Skip to main content
ARS Home » Northeast Area » Leetown, West Virginia » Cool and Cold Water Aquaculture Research » Research » Research Project #427931

Research Project: Integrated Research Approaches for Improving Production Efficiency in Salmonids

Location: Cool and Cold Water Aquaculture Research

Project Number: 8082-31000-012-000-D
Project Type: In-House Appropriated

Start Date: Dec 14, 2014
End Date: Dec 13, 2019

Objective:
1: Improving performance of salmonids using selective breeding and genetic markers. • Sub-objective 1.a. Develop SNP-based assays for parentage assignments and strains identification in rainbow trout. • Sub-objective 1.b. Estimate genetic parameters of fillet yield in the Clear Springs Foods, Inc. commercial population. • Sub-objective 1.c. Divergently select for fillet yield to estimate selection response, develop resource populations for physiological and genomics studies, and develop improved germplasm for release to industry stakeholders. • Sub-objective 1.d. Assessment of genetic x environmental interactions in the NCCCWA growth line. 2: Evaluate accuracy of selection using within-family genome enabled breeding value (GEBV) predictions in rainbow trout family-based selective breeding program for bacterial cold water disease (BCWD) resistance. 3: Identification of mechanisms affecting production traits to better define phenotypes for selective breeding or to improve management practices. • Sub-objective 3.a. Improve the rainbow trout reference genome assembly. • Sub-objective 3.b. Identify positional candidate genes for BCWD resistance. • Sub-objective 3.c. Determine how factors affecting nutrient partitioning and nutrient retention regulate growth performance traits and fillet yield. • Sub-objective 3.d. Identification of mechanisms affecting egg quality and development of a transcript array to identify mechanisms impacted in poor quality eggs to suggest means of mitigation.

Approach:
Rainbow trout (Oncorhynchus mykiss) are the most widely farmed cold freshwater species and the second most valuable finfish aquaculture product in the United States. The application of genomic technologies towards the genetic improvement of aquaculture species is expected to facilitate selective breeding and provide basic information on the biochemical mechanisms controlling traits of interest. In the previous project, a suite of genome tools and reagents for rainbow trout was developed to identify and characterize genes affecting aquaculture production traits. Projects concurrent with the previous project characterized the genetic variation of the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock with respect to resistance to Bacterial Cold Water Disease (BCWD) and response to crowding stress. Specific crosses were identified that will facilitate the identification of chromosome regions and genes affecting these traits through genetic mapping and functional genomic approaches. The current project will continue the genome scans of these crosses with new sets of markers to identify positional candidate genes affecting these traits. In addition, possibilities for developing informative crosses and functional genomic approaches which target the identification of genes affecting carcass quality traits will be determined. We will also continue to identify and characterize genes in the oocyte which impact embryonic development and egg quality traits important to breeders. This information is important to gain a better understanding of the genetics of production traits and for transferring genetic information and improved germplasm from the NCCCWA selective breeding program to customers and stakeholders.