (0.11) (Koeck et al., 2012). Significant, positive genetic correlations were also
found between METR and KETO and METR and DSAB.

Table 3. Estimated heritabilities (95% HPD1) on the diagonal with estimated genetic correlations below the 
diagonal from multiple-trait analysis. 
 

 Mastitis Metritis Lameness 
Retained 
placenta 

Cystic 
ovaries Ketosis 

Displaced 
abomasum 

Mastitis 0.1 
(0.09, 
0.12)       

Metritis -0.30 
(-0.45,-
0.15) 

0.04 
(0.03, 
0.05)      

Lameness -0.29 
(-0.46,-
0.11) 

0.21 
(0, 

 0.45) 

0.019 
(0.01, 
0.03)     

Retained 
placenta 

0.01 
(-0.14, 
0.16) 

0.78 
(0.68, 
0.88) 

-0.14 
(-0.36,  
0.07) 

0.05 
(0.03, 
0.06)    

Cystic 
ovaries 

-0.09 
(-0.29, 
0.13) 

-0.17 
(-0.37, 
0.06) 

-0.19 
(-0.40, 
0.06) 

-0.12 
(-0.34, 
0.12) 

0.026 
(0.02, 
0.03)   

Ketosis -0.28 
(-0.47,-
0.07) 

0.45 
(0.26, 
0.64) 

0.08 
(-0.17, 
0.34) 

0.10 
(-0.17, 
0.35) 

-0.15 
(-0.37, 
0.13) 

0.08 
(0.05, 
0.11)  

Displaced 
abomasum 

0.001 
(-0.15, 
0.17) 

0.44 
(0.28, 
0.60) 

-0.10 
(-0.29, 
0.09) 

0.06 
(-0.12, 
0.25) 

-0.10 
(-0.31, 
0.10) 

0.81 
(0.70, 
0.92) 

0.13 
(0.11, 
0.16) 
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Heritability estimates from the multiple-trait analysis using single-step genomic
BLUP (Table 4) were very similar to what was estimated using pedigree information,
but the reliability of sire PTAs were improved. The addition of genomic information
improved the reliabilities of sire PTAs for all health events as shown in Table 5. The
reliabilities for these traits are low in comparison to production traits, however, the
percent improvement that is obtained from the addition of genomic information is
substantial. Percent improvement over reliabilities from single-trait analyses with
pedigree information ranged from a 25% improvement in KETO to a 37%
improvement in both MAST and METR.

Table 4. Estimated heritabilities (95% HPD1) on the diagonal with estimated genomic correlations below the 
diagonal from multiple-trait single-step analysis. 
 

 Mastitis Metritis Lameness 
Retained 
placenta 

Cystic 
ovaries Ketosis 

Displaced 
abomasum 

Mastitis 0.12 
(0.10, 
0.14) 

      

Metritis -0.36  
(-0.53, -

0.19) 

0.04 
(0.027, 
0.043) 

     

Lameness 
 

0.13  
(-0.1, 
0.34) 

0.026 
(0.015, 
0.034) 

    

Retained 
placenta    

0.04  
(0.03, 
0.05) 

   

Cystic 
ovaries    

-0.02 
(-0.22, 
0.16) 

0.03 
(0.01, 
0.04) 

  

Ketosis -0.16  
(-0.31, 
0.01) 

0.44  
(0.26, 
0.64) 

   
0.08 

(0.05, 
0.10) 

 

Displaced 
abomasum    

0.01  
(-0.21, 
0.16) 

-0.11  
(-0.29, 
0.13) 

 0.12 
(0.09, 0.14) 

 

Table 5. Mean reliabilities of sire PTA computed with pedigree information and genomic 
information. 
 

Health event Pedigree information 
Blended pedigree & 

genomic information 
Mastitis 0.30 0.41 
Metritis 0.30 0.41 
Lameness 0.28 0.37 
Retained placenta 0.29 0.38 
Ketosis 0.28 0.35 
Displaced abomasum 0.30 0.40 
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These results suggest that enough data may exist in on-farm computer systems to
enable the routine calculation of genetic and genomic evaluations for the most
common health disorders in US Holstein cattle. Multiple-trait analysis is challenging
because of demanding computational requirements, but the gain in information
from correlated traits may be worth the additional time required for analysis.
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