Cite this poster as:
Sheffer, S.M., L.D. Robertson, W.F. Lamboy, A.M. Baldo, and J.A. Labate. 2006. DNA polymorphism in tomato, a crop with a history of selection, bottlenecks and introgression. Annual Meeting of the Society for the Study of Evolution, Stony Brook, NY.

DNA polymorphism in tomato: a crop with a history of selection, bottlenecks, and introgression

Susan M. Sheffer, Larry D. Robertson, Angela M. Baldo, Warren F. Lamboy and Joanne A. Labate, USDA, ARS Plant Genetic Resources Unit, Geneva, NY 14456

Introduction

*Bottlenecks have recurred in L. esculentum during migration away from centers of diversity in Chile, Ecuador and Peru (Jenkins, 1948).
*This cultivated species has also undergone strong directional selection for crop improvement, and natural selection for adaptation to temperate regions. \star During the past 70 years, wild relatives within the genus have been used extensively in breeding for disease resistance (Stevens and Rick, 1986).
*The natural history of this crop has led to the hypothesis that genetic variation is lacking within the species, with the exception of known introgressed genes (Nesbitt and Tanksley, 2002).

Results

* Within L. esculentum, we verified 150 SNPs in 22.3 kb (about 1 SNP per 150 bp). Three classes of markers gave similar estimates of polymorphism (Table 1).
*Five loci rejected the null model in the HKA test (Hudson, 1987) (Table 2).
*Three loci gave significant results in Fu and Li's test using an outgroup (Fig. 1). In each case, one allele was more diverged from all other L. esculentum alleles than it was from the L. peruvianum allele (LR24 at LeSNP34, TA496 at LeSNP1, and LR29 at psy1, not shown). * Seven hypothetical introgressions from wild species into L. esculentum were identified using allele trees (not shown). EST-based marker LeSNP9b is an example (Fig. 2).

References:

 Green P. 2004. Phred. Phrap, Consed. [Online] htpp://www.phrap.ory phredphrapconsed.hthl
Hamblin, M.T, et. al. 2004. Comparative population genetics of the Panicoid grasses sequence polym,orphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 16
477 471 -483.
Hudson, R.R.,
data. Genetics 116 : 153 mand
nkins, J.A. 1944. The origin of cultivated tomato. Econ. Bot 2: 379 -392.
Kumar S.,. . Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary
Geneics Analys and sequence 20.
Labate, J.A., and A.M. Baldo .2005. Tomato SSNP discovery by EST ST S.
Breding 16: 343-349.
Hoselius,, ,

Rozas J.S.Sanchez-DelBario J.C., et. al. R. R. 2003. Dnas.
and other methods. Bioinfomatics $19: 2496-24-97$.
tevens, M.A. and C.M. Rick. 1986 . Chener 2. Cl . Rudich (eds.). The tomato crop. Chapman and Hall, NY, NY.
Nesbitt, T.C. and S.D. Tankeley
the evolution of S.Dit Tankssley. 2002. Comparative sequencing in the genus Lycopersicon: Implications Wu, et al. 2006. Combinining bioinformatics and phylogenetics to identity large sets of single copy
orthole orthologous genes (COS
plant species. (in prep).

Table 1. Polymorphism of SNP marker types, 31 tomato DNAs by 48 loci.

Marker type	no. markers	mean no. sequences	$\begin{gathered} \text { no. } \\ \text { SNPP } \end{gathered}$	nt	$\begin{gathered} \text { mean } \\ \pi^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { mean } \\ \theta^{*} \\ \hline \end{gathered}$	mean no haplotypes
EST-based	26	33	86	9,183	1.66	2.07	2
COSII	11	34	33	7,587	1.20	1.40	3
Arbitrary	11	32	31	5,564	1.20	1.40	3

*nucleotide diversity x 1000
Table 2. Significant HKA tests for 48 tomato loci

Marker	χ^{2}	p-value	observation*
LeSNP21	4.003	0.0454	1
COS1	4.348	0.0371	2
COS9	4.506	0.0338	2
COS10	5.356	0.0207	1
B	4.515	0.0336	2

* $1=$ L. esculentum highly polymorphic, no fixed interspecific differences
$2=$ L. esculentum monomorphic, high interspecific divergence
Fig. 1 Theta versus pi estimates for 48 tomato loci (significant Fu and Li's tests are indicated)

Discussion

\& Our panel of 31 L . esculentum lines was approximately as diverse as one population of L. pimpinellifolium (mean theta $=$ 1.6×10^{-3}), the closest wild relative. Nine of the 48 loci in our study were monomorphic, versus 2 of 15 loci in L. pimpinellifolium (Roselius et al., 2005).
\& L. esculentum polymorphism estimates were about 50% of those observed in another selfing crop, Sorghum bicolor (sorghum) (Hamblin et. al, 2004).

* A neutral model of evolution was rejected for 8 loci Introgression may explain these results for LeSNP1, COS10, LeSNP34, LeSNP21, and psy1. Directional selection is implicated at COS1, COS9 and B. Enzymes psy1 and B are key regulators of fruit color in tomato.
- At least 7 loci showed evidence of introgressed alleles from wild species into L. esculentum. This can result from linkage drag during breeding, e.g., LeSNP9b maps within 1 cM of a disease resistance allele that was introgressed into TA496 (Labate and Baldo, 2005).
*Genetic variation within cultivated tomato reflects its complex natural history. Sequences of wild species alleles aid in interpreting evidence of non-neutral evolution.

Materials and Methods

\&DNA from breeding line TA496, one L. peruvianum, and 30 geographically diverse L. esculentum accessions (inbred lines), was extracted using a CTAB protocol (Colosi and Schaal, 1993). One plant per accession was PCR amplified across 26 EST-based (Labate and Baldo, 2005), 11 Conserved Ortholog Set II (COSII) (Wu et al., 2006), and 11 arbitrary (mostly noncoding regions of genes) markers. \&Primers used for PCR amplification were also used for DNA sequencing in separate forward and reverse reactions.
*. Frimers used for PCR amplification were also used for DNA sequencing in separate forward and reverse reactions. estimating sequence polymorphism and tests of neutrality. Bootstrapped neighbor-joining trees were generated by MEGA (Kumar, 2004) to explore elationships among alleles within a locus.

