Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Hydrology and Remote Sensing Laboratory » People » Yun Yang

Yun Yang

Collaborator
/ARSUserFiles/51049/yun_2021.JPG Yun Yang, Ph.D.
Research Physical Scientist
USDA-ARS Hydrology and Remote Sensing Laboratory
Bldg. 007, Rm. 104, BARC-West
Beltsville, MD 20705 USA
Voice: (301) 504-8354
Fax: (301) 504-8931
Yun.Yang@usda.gov

 

Research Interests:


Education:


Professional Experience:


Selected Publications: (please contact the author to determine reprint availability)

(view author's publications/interpretive summaries/technical abstracts since 1999)

Kang, Y., Gao, F.N., Anderson, M.C., Kustas, W.P., Nieto, H., Knipper, K.R., Yang, Y., White, W.A., Torres-Rua, A., Alsina, M., Karnell, A. (2022), Evaluation of satellite leaf area index in California vineyards for improving water use estimation. Irrigation Science. doi:10.1007/s00271-022-00798-8.

Cawse-Nicholson, K., Anderson, M.C., Yang, Y., Yang, Y., Hook, S., Fisher, J., Halverson, G., Hulley, G., Hain, C., Brunsell, N., Desai, A.R., Novick, K.A. (2021), Evaluation of a CONUS-wide ECOSTRESS DisALEXI evapotranspiration product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14:10117-10133. doi:10.1109/JSTARS.2021.3111867.

Xue, J., Anderson, M.C., Gao, F.N., Hain, C., Yang, Y., Knipper, K.R., Kustas, W.P., Yang, Y. (2021), Mapping daily evapotranspiration at field scale using the Harmonized Landsat and Sentinel-2 dataset, with sharpened VIIRS as a Sentinel-2 thermal proxy. Remote Sensing. 13:3420. doi:10.3390/rs13173420.

Yang, Y., Anderson, M.C., Gao, F.N., Wood, J.D., Gu, L., Hain, C. (2021), Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging. Remote Sensing of Environment. 265:112640. doi:10.1016/j.rse.2021.112640.

Xue, J., Anderson, M.C., Gao, F.N., Hain, C., Sun, L., Yang, Y., Knipper, K.R., Kustas, W.P., Torres, A., Schull, M. (2020), Sharpening ECOSTRESS and VIIRS land surface temperature using harmonized Landsat-Sentinel surface reflectances. Remote Sensing of Environment. 251. Article 112055. doi:10.1016/j.rse.2020.112055.

Yang, Y., Anderson, M.C., Gao, F.N., Hain, C., Noormets, A., Sun, G., Wynne, R., Thomas, V. (2020), Investigating impacts of drought and disturbance on evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed data. Remote Sensing of Environment. doi:10.1016/j.rse.2018.12.017.

Knipper, K.R., Kustas, W.P., Anderson, M.C., Alfieri, J.G., Prueger, J.H., Hain, C., Gao, F.N., Yang, Y., McKee, L.G., Nieto, H., Hipps, L., Aisha, M., Sanchez, L. (2018), Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrigation Science. doi:10.1007/s00271-018-0591-y.

Anderson, M.C., Gao, F.N., Knipper, K.R., Hain, C., Dulaney, W.P., Baldocchi, D., Eichelmann, E., Hemes, K., Yang, Y., Medellin, A., Kustas, W.P. (2018), Field-scale assessment of land and water use change over the California Delta using remote sensing. Remote Sensing. 10(6):889. doi:10.3390/rs10060889.

Castelli, M., Anderson, M.C., Yang, Y., Wohlfart, G., Bertoldi, G., Hammerle, A., Zhao, P., Niedrist, G., Zebisch, M., Notarnicola, C. (2018), Two source energy balance modeling of evapotranspiration in Alpine grasslands. Remote Sensing of Environment. 209:327-342. doi:10.1016/j.rse.2018.02.062.

Yang, Y., Anderson, M.C., Gao, F.N., Wardlow, B., Hain, C., Otkin, J., Alfieri, J.G., Yang, Y., Sun, L., Dulaney, W.P. (2018), Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, Nebraska. Remote Sensing of Environment. 210:387-402.

Wang, Z., C. Schaaf., Q. Sun, J. Kim, A. Erb, F. Gao, M. Román, Yang, S. Petroy, J. Taylor, and J. Masek (2017), Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product, Int. J. Appl. Earth Obs. Geoinf., 59, 104–117, doi:10.1016/j.jag.2017.03.008.

Yang, Y., M. Anderson, F. Gao, C. Hain, W. Kustas, T. Meyers, W. Crow, R. Finocchiaro, J. Otkin, and L. Sun (2017), Impact of Tile Drainage on Evapotranspiration in South Dakota, USA, Based on High Spatiotemporal Resolution Evapotranspiration Time Series From a Multisatellite Data Fusion System, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10(6), 2550–2564, doi:10.1109/JSTARS.2017.2680411.

Yang, Y., C. Anderson, F. Gao, C. R. Hain, K. A. Semmens, W. P. Kustas, A. Noormets, R. H. Wynne, V. A. Thomas, and G. Sun (2017), Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA using multi-satellite data fusion, Hydrol. Earth Syst. Sci., 21, 1017–1037, doi:doi:10.5194/hess-21-1017-2017.

Sun, L., M. C. Anderson, F. Gao, C. Hain, J. G. Alfieri, A. Sharifi, G. W. McCarty, Yang, Y. Yang, and W. P. Kustas (2017), Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach, Water Resour. Res., doi:10.1002/2017WR020700.

Sun, L., Z. Chen, F. Gao, M. Anderson, L. Song, L. Wang, B. Hu, and Yang (2017), Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data, Comput. Geosci., 105, 10–20, doi:10.1016/j.cageo.2017.04.007.

Semmens, K. A., M. C. Anderson, W. P. Kustas, F. Gao, J. G. Alfieri, L. McKee, J. H. Prueger, C. R. Hain, C. Cammalleri, Yang and T. Xia (2016), Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach, Remote Sens. Environ., 185, 155–170.

Wang, Z., A. M. Erb, C. B. Schaaf, Q. Sun, Y. Liu, Yang, Y. Shuai, K. A. Casey, and M. O. Román (2016), Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data, Remote Sens. Environ.,185

Gao, F., T. Hilker, X. Zhu, M. Anderson, J. Masek, P. Wang, and Yang (2015), Fusing Landsat and MODIS data for vegetation monitoring, IEEE Geosci. Remote Sens. Mag., 3(3), 47–60.

Tenenbaum, D. E., Yang, and W. Zhou (2011), A comparison of object-oriented image classification and transect sampling methods for obtaining land cover information from digital orthophotography, GIScience Remote Sens., 48(1), 112–129.

Wang, J., W. Ding, B. Fradkin, C. H. Pham, P. Sherman, B. D. Tran, D. Wang, Yang, and T. F. Stepinski (2010), Effective classification for crater detection: A case study on Mars, in Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on, pp. 688–695, IEEE.

 

logo for the Hydrology and Remote Sensing Laboratory