Skip to main content
ARS Home » Plains Area » Clay Center, Nebraska » U.S. Meat Animal Research Center » Nutrition, Growth and Physiology » Research » Publications at this Location » Publication #404970

Research Project: Optimizing Nutrient Management and Efficiency of Beef Cattle and Swine

Location: Nutrition, Growth and Physiology

Title: Paternal effects on fetal programming

Author
item DAHLEN, CARL - North Dakota State University
item AMAT, SAMAT - North Dakota State University
item CATON, JOEL - North Dakota State University
item Crouse, Matthew
item DINIZ, WELLISON - Auburn University
item REYNOLDS, LARRY - North Dakota State University

Submitted to: Animal Reproduction
Publication Type: Review Article
Publication Acceptance Date: 7/18/2023
Publication Date: 8/28/2023
Citation: Dahlen, C.L., Amat, S., Caton, J.S., Crouse, M.S., Diniz, W.J., Reynolds, L.P. 2023. Paternal effects on fetal programming. Animal Reproduction. 20(2). Article e20230076. https://doi.org/10.1590/1984-3143-AR2023-0076.
DOI: https://doi.org/10.1590/1984-3143-AR2023-0076

Interpretive Summary:

Technical Abstract: Paternal programming is the concept that the environmental signals from the sire’s experiences leading up to mating can alter semen and ultimately affect the phenotype of resulting offspring. Potential mechanisms carrying the paternal effects to offspring can be associated with epigenetic signatures (DNA methylation, histone modification and non-coding RNAs), oxidative stress, cytokines, and the seminal microbiome. Several opportunities exist for sperm/semen to be influenced during development; these opportunities are within the testicle, the epididymis, or accessory sex glands. Epigenetic signatures of sperm can be impacted during the pre-natal and pre-pubertal periods, during sexual maturity and with advancing sire age. Sperm are susceptible to alterations as dictated by their developmental stage at the time of the perturbation, and sperm and seminal plasma likely have both dependent and independent effects on offspring. Research using rodent models has revealed that many factors including over/under nutrition, dietary fat, protein, and ingredient composition (e.g., macro- or micronutrients), stress, exercise, and exposure to drugs, alcohol, and endocrine disruptors all elicit paternal programming responses that are evident in offspring phenotype. Research using livestock species has also revealed that sire age, fertility level, plane of nutrition, and heat stress can induce alterations in the epigenetic, oxidative stress, cytokine, and microbiome profiles of sperm and/or seminal plasma. In addition, recent findings in pigs, sheep, and cattle have indicated programming effects in blastocysts post-fertilization with some continuing into post-natal life of the offspring. Our research group is focused on understanding the effects of common management scenarios of plane of nutrition and growth rates in bulls and rams on mechanisms resulting in paternal programming and subsequent offspring outcomes. Understanding the implication of paternal programming is imperative as short-term feeding and management decisions have the potential to impact productivity and profitability of our herds for generations to come.