Skip to main content
ARS Home » People & Locations » Elizabeth Ramirez-Medina

Elizabeth Ramirez-Medina
Research Programs
Visiting Scientist

Phone:
Fax:

(Employee information on this page comes from the REE Directory. Please contact your front office staff to update the REE Directory.)


Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
ASF vaccine candidate ASFV-G-deltaI177l does not exhibit residual virulence in long-term clinical studies Reprint Icon - (Peer Reviewed Journal)
Borca, M.V., Ramirez Medina, E., Silva, E.B., Ayushi, R., Espinoza, N.N., Velazquez Salinas, L., Gladue, D.P. 2023. ASF vaccine candidate ASFV-G-deltaI177l does not exhibit residual virulence in long-term clinical studies. Pathogens. 12(6). https://doi.org/10.3390/pathogens12060805.
Confirming the absence of parental African swine fever virus as a potential contaminant of recombinant live attenuated ASF vaccines Reprint Icon - (Peer Reviewed Journal)
Velazquez Salinas, L., Ramirez Medina, E., Rai, A., Pruitt, S.E., Vuono, E., Espinoza, N.N., Gay, C.G., Witte, S.B., Gladue, D.P., Borca, M.V. 2023. Confirming the absence of parental African swine fever virus as a potential contaminant of recombinant live attenuated ASF vaccines. Biologicals. 3;83:101685. https://doi.org/10.1016/j.biologicals.2023.101685.
Pathogenesis and transmissibility studies of the ASFV strain currently causing outbreaks in the Dominican Republic Reprint Icon - (Abstract Only)
Ramirez Medina, E., O'Donell, V., Silva, E.B., Espinoza, N.N., Velazquez Salinas, L., Moran, K., Daite, D., Barrette, R., Bonto, F., Holland, R., Gladue, D.P., Borca, M.V. 2023. Pathogenesis and transmissibility studies of the ASFV strain currently causing outbreaks in the Dominican Republic. Meeting Abstract. https://doi.org/10.3390/v14051090.
Classical swine fever virus structural glycoprotein E2 interacts with host protein ACADM during the virus infectious cycle Reprint Icon - (Peer Reviewed Journal)
Vuono, E., Ramirez Medina, E., Silva, E.B., Berggren, K., Rai, A., Espinoza, N.N., Gladue, D.P., Borca, M.V. 2023. Classical swine fever virus structural glycoprotein E2 interacts with host protein ACADM during the virus infectious cycle. Viruses. 15(5). https://doi.org/10.3390/v15051036.
Evaluation of the function of ASFV gene E66L in the process of virus replication and virulence in swine - (Peer Reviewed Journal)
Full genome sequence for the African swine fever virus outbreak in the Dominican Republic in 1980 Reprint Icon - (Peer Reviewed Journal)
Spinnard, E., O'Donnell, V., Vuono, E., Davis, C., Rai, A., Ramirez Medina, E., Espinoza, N.N., Valadares, A., Borca, M.V., Gladue, D.P. 2023. Full genome sequence for the African swine fever virus outbreak in the Dominican Republic in 1980. Microbiology Resource Announcements. 13:1024(2023). https://doi.org/10.1038/s41598-022-25987-5.
A highly effective African swine fever virus vaccine elicits a memory T cell response in vaccinated swine Reprint Icon - (Peer Reviewed Journal)
Attreed, S.E., Silva, C.M., Abbott, S.T., Ramirez Medina, E., Espinoza, N.N., Borca, M.V., Gladue, D.P., Diaz San Segundo, F.C. 2022. A highly effective African swine fever virus vaccine elicits a memory T cell response in vaccinated swine. Pathogens. 11(12). Article 1438. https://doi.org/10.3390/pathogens11121438.
Deletion of an African swine fever ATP-dependent RNA hel-icase QP509L from the highly virulent Georgia 2010 strain does not affect replication or virulence Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., Vuono, E., Pruitt, S., Rai, A., Espinoza, N.N., Spinard III, E.J., Valadares, A., Silva, E.B., Velazquez Salinas, L., Borca, M.V., Gladue, D.P. 2022. Deletion of an African swine fever ATP-dependent RNA hel-icase QP509L from the highly virulent Georgia 2010 strain does not affect replication or virulence. Viruses. 14(11). https://doi.org/10.3390/v14112548.
The presence of virus neutralizing antibodies is highly associated with protection against virulent challenge in domestic pigs immunized with ASFV live attenuated vaccine candidates Reprint Icon - (Peer Reviewed Journal)
Silva, E.B., Krug, P., Ramirez Medina, E., Pruitt, S., Rai, A., Espinoza, N.N., Valadares, A., Gladue, D.P., Borca, M.V. 2022. The presence of virus neutralizing antibodies is highly associated with protection against virulent challenge in domestic pigs immunized with ASFV live attenuated vaccine candidates. Microbiology Resource Announcements. 11(11):1311. https://doi.org/10.3390/pathogens11111311.
Structural predictions of the complete ASFV-G proteome Reprint Icon - (Peer Reviewed Journal)
Spinard III, E.J., Azzinaro, P.A., Rai, A., Espinoza, N.N., Ramirez Medina, E., Borca, M.V., Gladue, D.P. 2022. Structural predictions of the complete ASFV-G proteome. Microbiology Resource Announcements. 11(12):e0088122. https://doi.org/10.1128/mra.00881-22.
Mutation of FMDV Lpro H138 reside outside substrate binding domain drives viral attenuation in vitro and in swine Reprint Icon - (Peer Reviewed Journal)
Azzinaro, P.A., Medina, G.N., Rai, D., Ramirez Medina, E., Spinard Iii, E.J., Zhu, J.J., Rieder, A.E., De Los Santos, T.B., Diaz San Segundo, F.C. 2022. Mutation of FMDV Lpro H138 reside outside substrate binding domain drives viral attenuation in vitro and in swine. Frontiers in Veterinary Science. https://www.frontiersin.org/articles/10.3389/fvets.2022.1028077/full.
ASFV Gene A151R is involved in the process of virulence in domestic swine Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., Vuono, E., Pruitt, S., Rai, A., Espinoza, N.N., Valladres, A., Spinard Iii, E.J., Silva, E.B., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2022. ASFV Gene A151R is involved in the process of virulence in domestic swine. Viruses. 14(8):1834. https://doi.org/10.3390/v14081834.
Deletion of the EP296R gene from the genome of highly virulent African swine fever virus Georgia 2010 does not affect virus replication or virulence in domestic pigs Reprint Icon - (Abstract Only)
Vuono, E., Ramirez Medina, E., Pruitt, S.E., Rai, A., Espinoza, N.N., Spinard Iii, E.J., Valladares, A., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2022. Deletion of the EP296R gene from the genome of highly virulent African swine fever virus Georgia 2010 does not affect virus replication or virulence in domestic pigs. Virus Research. https://doi.org/10.3390/v14081682.
Deletion of the ASFV dUTPase gene E165R from the genome of highly virulent African swine fever virus Georgia 2010 does not affect virus replication or virulence in domestic pigs Reprint Icon - (Peer Reviewed Journal)
Vuono, E., Ramirez Medina, E., Pruitt, S.E., Rai, A., Espinoza, N.N., Silva, E.B., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2022. Deletion of the ASFV dUTPase gene E165R from the genome of highly virulent African swine fever virus Georgia 2010 does not affect virus replication or virulence in domestic pigs. Viruses. 14(7):1409. https://doi.org/10.3390/v14071409.
Determining hyperimmune serum neutralizing effect on African Swine Fever Virus and serum enhancing effect on extracellular virion infectivity in adherent pig PBMC by flow cytometry Reprint Icon - (Peer Reviewed Journal)
Canter, J.A., Aponte, T., Ramirez Medina, E., Pruitt, S.E., Neilan, J., Gladue, D.P., Borca, M.V., Zhu, J.J. 2022. Determining hyperimmune serum neutralizing effect on African Swine Fever Virus and serum enhancing effect on extracellular virion infectivity in adherent pig PBMC by flow cytometry. Scientific Reports. https://doi.org/10.3390/v14061249.
Determining hyperimmune serum neutralizing effect on African Swine Fever Virus and serum enhancing effect on extracellular virion infectivity in adherent pig PBMC by flow cytometryg Reprint Icon - (Abstract Only)
Canter, J.A., Aponte, T., Ramirez Medina, E., Pruitt, S.E., Gladue, D.P., Borca, M.V., Zhu, J.J. 2022. Determining hyperimmune serum neutralizing effect on African Swine Fever Virus and serum enhancing effect on extracellular virion infectivity in adherent pig PBMC by flow cytometryg. Meeting Abstract. https://doi.org/10.3390/v15040915.
Deletion of H108R reduces virulence of the Georgia strain of African swine fever virus with surviving animals being protected against virulent challenge Reprint Icon - (Peer Reviewed Journal)
Vuono, E., Ramirez Medina, E., Silva, E.B., Rai, A., Pruitt, S.E., Espinoza, N.N., Valladares, A., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2022. Deletion of H108R reduces virulence of the Georgia strain of African swine fever virus with surviving animals being protected against virulent challenge. Journal of Virology. https://doi.org/10.1128/jvi.00545-22.
Experimental infection of domestic pigs with an African swine fever virus field strain isolated in 2021 from the Dominican Republic Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., O'Donnell, V., Silva, E.B., Espinoza, N.N., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2022. Experimental infection of domestic pigs with an African swine fever virus field strain isolated in 2021 from the Dominican Republic. Viruses. https://doi.org/10.3390/v14051090.
Evaluation of an ASFV RNA helicase gene A859L for virus replication and swine virulence Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., Vuono, E., Pruitt, S.E., Rai, A., Espinoza, N.N., Velazquez-Salinas, L., Gladue, D.P., Borca, M.V. 2021. Evaluation of an ASFV RNA helicase gene A859L for virus replication and swine virulence. Viruses. https://doi.org/10.3390/v14010010.
Deletion of E184L, a Putative DIVA Target from the Pandemic Strain of African Swine Fever Virus, Produces a Reduction in Virulence and Protection against Virulent Challenge Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., Vuono, E., Rai, A., Pruitt, S.E., Espinoza, N.N., Velazquez Salinas, L., Pina-Pedrero, S., Zhu, J.J., Rodriguez, F., Borca, M.V., Gladue, D.P. 2021. Deletion of E184L, a putative DIVA target from the pandemic strain of African Swine Fever Virus, produces a reduction in virulence and protection against virulent challenge. Viruses. https://doi.org/10.1128/JVI.01419-21.
Identification of genetic deletions in ASFV that could be potentially used as targets for the development of DIVA vaccines Reprint Icon - (Abstract Only)
Vuono, E., Ramirez Medina, E., Silva, E.B., Rai, A., Pruitt, S.E., Espinoza, N.N., Velazquez Salinas, L., Borca, M.V., Gladue, D.P. 2022. Identification of genetic deletions in ASFV that could be potentially used as targets for the development of DIVA vaccines. Meeting Abstract. https://doi.org/10.1128/JVI.01419-21.
Development real-time PCR assays to genetically differentiate vaccinated pigs from pigs infected with the Eurasian strain of African swine fever virus Reprint Icon - (Peer Reviewed Journal)
Velazquez Salinas, L., Ramirez Medina, E., Rai, A., Pruitt, S.E., Vuono, E.A., Espinoza, N.N., Gladue, D.P., Borca, M.V. 2021. Development real-time PCR assays to genetically differentiate vaccinated pigs from pigs infected with the Eurasian strain of African swine fever virus. Frontiers in Veterinary Science. https://doi.org/10.3389/fvets.2021.768869.
Additional deletions to further attenuate BA71¿CD2 recombinant virus decreases vaccine efficacy without providing additional safety. - (Peer Reviewed Journal)
Development of a novel African swine fever virus (ASFV) live attenuated vaccine candidate: deletion of A137R gene drastically attenuates Georgia strain and induce protection against the virulent challenge Reprint Icon - (Peer Reviewed Journal)
Gladue, D.P., Ramirez Medina, E., Vuono, E., Silva, E.B., Rai, A., Pruitt, S.E., Espinoza, N.N., Velazquez-Salinas, L., Borca, M.V. 2021. Development of a novel African swine fever virus (ASFV) live attenuated vaccine candidate: deletion of A137R gene drastically attenuates Georgia strain and induce protection against the virulent challenge. Journal of Virology. https://doi.org/10.1128/JVI.01139-21.
ASFV-G-I177L is an effective oral nasal vaccine against the Eurasia Strain of Africa swine fever Reprint Icon - (Peer Reviewed Journal)
Borca, M.V., Ramirez Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S.E., Gay, C.G., Espinoza, N.N., Velazquez-Salinas, L., Gladue, D.P. 2021. ASFV-G-I177L is an effective oral nasal vaccine against the Eurasia Strain of Africa swine fever. Viruses. https://doi.org/10.3390/v13050765.
Evaluation of the deletion of ASFV MGF110-5L-6L on swine virulence and its potential use as a DIVA vaccine marker gene Reprint Icon - (Peer Reviewed Journal)
Ramirez Medina, E., Vuono, E., Pruitt, S.E., Rai, A., Valladares, A., Espinoza, N.N., Velazquez Salinas, L., Gladue, D.P., Borca, M.V. 2021. Evaluation of the deletion of ASFV MGF110-5L-6L on swine virulence and its potential use as a DIVA vaccine marker gene. Viruses. https://doi.org/10.3390/v13020286.