North Carolina Research at Kannapolis

David Murdoch of Dole Foods - \$1 billion personal investment to study

Plants For Human Health

Partners

- Six North Carolina Universities
 - •Including NC State, UNC, Duke
- Monsanto, Dole Foods, Murdoch Research Institute
- ARS (\$1 million earmark in 2009

Science and Pseudoscience in Adult Nutrition Research and Practice

Reynolds Spector, Robert Wood Johnson Foundation

In summary, the critics suggest that much nutritional research and practice is ... science's laughingstock, for two reasons: much of the research, especially epidemiology/observational studies is pseudoscientific....and second, many practitioners and commercial interests do not readily acknowledge the truth.

The ARS program at Kannapolis Establish a "Proof of Concept" model for studying human health benefits of plant foods

- The opportunity:Animal and cell culture studies suggest blueberries may help prevent age-related cognitive decline
- The problem:
 - This idea has not been tested in a well designed human trial
 - Past experience has shown us that not all people respond the same way to a food; this is because of variability in:
 - Human genetics
 - Human environment
 - Plant genetics
 - Plant environment

The ARS program at Kannapolis Establish a "Proof of Concept" model for studying human health benefits of plant foods

- Scientists in 3 disciplines:
 - Horticulture
 - Post Harvest processing
 - Varietal variation
 - BiochemistryCellular mechanisms
 - Human Nutrition
 - Well-designed clinical studies
 - Conducted in collaboration with a psychologist

The ARS program at Kannapolis Establish a "Proof of Concept" model for studying human health benefits of plant foods

- Cooperation across disciplines
- Characterization of variability in food and in the human
- Understanding of "responders" and "non-responders"
- Nutritional advice based on clinical studies

A call for "Evidence-Based Nutrition"

- Evidence based on well planned and executed clinical trials
- May require challenging prior assumptions and approaches

Evidence-based medicine (EBM)

- Applies the best available <u>evidence</u> gained from the scientific method to medical <u>decision making</u>.
- Assesses the <u>quality</u> of evidence of the risks and benefits of treatments (including lack of treatment).
- EBM seeksto apply these methods to ensure the best <u>prediction</u> of outcomes in medical treatment.

Predicted (no evidence); Organic food is more nutritious?

OFFICIAL

America Services

EATTH) especial field in the based in a good for your brights in a right of memory, and presented belows.

The second secon

New Evidence Confirms the Nutritional Superiority of Plant-Based Organic Foods

by Charles Benbrook, Xin Zhao, Jaime Yanez, Neal Davies and Preston Andrews

Attach 2008

- Predicted (no evidence); Organic food is more nutritious?
- 2. Chemistry; e.g. ORAC

- Predicted (no evidence); Organic food is more nutritious? Chemistry; e.g. ORAC
- In vitro; e.g. cell culture

- 1. Predicted (no evidence); Organic food is more nutritious?
- 2. Chemistry; e.g. ORAC
- In vitro; e.g. cell culture
- 4. Animal studies

But all the above only generate

HYPOTHESES

Evidence requires human studies

- 1. Predicted (no evidence); Organic food is more nutritious?
- 2. Inorganic chemistry; e.g. ORAC
- 3. In vitro; e.g. cell culture
- 4. Animal studies
- 5. Human Epidemiology and ecological
- 6. Human Clinical trials

Human Évidence

Reliability

Clinical evidence for functionality: all is not equal

Observational vs. Interventional evidence

- Survey studies
- Longitudinal observational studies
- Case Control Studies
- Retrospective cohort studies
- Prospective cohort studies

Evidence of efficacy Judging study value:

Valid biomarkers
 NIH guidelines accepted by FDA
 Heart disease

- Serum cholesterol, triglycerides, LDL cholesterol
- Blood pressure
- Diagnosis of Cardiac event/stroke
- Heart disease mortality (certified by pathologist)

Evidence of efficacy

Judging study value:

- Valid biomarkers
 NIH guidelines accepted by FDA
 Heart disease
 - Serum cholesterol, triglycerides, LDL cholesterol
 - Blood pressure
 - Diagnosis of Cardiac event/stroke
 - Heart disease mortality (certified by pathologist)

- Cancer
 - Ademaetous Colonic Polyps
 - Diagnosis of cancer
 - Cancer mortality (certified by pathologist)

Evidence of efficacy
Judging study value:
How much is enough??

FCC:

- Truthful and non-deceptive;
- Must have evidence to back up their claims
- Advertisements cannot be unfair.
- From point of view of the "reasonable consumer"
- "Express" and "implied" claims.

Health or safety claims must be supported by "competent and reliable scientific evidence" - tests, studies, or other scientific evidence that has been evaluated by people qualified to review it.

Evidence of efficacy Judging study value:

- Valid biomarkers
 - Many common biomarkers NOT acceptable to FDA
 - Cancer
 - PSA
 - COMET assay and similar
 - Gene activation
 - Enzyme activity
 - Circulating cytokines

Evidence of efficacy Judging study value:

- Valid biomarker
- Accurate estimate of intake
 - Validated Food Frequency Questionnaire
 - Secondary measures help validate:
 - Urinary nitrogen <u>~</u> protein intake
 - Doubly labeled water <u>~</u> energy intake
 - Surrogate markers of intake
 - Serum conc., enzyme activity, etc.

Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods

Evidence of efficacy Judging study value:

■ Relevant/Adequate survey

population

Valid baseline or comparative group

DRUGS cure ill health,
 FOOD maintains good health

Use Healthy subjects

Evidence of efficacy Judging study value:

- Valid biomarker
- Accurate estimate of intake
- Relevant/Adequate survey population
- Valid baseline or comparative group
- Lack of 'bias'
- Adequate statistics
 - Sample size (Power analysis)
 - Randomization
 - Sequence effects (e.g. day length)
 - Proper design
 - Controls
 - Validated measures

Evidence of efficacy Judging study value:

- Valid biomarker
- Accurate estimate of intake
- Relevant/Adequate survey population
- Valid baseline or comparative group
- Lack of 'bias'
- Adequate statistics
- Are conclusions justified?
 - Do data support conclusions?
 - Where are conclusions published?
 - Are they relevant to the target population?
 - Do they fit known chemistry/metabolism?

Evidence of efficacy Judging study value:

- Valid biomarker
- Accurate estimate of intake
- Relevant/Adequate survey population
- Valid baseline or comparative group
- Lack of 'bias'
- Adequate statistics
- Are conclusions justified?
- Studies in context of:
 - Whole Food (not isolated component)
 - Overall diet
 - Lifestyle

 We need a model that tests food claims within context of the food, diet and individual lifestyle

- We need a model that tests food claims within context of the food, diet and individual lifestyle
- Such a model must take into account variability in the food and the individual

- We need a model that tests food claims within context of the food, diet and individual lifestyle
- Such a model must take into account variability in the food and the individual
- Accept that "one size does not fit all"; i.e. there will be responders and non-responders

- We need a model that tests food claims within context of the food, diet and individual lifestyle
- Such a model must take into account variability in the food and the individual
- Accept that "one size does not fit all"; i.e. there will be responders and nonresponders
- Must follow guidelines of "Evidence-based Nutrition"; evidence must ultimately come from clinical trial

- We need a model that tests food claims within context of the food, diet and individual lifestyle
- Such a model must take into account variability in the food and the individual
- Accept that "one size does not fit all"; i.e. there will be responders and nonresponders
- Must follow guidelines of "Evidence-based Nutrition"; evidence must ultimately come from clinical trial
- Accept that health benefit may not justify increased consumption

- We need a model that tests food claims within context of the food, diet and individual lifestyle
- Such a model must take into account variability in the food and the individual
- Accept that "one size does not fit all"; i.e. there will be responders and nonresponders
- Must follow guidelines of "Evidence-based Nutrition"; evidence must ultimately come from clinical trial
- Accept that health benefit may not justify increased consumption
- Kannapolis is "Proof of Concept"

 We need to "Get it right" or the public will lose faith