Research Entomologist
Research in my lab aims to improve honey bee health in the face of various interacting stressors such as pathogens, malnutrition, and climate change. We are mainly focused on developing sustainable technologies and treatments that can be practically applied to hives to alleviate these stressors. We also conduct longitudinal studies in commercial beekeeping operations to better understand the impacts of different management factors on colony performance.
Meikle, W.G., Weiss, M., Adjaye, D.F., Ricigliano, V.A. 2024. Comparative assessment of food consumption, longevity, thermoregulation, and molecular health markers in mite-resistant and Italian honey bee stocks. Apidologie. 55. Article 28. https://doi.org/10.1007/s13592-024-01071-x.
Copeland, D.C., Ricigliano, V.A., Mott, B.M., Kortenkamp, O.L., Erickson, R.J., Gorrochategui-Ortega, J., Anderson, K.E. 2024. A longitudinal study of queen health in honey bees reveals tissue specific response to seasonal changes and pathogen pressure. Scientific Reports. 14. Article 8963. https://doi.org/10.1038/s41598-024-58883-1.
Simone-Finstrom, M., Ricigliano, V.A. 2024. Baton Rouge bee lab enhances disease resistance and health using novel management tools. Honey Producer. 12/13.
Ricigliano, V.A., Mcmenamin, A., Martin, A.M., Adjaye, D.F., Simone-Finstrom, M., Rainey, V.P. 2024. Green biomanufacturing of edible antiviral therapeutics for managed pollinators. NPJ Sustainable Agriculture. 2:Article4. https://doi.org/10.1038/s44264-024-00011-7.
Ewert, A.M., Simone-Finstrom, M., Read, Q.D., Husseneder, H., Ricigliano, V.A. 2023. Effects of ingested essential oils and propolis extracts on honey bee (Hymenoptera: Apidae) health and gut microbiota. Journal of Insect Science. 23/6. https://doi.org/10.1093/jisesa/iead087.
Carroll, M.J., Brown, N.J., Ruetz, Z.J., Ricigliano, V.A., Anderson, K.E. 2023. Honey bee retinue workers respond similarly to queens despite seasonal differences in Queen Mandibular Pheromone (QMP) signaling. PLOS ONE. 18(9). Article e0291710. https://doi.org/10.1371/journal.pone.0291710.
McMenamin, A., Weiss, M., Meikle, W.G., Ricigliano, V.A. 2023. Efficacy of a microalgal feed additive in commercial honey bee colonies used for crop pollination. ACS Agricultural Science and Technology. 3(9):701-834. https://doi.org/10.1021/acsagscitech.3c00082.
Meikle, W.G., Corby-Harris, V.L., Ricigliano, V.A., Snyder, L.A., Weiss, M. 2023. Cold storage as part of a Varroa management strategy: Effects on honey bee colony performance, mite levels and stress biomarkers. Scientific Reports. 13. Article 11842. https://doi.org/10.1038/s41598-023-39095-5.
Nichols, B.J., Ricigliano, V.A. 2022. Uses and benefits of algae as a nutritional supplement for honey bees. Frontiers in Sustainable Food Systems. 6:1005058. https://doi.org/10.3389/fsufs.2022.1005058.
Ricigliano, V.A., Cank, K.B., Todd, D.A., Knowles, S.L., Oberlies, N.H. 2022. Metabolomics-guided comparison of pollen and microalgae-based artificial diets in honey bees. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.2c02583.
Anderson, K.E., Ricigliano, V.A., Copeland, D., Mott, B.M., Maes, P. 2022. Social Interaction is Unnecessary for Hindgut Microbiome Transmission in Honey Bees: The Effect of Diet and Social Exposure on Tissue-Specific Microbiome Assembly. Microbial Ecology. https://doi.org/10.1007/s00248-022-02025-5.
Ricigliano, V.A., Williams, S.T., Oliver, R. 2022. Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota. BMC Veterinary Research. 18(52):1-14. https://doi.org/10.1186/s12917-022-03151-5.
Ricigliano, V.A., Ihle, K.E., Williams, S.T. 2021. Nutrigenetic comparison of two Varroa-resistant honey bee stocks fed pollen and spirulina microalgae. Apidologie. 1-14. https://doi.org/10.1007/s13592-021-00877-3.
Ricigliano, V.A., Dong, C., Richardson, L.T., Donnarummar, F., Williams, S.T., Solouki, T., Murrary, K.K. 2020. Honey bee proteome responses to plant and cyanobacteria (blue-green algae) diets. ACS Food Science and Technology. 1:1-10. https://doi.org/10.1021/acsfoodscitech.0c00001.
Ricigliano, V.A., Sica, V.P., Knowels, S.L., Diette, N., Howarth, D.G., Oberlies, N.K. 2020. Bioactive diterpenoid metabolism and cytotoxic activities of genetically transformed Euphorbia lathyris roots. Phytochemistry. 179:1-9. https://doi.org/10.1016/j.phytochem.2020.112504.
Ricigliano, V.A., Anderson, K.E. 2020. Probing the honey bee diet-microbiota-host axis using pollen restriction and organic acid feeding. Insects. 11(5):1-14. https://doi.org/10.3390/insects11050291.
Saelao, P., Borba, R.S., Ricigliano, V.A., Spivak, M., Simone-Finstrom, M. 2020. Honey bee microbiome is stabilized in the presence of propolis. 2020. Biology Letters. 16:1-5. https://doi.org/10.1098/rsbl.2020.0003.
Ricigliano, V.A., Simone-Finstrom, M. 2020. Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (spirulina) in honey bees. Apidologie. 51(2)1-13. https://doi.org/10.1007/s13592-020-00770-5.
Ricigliano, V.A. Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology. 1-8. https://doi.org/10.1002/arch.21658.
Lopez-Uribe, M., Ricigliano, V.A., Simone-Finstrom, M. 2020. Defining pollinator health: assessing bee ecological, genetic and physiological factors at the individual, colony and population levels. Annual Review of Animal Biosciences. 8:296.
Ricigliano, V.A., Mott, B.M., Maes, P., Floyd, A.S., Fitz, W., Copeland, D.C., Meikle, W.G., Anderson, K.E. 2019. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Scientific Reports. 9:4894. https://doi.org/10.1038/s41598-019-41281-3.
Ricigliano, V.A., Mott, B.M., Floyd, A.S., Copeland, D.C., Carroll, M.J., Anderson, K.E. 2018. Honey bees overwintering in a southern climate: longitudinal effects of diet and queen age on colony-level molecular physiology and performance. Scientific Reports. https://doi:10.1038/s41598-018-28732-z.
Ricigliano, V.A., Fitz, W., Copeland, D.C., Mott, B.M., Maes, P., Floyd, A.S., Dockstader, A., Anderson, K.E. 2017. The impact of pollen consumption on honey bee digestive physiology and carbohydrate metabolism. Archives of Insect Biochemistry and Physiology. https://doi.org/10.1002/arch.21406.
Anderson, K.E., Ricigliano, V.A. 2017. Honey bee gut dysbiosis: a novel context for disease ecology. Current Opinion in Insect Science. doi: 10.1016/j.cois.2017.05.020.
Using Genetics to Improve the Breeding and Health of Honey Bees In-House Appropriated (D) Accession Number:437823 Microalgae as a Novel Platform to Improve Honey Bee Nutrition, Microbiome Health, and Pathogen Resistance Interagency Reimbursable Agreement (I) Accession Number:439554 Understanding Host-Microbiota Interactions to Improve Honey Bee Health Non-Assistance Cooperative Agreement (S) Accession Number:440185 Harnessing Fungal Natural Products for Scalable and Sustainable Honey Bee Antiviral Therapeutics Non-Assistance Cooperative Agreement (S) Accession Number:445559 Harnessing Fungal Natural Products for Scalable and Sustainable Honey Bee Antiviral Therapeutics Trust Fund Cooperative Agreement (T) Accession Number:445396