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Abstract. Equilibrium and bicontinuum nonequilibrium formulations of the advection–dispersion
equation (ADE) have been widely used to describe subsurface solute transport. The Green’s Func-
tion Method (GFM) is particularly attractive to solve the ADE because of its flexibility to deal
with arbitrary initial and boundary conditions, and its relative simplicity to formulate solutions
for multi-dimensional problems. The Green’s functions that are presented can be used for a wide
range of problems involving equilibrium and nonequilibrium transport in semi-infinite and infinite
media. The GFM is applied to analytically model multi-dimensional transport from persistent solute
sources typical of nonaqueous phase liquids (NAPLs). Specific solutions are derived for transport
from a rectangular source (parallel to the flow direction) of persistent contamination using first-,
second-, or third-type boundary or source input conditions. Away from the source, the first- and
third-type condition cannot be expected to represent the exact surface condition. The second-type
condition has the disadvantage that the diffusive flux from the source needs to be specified a priori.
Near the source, the third-type condition appears most suitable to model NAPL dissolution into
the medium. The solute flux from the pool, and hence the concentration in the medium, depends
strongly on the mass transfer coefficient. For all conditions, the concentration profiles indicate that
nonequilibrium conditions tend to reduce the maximum solute concentration and the total amount
of solute that enters the porous medium from the source. On the other hand, during nonequilib-
rium transport the solute may spread over a larger area of the medium compared to equilibrium
transport.

Key words: Green’s functions, NAPL dissolution, nonequilibrium transport, initial value problem,
boundary value problem.

Abbreviations: ADE – advection–dispersion equation; GFM – Green’s function method.

Nomenclature

a auxiliary variable.
b auxiliary variable.
c dimensional concentration [ML−3].
C dimensionless solute concentration (=c/c0).
D diffusion coefficient [L2T−1].
f initial concentration.
G Green’s function.
g input concentration for NAPL pool.
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h function in convolution integral.
I0, I1 modified Bessel function of orders zero and one.
k dimensionless mass-transfer coefficient.
k∗ mass-transfer coefficient [LT−1].
L characteristic length.
P Peclet number.
R retardation factor.
s Laplace variable.
s∗ modified Laplace variable.
T dimensionless time.
u arbitrary function.
W dimensionless vertical velocity.
X dimensionless longitudinal position.
Y dimensionless transversal position.
Z dimensionless transversal position.

Greek
β dimensionless variable for partitioning in nonequilibrium transport models.
0 prescribed gradient for second-type condition.
δ Dirac delta function.
ζ dummy variable.
η dummy variable.
µ first-order degradation term.
ξ dummy variable.
τ dummy variable.
ω dimensionless mass transfer coefficient.
3 Auxiliary term in Green’s function to quantify nonequilibrium effects.

Subscripts
e effective value.
L longitudinal.
0 reference or characteristic value.
s solubility or upper value.
T transversal.
u equilibrium solution for unit input.
X X-direction.
Y Y-direction.
Z Z-direction.
1 mobile region in two-region nonequilibrium model.
2 immobile region in two-region nonequilibrium model.

Superscripts
f first-type condition.
s second-type condition.
t third-type condition.

Special Symbols
L differential operator for advection–dispersion equation.
L∗ adjoint operator for advection–dispersion equation.
L or− Laplace transform.
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1. Introduction

The deterministic advection–dispersion model has been widely used to describe
the movement of dissolved chemicals, heat and other substances in porous media.
Mathematical solutions of this model allow us to quantify the spatial and temporal
distribution of the solute concentration in porous media, thus providing important
information for optimally monitoring or managing the subsurface environment.
Whereas, numerical solutions are often used for general problems, analytical solu-
tions may be employed for idealized conditions. Analytical solutions are valuable
to evaluate numerical solution techniques, gain a better understanding of the im-
portance of different transport parameters and mathematical conditions, estimate
model parameters with inverse methods, and study transport for conditions where
numerical methods may not yield accurate or reliable results. Techniques to derive
analytical solutions of the advection–dispersion equation (ADE) typically involve
Fourier analysis and integral transformation procedures (cf. Cleary and Adrian,
1973; Güvenet al., 1984; Leij et al., 1993). Relatively few solutions have been
obtained with Green’s functions (Yeh and Tsai, 1976; Galya, 1987; Ellsworth and
Butters, 1993). Yeh (1981) presented several Green’s functions for a source term
in the ADE.

The introduction and movement of nonaqueous phase liquids (NAPLs) in the
subsurface presents an especially serious threat to the long-term quality of soil
and groundwater systems. Spills of hydrocarbon solvents can create hazardous and
long-lasting sources of groundwater contamination (Bradfordet al., 1998). Due to
its density and viscosity, a dense nonaqueous phase liquid (DNAPL) tends to sink
to the bottom of aquifers and often remains there as a contamination pool because
of its low solubility in water. Similarly, a light nonaqueous phase liquid (LNAPL)
may form a relatively immobile pool on top of the aquifer. Pollution from oil tanks,
landfills, and other buried sources are further examples of gradual and continuous
contamination from a fixed source. In this study we use the advection–dispersion
model to describe NAPL movement in the aqueous phase after dissolution from a
simple rectangular pool at the top or bottom of the aquifer.

Analytical solutions for such persistent contamination problems can be derived
by integrating instantaneous sources with respect to time or space (e.g., Prakash,
1984; Yeh, 1981). This approach does not allow the specification of different types
of boundary conditions at the interface of the source and the porous medium.
Persistent NAPL contamination has been described as a boundary value problem
by, among others, Chrysikopouloset al. (1994), Holman and Javandel (1996), and
Shan and Javandel (1997). Solutions in these studies were obtained with a variety
of integral transforms. However, the solutions may be obtained far more conveni-
ently with the Green’s function method (GFM). This method offers flexibility in
terms of handling changes in initial and boundary conditions. Furthermore, very
general and concise expressions for the solute concentration are possible with the
GFM, particularly for multidimensional problems. Several pertinent texts exist on
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the method (Greenberg, 1971; Stakgold, 1979; Roach, 1982; Becket al., 1992).
Expressions for Green’s functions have been derived for the standard ADE (Leij
et al., 1999). However, bicontinuum transport models may predict solute transport
more accurately by distinguishing a ‘mobile’ or flowing region, with advective
and dispersive solute transport, and an ‘immobile’ or stagnant region (possibly a
different fluid phase). Solute exchange between the regions is described by a first-
order diffusion equation (Coats and Smith, 1964; Van Genuchten and Wierenga,
1976).

The objectives of this study are to (1) formulate Green’s functions for the equi-
librium and nonequilibrium ADE, (2) use the GFM to derive analytical solutions
for solute movement from a persistent contaminant source, and (3) illustrate the
effects of alternative source boundary conditions, mass transfer parameters, and
nonequilibrium parameters on the solute distribution.

2. Mathematical Formulation

2.1. EQUILIBRIUM TRANSPORT

The dimensionless ADE for a solute subject to unidirectional flow, three-dimen-
sional dispersion, linear sorption and first-order degradation in a porous medium
whose transport properties are constant in time and space, may be given
by

R
∂C

∂T
= 1

PX

∂2C

∂X2
− ∂C
∂X
+ 1

PY

∂2C

∂Y 2
+ 1

PZ

∂2C

∂Z2
− µC, (1)

whereR is a solute retardation factor,T is time, X, Y and Z denote the position
along the longitudinal and two transversal coordinates with corresponding Peclet
numbersPX, PY andPZ, andµ is a degradation factor. The model may be extended
to include a zero-order source/sink term without complicating the solution proced-
ure according to the GFM. The transformation from dimensional to dimensionless
parameters has been shown elsewhere (e.g., Torideet al., 1993).

2.1.1. Green’s Function Method

The differential operator,L , for the previously defined ADE is

L = R ∂

∂T
− 1

PX

∂2

∂X2
+ ∂

∂X
− 1

PY

∂2

∂Y 2
− 1

PZ

∂2

∂Z2
+ µ. (2)

The solution toL (C) = 0 yields the solute concentrationC. An alternative
adjoint problem, which may be easier to solve, is obtained through multipli-
cation ofL (C) by a Green’s functionG and subsequent integration over the solution
region (X, Y, Z, T). This procedure can be schematically represented as
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(cf. Greenberg, 1971)∫∫∫∫
GL (C)dζ dη dξ dτ

= boundary terms+
∫∫∫∫

CL ∗(G)dζ dη dξ dτ. (3)

Integration by parts yields the boundary terms and the formally adjoint differential
operator, which is defined as

L ∗ = −R ∂

∂τ
− 1

PX

∂2

∂ξ2
− ∂

∂ξ
− 1

PY

∂2

∂η2
− 1

PZ

∂2

∂ζ 2
+ µ. (4)

The dummy variables (ξ , η, ζ , τ ) correspond to the regular independent variables
(X, Y, Z, T). The adjoint operator is similar to the ADE operator except for the
sign of the storage and advection terms. A solution forC may be obtained from
the equivalent problem in terms of the adjoint operator by requiring that the adjoint
differential operator onG is equal to the following four-dimensional Dirac delta
function:

L ∗(G) = δ(X − ξ, Y − η,Z − ζ, T − τ). (5)

The Green’s functionG(X, Y, Z, T; ξ , η, ζ , τ ) denotes the concentration at (X, Y, Z,
T) as the result of instant solute release atτ for a unit source located at (ξ , η, ζ ).
The concentration for a spatial domain with longitudinal boundaries atX1, X2 and
transversal boundaries atY1, Y2, andZ1, Z2, is expressed according to the GFM as
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dζ dη dξ. (6)

Equation (6) follows from Equation (3) whenL (C) = 0 andL ∗(G) is given by
(5). The first three terms on the right-hand side arise for boundary value prob-
lems in theX, Y and Z directions, while the fourth term is associated with the
initial value problem; this expression forC can be further simplified once the
boundary and initial conditions are known. The appropriate Green’s function is
determined by solving Equation (5). This equation is homogeneous except for a
discontinuity when (ξ = X, η = Y , ζ = Z, τ = T ). Because the bound-
ary conditions forG are homogeneous, the Green’s function may be written as
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the product of Green’s functions for individual directions (cf. Becket al., 1992):
G(X, Y,Z, T ; ξ, η, ζ, τ ) = GX(X, T ; ξ, τ )GY (Y, T ; η, τ)GZ(Z, T ; ζ, τ ). Note
that a similar application of the product rule may not be permitted for the concen-
tration (Carslaw and Jaeger, 1959). The degradation factor for three-dimensional
transport is partitioned, using somewhat arbitrary contributions for each direction,
such thatµ = µX + µY + µZ. In the following, mostly unidirectional Green’s
functions will be considered for the purpose of constructing a three-dimensional
solution for the concentration.

2.1.2. Green’s Functions

The following general concentration for the longitudinal direction, resulting from
one-dimensional advective–dispersive transport for equilibrium conditions, can be
inferred from (6):

CX(X, T ) =
∫ T

0

(
GX

PX

∂GX

∂ξ
− CX
PX

∂GX

∂ξ
−GXCX

)∣∣∣∣X2

X1

dτ +

+
∫ X2
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RGX(X, T ; ξ,0)CX(ξ,0)dξ, (7)

where the boundariesX1 andX2 are specified depending on the solution domain. A
unique solution may be obtained by applying the boundary conditions forCX, and
subsequently imposing conditions onGX to be used in the solution of the adjoint
problem:

L ∗(GX) = −R∂GX

∂τ
− 1

PX

∂2GX

∂ξ2
− ∂GX

∂ξ
+ µXGX = δ(X − ξ, T − τ).

(8)

Solutions forGX can often be readily inferred from existing solutions for the ADE
(cf. Van Genuchten and Alves, 1982; Leijet al., 1999).

The concentration in one of the transversal directions, sayY, as a result of one-
dimensional dispersion may be expressed according to the GFM as (cf. Equation
(6)):

CY (Y, T ) =
∫ T

0

(
GY

PY
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PY
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dτ +

+
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RGY(Y, T ; η,0)CY (η,0)dη. (9)

Explicit expressions for the concentration in the transversalYdirection are obtained
by imposing a zero-gradient condition onCY at a finite or infinite distance and by
substituting the appropriate Green’s function,GY . The latter function is derived by
solving the adjoint problem given by

L ∗(GY ) = −R∂GY

∂τ
− 1

PY

∂2GY

∂η2
+ µYGY = δ(Y − η)δ(T − τ), (10)
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subject to the conditions that eliminate any unknown terms in Equation (9). Expres-
sions for the transverse functions,GY andGZ, can be adapted from the literature
on Green’s functions for diffusion (Becket al., 1992).

Table I lists longitudinal (GL) and transversal (GT) Green’s functions for equi-
librium transport – and the conditions onG that they satisfy – that can be used
to derive solutions for a variety of boundary and initial value problems in infinite
and semi-infinite porous media. The superscripts f, s, and t denote a first-, second-
and third-type inlet condition for transport in semi-infinite media. The subscript
1 is used to indicate nonequilibrium conditions. Note that the transverse Green’s
function contains the nonequilibrium parameterβ, which should be set to unity for
equilibrium transport.

2.2. NONEQUILIBRIUM TRANSPORT

The porous medium is assumed to consist of two macroscopic continua: one in
which transport is always an equilibrium process and the other where access to im-
mobile water or nonequilibrium sorption sites is governed by a first-order rate equa-
tion. The dimensionless model for nonequilibrium transport is given by (Torideet
al., 1993; Leijet al., 1993)

βR
∂C1

∂T
= 1

PX

∂2C1

∂X2
− ∂C1

∂X
+ 1

PY

∂2C1

∂Y 2
+ 1

PZ

∂2C1

∂Z2
+

+ω(C2− C1)− µ1C1, (11)

(1− β)R ∂C2

∂T
= ω(C1− C2)− µ2C2, (12)

whereC1 is the dimensionless solution for the part of the aqueous phase where
solute transport is described as an equilibrium process,C2 is the concentration
for the rest of the porous medium,β is a coefficient to quantify sorption in the
‘equilibrium’ phase relative to total sorption,ω is a mass transfer coefficient and
µ1 andµ2 are dimensionless constants for first-order degradation in the mobile
and immobile regions of the medium. The coefficientω, which quantifies the rate
of nonequilibrium exchange to the bulk flow rate, is actually a Damk¨ohler number
(Boucher and Alves, 1959). The mathematical equivalency between dimension-
less and dimensional transport parameters was illustrated by Torideet al. (1993),
among others.

Before employing the GFM, the following Laplace transform is applied:

L[C(X, Y,Z, T )] = C̄(X, Y,Z, s) =
∫ ∞

0
C(X, Y,Z, T ) exp(−sT )dT (13)

to Equations (11) and (12). For any arbitrary initial distribution,f (X, Y,Z), the
following differential equation may be obtained after some rearrangements, to
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Table I. Selected longitudinal and transversal Green’s functions∗

Function Expression Conditions

GL(X, T ; ξ, τ)
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Table I. continued

Function Expression Conditions

Gt
T(Y, T ; η, τ) exp

(
−µY (T − τ)

R

){√
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4π(T − τ)×

×
[

exp

(
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2

4(T − τ)

)
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2
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∗G = 0 if τ > T .

express the problem in a single dependent variable,C̄1:

1

PX

∂2C̄1

∂X2
− ∂C̄1

∂X
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−
(
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s + b
)
C̄1+

(
βR + ω

s + b
)
f = 0, (14)

where

a = ω

1− β , (15a)

b = ω + µ2

1− β . (15b)

Appendix A shows how solutions forC1 may be derived for different boundary and
initial value problems from the solution for the equilibrium problem (C). Solutions
for C2 will not be presented since they directly follow from those forC1 (cf. Toride
et al., 1993).

2.2.1. Green’s Function Method

The same procedure is followed as for the equilibrium problem except that the
GFM is applied to the transport equation in the Laplace domain given by Equation
(14) rather than the regular time domain. The corresponding differential operator,
L1, is

L1 = − 1

PX

∂2

∂X2
+ ∂

∂X
− 1

PY

∂2

∂Y 2
− 1

PZ

∂2

∂Z2
+

+
(
βRs + ω + µ1− a ω

s + b
)
. (16)

The concentration in the Laplace domain is found by solving

L1(C̄1) =
(
βR + ω

s + b
)
f. (17)
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The following adjoint differential operator can be derived after multiplying this
equality by the Green’s function̄G1 and subsequently integrating with respect to
the spatial coordinates:

L ∗1=−
1

PX

∂2

∂ξ2
− ∂

∂ξ
− 1

PY

∂2

∂η2
− 1

PZ
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+
(
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s + b
)
.

(18)

The adjoint differential operator on̄G1 should now satisfy the problem

L ∗1(Ḡ1) = δ(X − ξ, Y − η,Z − ζ ). (19)

The GFM yields the following expression for the transformed concentration in case
of unspecified initial and boundary conditions:
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+
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+
∫ X2

X1

∫ Y2

Y1

(
Ḡ1
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+
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(
βR + ω

s + b
)
Ḡ1f (ξ, η, ζ )dζ dη dξ.

(20)

The Green’s function,̄G1(X, Y,Z, s; ξ, η, ζ ), can again be written as the product
of unidirectional Green’s functions. At this stage only the longitudinal part re-
mains of interest since this part entirely reflects the change in previously reported
equilibrium Green’s functions due to nonequilibrium effects. Rather than solving
Equation (19) forḠ1, and henceḠX1(X, s; ξ), expressions forḠX1(X, T ; ξ, τ )
will be obtained from the results of Appendix A for a boundary value problem
with input functiong(T), and for an initial value problem with initial distribution
f(X).

2.2.2. Boundary Value Problem

The concentration in the Laplace domain for a one-dimensional semi-infinite me-
dium which is initially solute free (f = 0) may be deduced from Equation (20):

C̄X1(X, s) =
(
ḠX1

PX

dC̄X1

dξ
− C̄X1

dξ

dḠX1

dξ
− ḠX1C̄X

)∣∣∣∣ξ→∞
ξ→0

. (21)
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For afirst-type condition, the solute concentration at the inlet is given by the
Laplace transform of a time-dependent input concentration,g(T), and a zero-gradient
outlet condition:

C̄X1(0, s) = ḡ(s), dC̄X1

dX
(∞, s) = 0. (22)

The conditions for the Green’s function,̄GX1(X, s; ξ) become apparent after in-
serting (22) into (21):

ḠX1(X, s;0) = dḠX1

dξ
(X, s;∞) = 0, (23)

where it is assumed that̄GX1 also becomes zero for the infinite outlet condition.
In analogy with the equilibrium solution, the transformed concentration may be
written according to (21) and (A6):

C̄X1(X, s) = ḡ(s)

PX

dḠX1

dξ
(X, s;0) = ḡ(s)C̄u(X, s∗),

s∗ = βRs + ω + µX1− aω

a + b , (24)

where, using Duhamel’s theorem, the transformed concentration for an arbitrary
input is related to the corresponding equilibrium concentration for one-dimensional
transport resulting from a unit input concentration with no degradation,Cu (i.e.,
g(T ) = 1 andµX = 0). The degradation coefficientµ1 is partitioned according
to µ1 = µX1 + µY + µZ, while µ2 only occurs in the longitudinal problem.
The Laplace variable is modified to formulate the nonequilibrium concentration
in terms of the equilibrium solution. From (24) it follows that

CX1(X, T ) =
∫ T

0

g(τ)

PX

∂GX1

∂ξ
(X, T ;0, τ )dτ. (25)

The Green’s function, listed asGf

L1(X, T ; ξ, τ ) in Table I, can be determined
from inspection of the solution forCX1(X, T ) given by (A.10) using the spatial
derivative of equilibrium Green’s functions. Note that solutions for the nonequilib-
rium problem are written in terms of the Dirac delta function,δ( ), and the zero-
and first-order modified Bessel functions,I0 and I1.

The transformed boundary conditions for a third-type condition are

C̄X1(0, s)− 1

PX

dC̄X1

dX
(0, s) = ḡ(s), dC̄X1

dX
(∞, s) = 0. (26)

The following conditions need to be imposed onḠX1(X, s; ξ) to obtain a unique
solution according to Equation (21):

dḠX1

dξ
(X, s;0) = dḠX1

dξ
(X, s;∞) = 0. (27)
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The solution in the Laplace domain, again written according to the GFM, is based
upon the corresponding solution to the equilibrium problem:

C̄X1(X, s) = ḡ(s)ḠX1(X, s;0) = ḡ(s)C̄u(X, s∗). (28)

The concentration in the regular time domain becomes

CX1(X, T ) =
∫ T

0
g(τ)GX1(X, T ;0, τ )dτ. (29)

Since the boundary condition does not affect the ‘nonequilibrium’ part of the solu-
tion, the Green’s function follows from the nonequilibrium solution and is given as
Gt

L1(X, T ; ξ, τ ) in Table I.

2.2.3. Initial Value Problem

By judiciously specifying the two boundary conditions forḠX1(X, s; ξ) to cancel
unknown terms, the concentration in the Laplace domain for a one-dimensional
semi-infinite medium with an arbitrary initial distribution and a zero solute concen-
tration or flux at the inlet (g = 0), is given according to Equation (20)
as

C̄X1(X, s) =
∫ ∞

0

(
βR + ω

s + b
)
f (ξ)ḠX1(X, s; ξ)dξ. (30)

Inversion to the real time domain yields

CX1(X, T ) =
∫ ∞

0
f (ξ)

{
βRGX1(X, T ; ξ,0)+

+
∫ T

0
ω exp[−b(T − τ)]GX1(X, τ, ξ,0)dτ

}
dξ. (31)

The Green’s functions were already derived for the boundary value problem.
In case of afirst-type inlet condition, the transformed boundary conditions

are

C̄X1(0, s) = 0,
dC̄X1

dX
(∞, s) = 0. (32)

To arrive at (30), the Green’s function should satisfy (24). It can be shown that
insertingGf

X1(X, T ; ξ, τ ) yields the solution given by Equation (A.10).
For a third-type condition, the transformed boundary conditions for a zero flux

input are

C̄X1(0, s)− 1

PX1

dC̄X1

dX
= 0,

dC̄X1

dX
(∞, s) = 0 (33)

with corresponding Green’s function conditions (27). The solution given by (A.10),
including the equilibrium solution for a third-type inlet condition, is obtained by
usingGt

X1(X, T ; ξ, τ ) of Table I.
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3. Persistent Solute Sources

Consider solute movement from a planar source as sketched in Figure 1. This type
of problem arises when a contaminant pool is located at the top (LNAPL source)
or bottom (DNAPL source) of an aquifer. The longitudinalX-domain is infinite,
the horizontal transversalZ-coordinate is infinite while the verticalY-coordinate is
semi-infinite, although the analysis can be readily applied to a finite impermeable
layer (cf. Leijet al., 1999) or other geometries. Three different types of conditions
were applied at the NAPL pool, which has a negligible thickness.

First- and second-type conditions are used for a prescribed concentration and a
diffusive mass flux, respectively, while a third-type scenario may be applicable for
rate-limited diffusion from the source. Problems with mixed boundary conditions,
such as a first- or third-type condition for the source and a homogeneous second-
type condition elsewhere at the surface, are more complicated and will not be
considered here.

The general initial and boundary conditions (i.e., excluding the source condi-
tion) are

C(X, Y,Z,0) = 0 (−∞ < X <∞,0< Y <∞,−∞ < Z <∞), (34)

∂C

∂X
(±∞, Y, Z, T ) = 0 (0< Y <∞,−∞ < Z <∞), (35)

∂C

∂Y
(X,∞, Z, T ) = 0 (−∞ < X <∞,−∞ < Z <∞), (36)

∂C

∂Z
(X, Y,±∞, T ) = 0 (−∞ < X <∞,0< Y <∞). (37)

An intermediate result for the concentration is obtained by substituting the above
conditions in (6):

Figure 1. Schematic of a planar solute source.
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C(X, Y,Z, T ) =
∫ T

0

{∫ ∞
0

∫ ∞
−∞

(
− C
PX

∂G

∂ξ
−GC

)∣∣∣∣ξ→∞
ξ→−∞

dζ dη−

−
∫ ∞
−∞

∫ ∞
−∞

[
C

PY

∂G

∂η

∣∣∣∣
η→∞
+

+
(
G

PY

∂C

∂η
− C

PY

∂G

∂η

)
η=0

]
dζ dξ −

−
∫ ∞
−∞

∫ ∞
0

C

PZ

∂G

∂ζ

∣∣∣∣∞
ζ→−∞

dη dξ

}
dτ. (38)

The exact formulation of the concentration will be determined in the following
by specifying appropriate conditions onG, written as the productGX(X, T ; ξ, τ )
GY (Y, T ; η, τ)GZ(Z, T ; ζ, τ ), depending on the conditions for the source bound-
ary. In all cases the following conditions apply toG:

∂G

∂ξ
(X, Y,Z, T ;±∞, η, ζ, τ ) = 0, (39)

∂G

∂η
(X, Y,Z, T ; ξ,∞, ζ, τ ) = 0, (40)

∂G

∂ζ
(X, Y,Z, T ; ξ, η,±∞, τ ) = 0. (41)

3.1. FIRST-TYPE CONDITION

The solute concentration is prescribed for the surface (Y = 0) according to

C(X,0, Z, T ) =
{
g(X,Z, T ), (X1 < X < X2, Z1 < Z < Z2),

0, otherwise.
(42)

Equation (38) implies that the following additional condition be placed on the
Green’s function:

G(X, Y,Z, T ; ξ,0, ζ, τ ) = 0. (43)

All of the above conditions onG are met by selectingGL, Gf
T, andGT from

Table I forGX, GY , andGZ. After using the conditions and functions in (38),
integration with respect toξ andζ is possible due to the simple form ofGL andGT

if the prescribed concentration only depends on time. Remaining integrations with
time, for this and other solutions, were done numerically using Gauss–Chebyshev
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quadrature (Carnahanet al., 1969). The resulting solute concentration is

C(X, Y,Z, T ) =
∫ T

0

∫ X2

X1

∫ Z2

Z1

g(τ)

PY
GX(X, T ; ξ, τ )×

×∂GY

∂η
(Y, T ;0, τ )GZ(Z, T ; ζ, τ )dζ dξ dτ

=
∫ T

0

g(T − τ)
4

Y

τ

√
RPY

4πτ
exp

(
−µτ
R
− RPYY

2

4τ

)
×

×
[
erfc

(
R(X −X2)− τ√

4Rτ/PX

)
− erfc

(
R(X −X1)− τ√

4Rτ/PX

)]
×

×
[

erfc

(
RPZ

4τ
(Z − Z2)

)
− erfc

(√
RPZ

4τ
(Z − Z1)

)]
dτ.

(44)

Two obvious disadvantages of this formulation are that this condition imposes a
sharp discontinuity at the borders of the pool while it is typically not possible to
specify g(T) a priori. Furthermore, an upward diffusive mass flux may occur at
Y = 0, which seems unrealistic away from the pool.

For nonequilibrium transport, the conditions on the solute concentration,C1 and
the Green’s function are essentially the same as for the equilibrium problem, except
thatGX needs to be replaced byGX1. The concentration now becomes

C1(X, Y,Z, T )=
∫ T

0

∫ X2

X1

∫ Z2

Z1

g(τ)

PY
GX1(X, T ; ξ, τ )×

× ∂GY

∂η
(Y, T ;0, τ )GZ(Z, T ; ζ, τ )dζ dξ dτ

=
∫ T

0

g(T − τ)
4

{
Y

τ

√
βRPY

4πτ
exp

(
−βRPYY

2

4τ

)
×

×
[

erfc

(√
βRPZ

4τ
(Z − Z2)

)
− erfc

(√
βRPZ

4τ
(Z − Z1)

)]
×

×
∫ τ

0
exp

(
−ω + µ1

βR
τ ′
)[

erfc

(
βR(X −X2)− τ ′√

4βRτ ′/PX

)
−

−erfc

(
βR(X −X1)− τ ′√

4βRτ ′/PX

)]
×
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×
[
δ(τ − τ ′)+ ω

R

√
τ ′

β(1− β)(τ − τ ′)I1

×
(

2ω

R

√
τ ′(τ − τ ′)
β(1− β)

)
exp

(
− ω + µ2

(1− β)R (τ − τ
′)
)]

dτ ′
}

dτ.

(45)

3.2. SECOND-TYPE CONDITION

Transport from the surface is in this case described as a diffusive process; the
concentration gradient can presumably be specified across the entire surface of
the porous medium while the concentration at the surface is unknown. The surface
condition is written as

∂C

∂Y
(X,0, Z, T ) =

{−0(X,Z, T ), (X1 < X < X2, Z1 < Z < Z2),

0, otherwise.
(46)

The diffusive flux0 may be defined in terms of dimensional parameters using the
Sherwood number (Sh) according toK∗csL/(Dec0) = Shcs/c0. In this expression,
k∗ is a mass transfer parameter (LT−1), cs is the solubility concentration (ML−3),
L is a characteristic length (L),c0 is a reference concentration (ML−3) andDe is
an effective diffusion coefficient (L2 T−1) (cf. Chrysikopoulos, 1995). Generally, it
will be difficult to prescribe the flux,0, since it will normally be controlled by the
a priori unknown NAPL concentration of the aqueous phase. If an excessively high
flux is specified, the solution may predict concentrations exceeding the solubility
of the NAPL. As will be discussed shortly, the diffusive flux can be constrained
with a third-type condition.

To eliminate the unknown concentrations in the solution according to Equation
(37), the remaining condition on the Green’s function should be

∂G

∂η
(X, Y,Z, T ; ξ,0, ζ, τ ) = 0 (−∞ < X <∞,−∞ < Z <∞). (47)

The Green’s function is the product ofGX,GY , andGZ given byGL,Gs
T, andGT

of Table 1. The concentration for the equilibrium problem – for a flux that only
depends on time – is given by

C(X, Y,Z, T )=
∫ T

0

∫ X2

X1

∫ Z2

Z1

0(τ)

PY
GX(X, T ; ξ, τ )×

×GY (Y, T ;0, τ )GZ(Z, T ; ζ, τ )dζ dξ dτ

= 1

4

∫ T

0

0(T − τ)√
πPY τ/R

exp

(
−µτ
R
− RPYY

2

4τ

)
×
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×
[
erfc

(
R(X −X2)− τ√

4Rτ/PX

)
− erfc

(
R(X −X1)− τ√

4Rτ/PX

)]
×

×
[

erfc

(√
RPZ

4τ
(Z − Z2)

)
− erfc

(√
RPZ

4τ
(Z − Z1)

)]
dτ.

(48)

The solution for the nonequilibrium problem according to the GFM is obtained by
replacingGX in equilibrium solution (48) byGX1.

3.3. THIRD-TYPE CONDITION

The need for a third-type condition arises in case of rate-limited dissolution from
the source. The surface condition is then formulated as

∂C

∂Y
(X,0, Z, T ) = k(X,Z, T )[C(X,0, Z, T )− g(X,Z, T )]

with

g(X,Z, T ) =
{
cs/c0, (X1 < X < X2, Z1 < Z < Z2),

0, otherwise,
(49)

wherek is a dimensionless transfer coefficient, which is equivalent tok∗L/De,
andcs denotes an upper limit for the (dimensional) solute concentration (e.g., as
determined by solubility). To simplify the mathematical analysis, it is assumed that
k is constant. Away from the source, a homogeneous second-type condition would
be more accurate since there is no mass transfer in this case (k = 0). The additional
condition for the Green’s function is given by(

kG− ∂G
∂η

)
η=0

= 0. (50)

The concentration may now be written as

C(X, Y,Z, T ) =
∫ T

0

∫ X2

X1

∫ Z2

Z1

kg(τ)

PY
GX(X, T ; ξ ; τ)×

×GY (Y, T ;0, τ )GZ(Z, T ; ζ, τ )dζ dξ dτ

=
∫ T

0

kg(T − τ)
4

exp
(
−µτ
R

)[√ R

πPYτ
exp

(
−RPYY

2

4τ
−
)

− k

PY
exp

(
k2τ

RPY
+ kY

)
erfc

(
RPYY + 2kτ√

4RPYτ

)]
×

×
[
erfc

(
R(X −X2)− τ√

4Rτ/PY

)
− erfc

(
R(X −X1)− τ√

4Rτ/PX

)]
×
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×
[

erfc

(√
RPZ

4τ
(Z − Z2)

)
− erfc

(√
RPZ

4τ
(Z − Z1)

)]
dτ.

(51)

with GY equal toGt
T as defined in Table I. The solution for the nonequilibrium

problem follows directly from Equation (51) by substitutingGX1 for GX.

4. Examples

The previously derived solutions will be used to illustrate the effect of the sur-
face condition on the solute distribution, and to explore differences between the
equilibrium and nonequilibrium transport models. Parameter values were selected
for illustrative purposes, they reflect laboratory conditions. In all examples it is
assumed that there is neither solute retardation (R = 1) nor degradation.

4.1. SURFACE CONDITION

Consider transport from a rectangular source at the surfaceY = 0 withX1 = Z1 =
−1 andX2 = Z2 = 1 with PX = 20 (e.g., a pore-water velocity of 10 cm/d and
dispersivity of 0.5 cm) andPY = PZ = 200. Figure 2 shows steady-state contours
of the dimensionless solute concentration in theYX-plane atZ = 0 resulting from
advection and dispersion as calculated with Equations (45), (48), and (51). These
results were obtained with transient Green’s functions, which tend to be easier to
apply than steady Green’s functions (Becket al., 1992). For a first-type condition,
the surface concentration,g, is equal to unity at the source and zero otherwise (Fig-
ure 2(a)). The contours for a second-type condition are plotted in Figure 2(b). The
parameter0 was set to 3.3 at the source – this value was based on a dimensional
concentration gradient of 0.33 mg/cm4 that was normalized using a characteristic
length of 10 cm and a concentration of 1 mg/cm3 – and zero for the rest of the
surface. Contours for a third-type surface condition are given in Figure 2(c) for
k = 3.3.

The effects of the boundary conditions can be clearly observed. The first-type
condition, with a zero surface concentration away from the source, is probably not
realistic (Figure 2(a)). The contours obtained with the second-type condition reveal
that the highest concentration for a particular longitudinal distance occurs at the
surface; the solute does not move as deep as for the first-type condition. Interme-
diate surface concentrations were obtained for a third-type condition (Figure 2(c)).
Less solute moves from the pool into the medium for rate-limited diffusion (Fig-
ure 2(c)) than for a fixed concentration gradient (Figure 2(b)) or instantaneous
dissolution (Figure 2(a)).
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Figure 2. Steady-state contours of the dimensionless concentration (C = c/c0) in the
XY-plane atZ = 0 as the result of equilibrium transport from a planar source with
X1 = Z1 = −1, X2 = Z2 = 1, PX = 20 andPY = PZ = 200: (a) first-type condition
with g(T ) = 1, (b) second-type condition with0 = 3.3, and (c) third-type condition due to
rate-limited dissolution withg(T ) = 1 andk = 3.3.

4.2. NONEQUILIBRIUM TRANSPORT

Figure 3 shows contours of the relative concentration as a function of depth,Y,
and dimensionless time,T, atX = 10 andZ = 0 for a first-, second-, and third-
type condition. The development of the concentration profile over time is shown
in Figures 3(a–c) for the same conditions as used for Figures 2(a–c). Additionally,
corresponding profiles were determined for nonequilibrium transport (Figures 3(d–
f). These only pertain to the ‘equilibrium’ concentration. The solute concentration
is calculated according to Equations (45), and modifications of (48) and (51), re-
spectively, usingβ = 0.5,ω = 1.0, andµ1 = µ2 = 0. Nonequilibrium conditions
may decrease the total amount of solute entering the medium and increase the
time required to reach the eventual peak solute concentration. Furthermore, steeper
concentration gradients may occur because transport is confined to the mobile
zone as compared to transport described by the conventional ADE. Both factors
increase the opportunity for solute spreading, including downward movement, and
the maximum concentrations will consequently be lower.

Figure 4 shows breakthrough curves forC1 at X = 2, Y = 0.1 andZ = 0
for a third-type condition assuming five different degrees of nonequilibrium. The
curves pertain to the same scenario as the contours shown in Figure 3. For a first-
type condition, the highest maximum concentration is obtained for the equilibrium
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Figure 3. Relative concentration (C or C1) contours in theYT-plane atX = 2 andZ = 0
resulting from a planar source withX1 = Z1 = −1, X2 = Z2 = 1, PX = 20 and
PY = PZ = 200 according to the equilibrium model (a,b and c) and nonequilibrium model
with β = 0.5 andω = 1.0 (d,e,f): (a) and (d) first-type condition withg( T ) = 1, (b) and
(e) second-type condition with0 = 3.3, (c) and (f) third-type condition withg (T ) = 1 and
k = 3.3.

scenario (Figure 4(a)). The breakthrough curve is apparently more sensitive to the
value of the transfer parameter,ω, than the partition coefficient,β. The higher
maximum forω = 0.1 compared toω = 1 may be due to the fact that less solute
has yet moved to the nonequilibrium region in the former case. If a third-type
condition is used (Figure 4(b)), the maximum concentration is mostly affected byβ

whileω determines how soon this maximum is reached. The earliest breakthrough
occurs in both cases for the most pronounced case of nonequilibrium (β = 0.25
andω = 0.1).

5. Summary and Conclusions

The first part of this paper contains a brief review of the use of the GFM to analyt-
ically model solute transport as described by the ADE for uniform and steady water
flow. The GFM has not been widely employed for this purpose despite some of its
advantages. Very concise expressions can be written for the solute concentration.
The GFM is well suited to be employed for different boundary and initial con-
ditions. Solutions for multidimensional problems may be obtained by multiplying
the Green’s functions for separate one-dimensional problems. Of particular interest
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Figure 4. Relative concentration as a function of time (T) atX = 2, Y = 0.1 andZ = 0
resulting from a planar source withX1 = Z1 = −1, X2 = Z2 = 1, PX = 20 and
PY = PZ = 200 predicted for equilibrium conditions and four sets of parameters for
nonequilibrium conditions with the following conditions at the source boundary: (a) first-type
condition(g(T ) = c/c0 = 1) and (b) third-type condition(g(T ) = 1 andk = 3.3).
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are the solutions for nonequilibrium transport, which follow in a relatively straight-
forward manner from those for equilibrium transport. Table I lists longitudinal and
transversal Green’s functions that can be used to formulate the solution for a wide
variety of transport problems in infinite and semi-infinite.

In the second part of this study the GFM was applied to solve transport from
a persistent contamination source. Transport took place from a rectangular source
located at the bottom or top of an aquifer during one-dimensional equilibrium and
nonequilibrium flow for a first-, second-, and third-type condition at the source.
The first-type and, particularly, the second-type conditions have the disadvantage
that the theoretical solution cannot account for changes in the aqueous phase con-
centration, which will affect the actual solute flux from the pool. The third-type
condition appears more plausible, but leads to errors away from the pool in case of
a homogenous third-type condition.

The first example demonstrated the surface condition for transport from a planar
source. Solute contours were shown in theXY- andYT-planes. The first-type con-
dition unrealistically mandates that the surface concentration be zero away from
the source; the maximum concentration was relatively low. For a second-type con-
dition the problem is that the gradient at the source needs to be specified a priori.
A relatively high maximum concentration was predicted, but it occurred at the
surface and possible contamination did not extend far into the medium. The second
example compared equilibrium and nonequilibrium transport from a planar source
using a first-, second-, and third-type condition. Nonequilibrium conditions tended
to lower the maximum concentration but enhanced the spreading of the solute over
a larger area. Breakthrough curves were shown for a first-and third-type condition
involving different degrees of nonequilibrium. These curves exhibited the fea-
ture that nonequilibrium promotes earlier breakthrough, as is well known for one-
dimensional transport. However, the maximum concentration may be considerably
lower due to reduced mass transfer into the medium and increased opportunity for
solute spreading.

Appendix A. Derivation of Solutions for Nonequilibrium Transport

The analytical solution procedure will be illustrated for longitudinal transport,
which accounts for all nonequilibrium effects. Solutions for the complete problem
can be readily obtained with the product rule using appropriate transversal Green’s
functions for the diffusion problem (Becket al., 1992). The temporal Laplace trans-
form of the one-dimensional ADE for equilibrium transport yields the following
ordinary differential equation for an arbitrary initial distribution,f:

1

PX

d2C̄

dX2
− dC̄

dX
− (Rs + µ)C̄ + f = 0. (A.1)

The Laplace transform of the corresponding nonequilibrium Equations (11) and
(12) can be combined to yield the following transport problem in terms of one
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dependent variable (Torideet al., 1993):

1

PX

d2C̄1

dX2
− dC̄1

dX
−
(
βRs + ω + µ1− aω

s + b
)
C̄1+

(
βR + ω

s + b
)
f =0.

(A.2)

This equation has a similar form as the equilibrium problem given by (A.1); this
feature facilitates the derivation of solutions forC1(X, T ) as shown below.

A.1. BOUNDARY VALUE PROBLEM

The influent concentration is given byg(T) while the initial concentrationf (X) =
0. If the solution to the equilibrium problem forg(T ) = 1 andµ = 0 is given
byCu(X, T ), the solutions of the equilibrium and nonequilibrium problems in the
Laplace domain are related according to

C̄1(X, s) = ḡ(s)C̄u
(
X,βRs + ω + µ1 − aω

s + b
)
= ḡ(s)C̄u(X, s∗), (A.3)

wheres∗ is a modified Laplace variable obtained froms without spatially or tem-
porally dependent parameters (cf. de Smedt and Wierenga, 1979; Walker, 1987).
The inversion with respect to time is based on the property that the inverse of
the iterated Laplace transform of a function is equal to the generalized convolu-
tion integral of the function (Sneddon, 1995). The Laplace transform is applied
sequentially; in this case,t is replaced by eithert1 or t2 in the expression for the
concentration. The corresponding transformation variables is split into s1 ands2.
The sequential inversion of a function,u, which is transformed in this manner may
be written as

h(t1, t2) = L−1
t1
{L−1

t2
[ū(s1, s2)]}. (A.4)

The function in the regular time domain is given by the convolution integral

u(x, t) =
∫ t

0
h(τ, t − τ)dτ. (A.5)

Application of this theorem and using the properties of the Laplace transform
(Spiegel, 1965) yields

h(t1, t2) = L−1
t1

{
L−1
t2

[
C̄u

(
X,βRs2+ ω + µ1− aω

s1 + b
)]}

= L−1
t1

{
exp

[
−
(
ω + µ1 − aω

s1+ b
)
t2

βR

]
L−1
t2

[C̄u(X, βs2)]

}
= 1

βR
Cu

(
X,

t2

βR

)
exp

[
−(ω + µ1)

t2

βR

]
×

×
[
δ(t1)+

√
aωt2

βRt1
I1

(
2

√
aωt2

βR
t1

)
exp(−bt1)

]
. (A.6)
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From (A.6) the following concentration can be written down:

C1(X, T ) =
∫ T

0
g(T − τ)

∫ τ

0

1

βR
Cu

(
X,

τ ′

βR

)
exp

[
−(ω + µ1)

τ ′

βR

]
×

×
[
δ(τ − τ ′)+

√
aωτ ′

βR(τ − τ ′)I1

(
2

√
aωτ ′(τ − τ ′)

βR

)
×

×exp[−b(τ − τ ′)]] dτ ′, (A.7)

whereδ( ) is the Dirac delta function andI1 is the first-order modified Bessel
function.

A.2. INITIAL VALUE PROBLEM

The initial solute concentration is given byf(X), while the influent concentration,
g(T), is equal to zero. This problem has not been studied as widely as the boundary
value problem, but inspection of the ordinary differential equations given by (A.1)
and (A.2) suggests that̄C1(X, s) can be written in terms of the solution of the
transformed equilibrium problem without degradation according to

C̄1(X, s) =
(
βR + ω

s + b
)
C̄

(
X,βRs + ω + µ1− aω

s + b
)

=
(
βR + ω

s + b
)
C̄(X, s∗). (A.8)

Again,C1(X, T ) is obtained with the iterated Laplace transformation. It may be
verified that (cf. Spiegel, 1965; Walker, 1987)

h(t1, t2) = L−1
t1

{
L−1
t2

[(
βR+ ω

s1+ b
)
C̄

(
X,βRs2+ ω + µ1− aω

s1+ b
)]}

= L−1
t1

{(
βR + ω

s1+ b
)
×

exp

[
−
(
ω + µ1− aω

s1+ b
)
t2

βR

]
L−1
t2

[C̄(X, βRs2)]

}
= C

(
X,

t2

βR

)
exp

[
−(ω + µ1)

t2

βR

]
{δ(t1)+ exp(−bt1) ×

×
[
ω

βR
I0

(
2

√
aωt2

βR
t1

)
+
√
aωt2

βRt1
I1

(
2

√
aωt2

βR
t1

)]}
. (A.9)
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The solution in terms of the equilibrium concentration therefore becomes

C1(X, T ) =
∫ T

0
C

(
X,

τ

βR

){
δ(T − τ)exp

(
−(ω + µ1)T

βR

]
+

+ ω

βR
exp

[
−ω + µ1

βR
τ − ω + µ2

(1− β)R (T − τ)
]
×

×
[
I0

(
2ω

R

√
τ(T − τ)
β(1− β)

)
+

+
√

βτ

(1− β)(T − τ)I1

(
2ω

R

√
τ(T − τ)
β(1− β)

)]}
dτ. (A.10)

with I0 as the zero-order modified Bessel function.
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