Location: Crop Bioprotection Research
Project Number: 5010-22000-011-000-D
Project Type: In-House Appropriated
Start Date: Sep 14, 2015
End Date: Sep 13, 2020
Objective:
1. Demonstrate production potential for baculovirus for insect control (such as black cutworm MNPV), evaluate formulations for storage stability and residual efficacy, and identify and evaluate insect semiochemicals such as attractants or feeding stimulants that can be integrated into formulations to improve control of major insect pests of turf or other crops.
2. Determine the relationship between microbial communities and the characteristics of weeds (such as bindweed, medusahead grass, or quack grass) that make them harmful to turf, natural ecosystems, and agricultural commodities.
3. Identify viruses that can target potential key endophytes or microorganisms that contribute negative characteristics of weeds.
4. Identify, describe, and preserve microorganisms isolated from weeds as part of the characterization of microbial communities associated with important weeds.
Approach:
Grasses planted as turf and pasture represent a commodity that has been underserved when considering the use of biological control based on microbial agents. For urban and athletic turf grasses, a newly discovered baculovirus offers the opportunity to develop a biological pesticide for control of the black cutworm. Research will focus on basic and applied aspects of production, formulation, and efficacy of this baculovirus for development as a biological insecticide.
Invasive weed species among range grasses such as Medusahead may obtain enhanced fitness as a result of associations with endophytic microbes. Research will utilize classic microbial and newly developed molecular techniques to characterize endophytic microbes of the weedy plants and identify those providing competitive advantages to the weeds. Subsequent research will strive to discover mycoviruses to attach the endophytes of the weedy plant, to convert the competitive advantage back to the desired crop plant.